Properties

Label 6561.2.a.d.1.24
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $0$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.24
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.833012 q^{2} -1.30609 q^{4} +1.20615 q^{5} -1.31489 q^{7} +2.75401 q^{8} -1.00474 q^{10} -2.17338 q^{11} +4.55495 q^{13} +1.09532 q^{14} +0.318052 q^{16} +3.76950 q^{17} +2.66594 q^{19} -1.57535 q^{20} +1.81045 q^{22} +6.03331 q^{23} -3.54519 q^{25} -3.79433 q^{26} +1.71737 q^{28} +4.15782 q^{29} +7.45716 q^{31} -5.77297 q^{32} -3.14004 q^{34} -1.58596 q^{35} +9.76208 q^{37} -2.22077 q^{38} +3.32176 q^{40} -5.78809 q^{41} -5.05513 q^{43} +2.83863 q^{44} -5.02582 q^{46} +2.99794 q^{47} -5.27105 q^{49} +2.95319 q^{50} -5.94918 q^{52} -12.4597 q^{53} -2.62143 q^{55} -3.62124 q^{56} -3.46352 q^{58} +10.9078 q^{59} +11.7931 q^{61} -6.21191 q^{62} +4.17285 q^{64} +5.49397 q^{65} -0.830108 q^{67} -4.92330 q^{68} +1.32113 q^{70} -7.25123 q^{71} -8.12021 q^{73} -8.13193 q^{74} -3.48196 q^{76} +2.85776 q^{77} -11.4996 q^{79} +0.383620 q^{80} +4.82155 q^{82} +4.77483 q^{83} +4.54659 q^{85} +4.21099 q^{86} -5.98551 q^{88} -3.33221 q^{89} -5.98928 q^{91} -7.88004 q^{92} -2.49732 q^{94} +3.21554 q^{95} +1.36325 q^{97} +4.39085 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 9 q^{2} + 63 q^{4} + 18 q^{5} + 27 q^{8} + 36 q^{11} + 36 q^{14} + 45 q^{16} + 36 q^{17} + 54 q^{20} + 54 q^{23} + 36 q^{25} + 45 q^{26} + 9 q^{28} + 54 q^{29} + 63 q^{32} + 72 q^{35} + 54 q^{38}+ \cdots + 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.833012 −0.589029 −0.294514 0.955647i \(-0.595158\pi\)
−0.294514 + 0.955647i \(0.595158\pi\)
\(3\) 0 0
\(4\) −1.30609 −0.653045
\(5\) 1.20615 0.539408 0.269704 0.962943i \(-0.413074\pi\)
0.269704 + 0.962943i \(0.413074\pi\)
\(6\) 0 0
\(7\) −1.31489 −0.496983 −0.248492 0.968634i \(-0.579935\pi\)
−0.248492 + 0.968634i \(0.579935\pi\)
\(8\) 2.75401 0.973691
\(9\) 0 0
\(10\) −1.00474 −0.317727
\(11\) −2.17338 −0.655298 −0.327649 0.944800i \(-0.606256\pi\)
−0.327649 + 0.944800i \(0.606256\pi\)
\(12\) 0 0
\(13\) 4.55495 1.26332 0.631658 0.775247i \(-0.282375\pi\)
0.631658 + 0.775247i \(0.282375\pi\)
\(14\) 1.09532 0.292738
\(15\) 0 0
\(16\) 0.318052 0.0795131
\(17\) 3.76950 0.914237 0.457119 0.889406i \(-0.348882\pi\)
0.457119 + 0.889406i \(0.348882\pi\)
\(18\) 0 0
\(19\) 2.66594 0.611610 0.305805 0.952094i \(-0.401074\pi\)
0.305805 + 0.952094i \(0.401074\pi\)
\(20\) −1.57535 −0.352258
\(21\) 0 0
\(22\) 1.81045 0.385989
\(23\) 6.03331 1.25803 0.629016 0.777393i \(-0.283458\pi\)
0.629016 + 0.777393i \(0.283458\pi\)
\(24\) 0 0
\(25\) −3.54519 −0.709039
\(26\) −3.79433 −0.744130
\(27\) 0 0
\(28\) 1.71737 0.324553
\(29\) 4.15782 0.772088 0.386044 0.922480i \(-0.373841\pi\)
0.386044 + 0.922480i \(0.373841\pi\)
\(30\) 0 0
\(31\) 7.45716 1.33935 0.669673 0.742656i \(-0.266434\pi\)
0.669673 + 0.742656i \(0.266434\pi\)
\(32\) −5.77297 −1.02053
\(33\) 0 0
\(34\) −3.14004 −0.538512
\(35\) −1.58596 −0.268077
\(36\) 0 0
\(37\) 9.76208 1.60488 0.802438 0.596736i \(-0.203536\pi\)
0.802438 + 0.596736i \(0.203536\pi\)
\(38\) −2.22077 −0.360256
\(39\) 0 0
\(40\) 3.32176 0.525217
\(41\) −5.78809 −0.903947 −0.451974 0.892031i \(-0.649280\pi\)
−0.451974 + 0.892031i \(0.649280\pi\)
\(42\) 0 0
\(43\) −5.05513 −0.770900 −0.385450 0.922729i \(-0.625954\pi\)
−0.385450 + 0.922729i \(0.625954\pi\)
\(44\) 2.83863 0.427939
\(45\) 0 0
\(46\) −5.02582 −0.741017
\(47\) 2.99794 0.437295 0.218648 0.975804i \(-0.429835\pi\)
0.218648 + 0.975804i \(0.429835\pi\)
\(48\) 0 0
\(49\) −5.27105 −0.753007
\(50\) 2.95319 0.417644
\(51\) 0 0
\(52\) −5.94918 −0.825003
\(53\) −12.4597 −1.71148 −0.855739 0.517408i \(-0.826897\pi\)
−0.855739 + 0.517408i \(0.826897\pi\)
\(54\) 0 0
\(55\) −2.62143 −0.353473
\(56\) −3.62124 −0.483908
\(57\) 0 0
\(58\) −3.46352 −0.454782
\(59\) 10.9078 1.42008 0.710040 0.704161i \(-0.248677\pi\)
0.710040 + 0.704161i \(0.248677\pi\)
\(60\) 0 0
\(61\) 11.7931 1.50996 0.754978 0.655750i \(-0.227647\pi\)
0.754978 + 0.655750i \(0.227647\pi\)
\(62\) −6.21191 −0.788913
\(63\) 0 0
\(64\) 4.17285 0.521606
\(65\) 5.49397 0.681443
\(66\) 0 0
\(67\) −0.830108 −0.101414 −0.0507069 0.998714i \(-0.516147\pi\)
−0.0507069 + 0.998714i \(0.516147\pi\)
\(68\) −4.92330 −0.597038
\(69\) 0 0
\(70\) 1.32113 0.157905
\(71\) −7.25123 −0.860563 −0.430281 0.902695i \(-0.641586\pi\)
−0.430281 + 0.902695i \(0.641586\pi\)
\(72\) 0 0
\(73\) −8.12021 −0.950399 −0.475199 0.879878i \(-0.657624\pi\)
−0.475199 + 0.879878i \(0.657624\pi\)
\(74\) −8.13193 −0.945318
\(75\) 0 0
\(76\) −3.48196 −0.399409
\(77\) 2.85776 0.325672
\(78\) 0 0
\(79\) −11.4996 −1.29380 −0.646901 0.762574i \(-0.723935\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(80\) 0.383620 0.0428900
\(81\) 0 0
\(82\) 4.82155 0.532451
\(83\) 4.77483 0.524106 0.262053 0.965053i \(-0.415600\pi\)
0.262053 + 0.965053i \(0.415600\pi\)
\(84\) 0 0
\(85\) 4.54659 0.493147
\(86\) 4.21099 0.454082
\(87\) 0 0
\(88\) −5.98551 −0.638058
\(89\) −3.33221 −0.353213 −0.176607 0.984282i \(-0.556512\pi\)
−0.176607 + 0.984282i \(0.556512\pi\)
\(90\) 0 0
\(91\) −5.98928 −0.627847
\(92\) −7.88004 −0.821551
\(93\) 0 0
\(94\) −2.49732 −0.257579
\(95\) 3.21554 0.329907
\(96\) 0 0
\(97\) 1.36325 0.138417 0.0692087 0.997602i \(-0.477953\pi\)
0.0692087 + 0.997602i \(0.477953\pi\)
\(98\) 4.39085 0.443543
\(99\) 0 0
\(100\) 4.63034 0.463034
\(101\) −2.31484 −0.230335 −0.115168 0.993346i \(-0.536741\pi\)
−0.115168 + 0.993346i \(0.536741\pi\)
\(102\) 0 0
\(103\) 4.54956 0.448281 0.224141 0.974557i \(-0.428042\pi\)
0.224141 + 0.974557i \(0.428042\pi\)
\(104\) 12.5444 1.23008
\(105\) 0 0
\(106\) 10.3791 1.00811
\(107\) 12.2933 1.18844 0.594219 0.804303i \(-0.297461\pi\)
0.594219 + 0.804303i \(0.297461\pi\)
\(108\) 0 0
\(109\) −8.90655 −0.853093 −0.426546 0.904466i \(-0.640270\pi\)
−0.426546 + 0.904466i \(0.640270\pi\)
\(110\) 2.18368 0.208206
\(111\) 0 0
\(112\) −0.418205 −0.0395167
\(113\) 17.3907 1.63598 0.817991 0.575231i \(-0.195088\pi\)
0.817991 + 0.575231i \(0.195088\pi\)
\(114\) 0 0
\(115\) 7.27709 0.678593
\(116\) −5.43049 −0.504208
\(117\) 0 0
\(118\) −9.08637 −0.836468
\(119\) −4.95649 −0.454361
\(120\) 0 0
\(121\) −6.27643 −0.570585
\(122\) −9.82383 −0.889408
\(123\) 0 0
\(124\) −9.73972 −0.874653
\(125\) −10.3068 −0.921870
\(126\) 0 0
\(127\) 5.68185 0.504182 0.252091 0.967703i \(-0.418882\pi\)
0.252091 + 0.967703i \(0.418882\pi\)
\(128\) 8.06990 0.713285
\(129\) 0 0
\(130\) −4.57655 −0.401390
\(131\) 19.5185 1.70534 0.852668 0.522452i \(-0.174983\pi\)
0.852668 + 0.522452i \(0.174983\pi\)
\(132\) 0 0
\(133\) −3.50544 −0.303960
\(134\) 0.691490 0.0597356
\(135\) 0 0
\(136\) 10.3812 0.890185
\(137\) −15.8542 −1.35452 −0.677259 0.735745i \(-0.736832\pi\)
−0.677259 + 0.735745i \(0.736832\pi\)
\(138\) 0 0
\(139\) −10.4392 −0.885444 −0.442722 0.896659i \(-0.645987\pi\)
−0.442722 + 0.896659i \(0.645987\pi\)
\(140\) 2.07141 0.175066
\(141\) 0 0
\(142\) 6.04036 0.506896
\(143\) −9.89963 −0.827849
\(144\) 0 0
\(145\) 5.01497 0.416471
\(146\) 6.76424 0.559812
\(147\) 0 0
\(148\) −12.7502 −1.04806
\(149\) 2.91511 0.238815 0.119408 0.992845i \(-0.461900\pi\)
0.119408 + 0.992845i \(0.461900\pi\)
\(150\) 0 0
\(151\) −12.7598 −1.03838 −0.519190 0.854659i \(-0.673766\pi\)
−0.519190 + 0.854659i \(0.673766\pi\)
\(152\) 7.34205 0.595519
\(153\) 0 0
\(154\) −2.38055 −0.191830
\(155\) 8.99448 0.722454
\(156\) 0 0
\(157\) −1.27064 −0.101408 −0.0507039 0.998714i \(-0.516146\pi\)
−0.0507039 + 0.998714i \(0.516146\pi\)
\(158\) 9.57927 0.762086
\(159\) 0 0
\(160\) −6.96309 −0.550481
\(161\) −7.93316 −0.625221
\(162\) 0 0
\(163\) 12.3636 0.968391 0.484195 0.874960i \(-0.339112\pi\)
0.484195 + 0.874960i \(0.339112\pi\)
\(164\) 7.55976 0.590318
\(165\) 0 0
\(166\) −3.97749 −0.308713
\(167\) −3.81354 −0.295101 −0.147550 0.989055i \(-0.547139\pi\)
−0.147550 + 0.989055i \(0.547139\pi\)
\(168\) 0 0
\(169\) 7.74759 0.595969
\(170\) −3.78737 −0.290478
\(171\) 0 0
\(172\) 6.60246 0.503433
\(173\) 24.0701 1.83002 0.915009 0.403432i \(-0.132183\pi\)
0.915009 + 0.403432i \(0.132183\pi\)
\(174\) 0 0
\(175\) 4.66156 0.352380
\(176\) −0.691248 −0.0521048
\(177\) 0 0
\(178\) 2.77577 0.208053
\(179\) 6.33921 0.473815 0.236907 0.971532i \(-0.423866\pi\)
0.236907 + 0.971532i \(0.423866\pi\)
\(180\) 0 0
\(181\) 6.19367 0.460372 0.230186 0.973147i \(-0.426067\pi\)
0.230186 + 0.973147i \(0.426067\pi\)
\(182\) 4.98915 0.369820
\(183\) 0 0
\(184\) 16.6158 1.22493
\(185\) 11.7746 0.865683
\(186\) 0 0
\(187\) −8.19254 −0.599098
\(188\) −3.91559 −0.285573
\(189\) 0 0
\(190\) −2.67858 −0.194325
\(191\) −6.75265 −0.488605 −0.244302 0.969699i \(-0.578559\pi\)
−0.244302 + 0.969699i \(0.578559\pi\)
\(192\) 0 0
\(193\) −15.9116 −1.14534 −0.572669 0.819786i \(-0.694092\pi\)
−0.572669 + 0.819786i \(0.694092\pi\)
\(194\) −1.13561 −0.0815318
\(195\) 0 0
\(196\) 6.88447 0.491748
\(197\) 11.5923 0.825919 0.412959 0.910749i \(-0.364495\pi\)
0.412959 + 0.910749i \(0.364495\pi\)
\(198\) 0 0
\(199\) 4.29982 0.304806 0.152403 0.988318i \(-0.451299\pi\)
0.152403 + 0.988318i \(0.451299\pi\)
\(200\) −9.76351 −0.690385
\(201\) 0 0
\(202\) 1.92829 0.135674
\(203\) −5.46710 −0.383715
\(204\) 0 0
\(205\) −6.98132 −0.487597
\(206\) −3.78984 −0.264051
\(207\) 0 0
\(208\) 1.44871 0.100450
\(209\) −5.79410 −0.400787
\(210\) 0 0
\(211\) 14.2812 0.983161 0.491581 0.870832i \(-0.336419\pi\)
0.491581 + 0.870832i \(0.336419\pi\)
\(212\) 16.2736 1.11767
\(213\) 0 0
\(214\) −10.2405 −0.700024
\(215\) −6.09726 −0.415830
\(216\) 0 0
\(217\) −9.80538 −0.665632
\(218\) 7.41927 0.502496
\(219\) 0 0
\(220\) 3.42382 0.230834
\(221\) 17.1699 1.15497
\(222\) 0 0
\(223\) −20.1902 −1.35204 −0.676019 0.736884i \(-0.736296\pi\)
−0.676019 + 0.736884i \(0.736296\pi\)
\(224\) 7.59085 0.507185
\(225\) 0 0
\(226\) −14.4867 −0.963641
\(227\) −2.72344 −0.180761 −0.0903805 0.995907i \(-0.528808\pi\)
−0.0903805 + 0.995907i \(0.528808\pi\)
\(228\) 0 0
\(229\) 1.52656 0.100878 0.0504388 0.998727i \(-0.483938\pi\)
0.0504388 + 0.998727i \(0.483938\pi\)
\(230\) −6.06191 −0.399710
\(231\) 0 0
\(232\) 11.4507 0.751775
\(233\) 6.52741 0.427625 0.213812 0.976875i \(-0.431412\pi\)
0.213812 + 0.976875i \(0.431412\pi\)
\(234\) 0 0
\(235\) 3.61598 0.235881
\(236\) −14.2466 −0.927377
\(237\) 0 0
\(238\) 4.12882 0.267632
\(239\) 16.8976 1.09301 0.546507 0.837455i \(-0.315957\pi\)
0.546507 + 0.837455i \(0.315957\pi\)
\(240\) 0 0
\(241\) −12.5989 −0.811569 −0.405784 0.913969i \(-0.633002\pi\)
−0.405784 + 0.913969i \(0.633002\pi\)
\(242\) 5.22835 0.336091
\(243\) 0 0
\(244\) −15.4029 −0.986070
\(245\) −6.35770 −0.406178
\(246\) 0 0
\(247\) 12.1433 0.772657
\(248\) 20.5371 1.30411
\(249\) 0 0
\(250\) 8.58571 0.543008
\(251\) 25.8023 1.62863 0.814313 0.580426i \(-0.197114\pi\)
0.814313 + 0.580426i \(0.197114\pi\)
\(252\) 0 0
\(253\) −13.1127 −0.824385
\(254\) −4.73305 −0.296978
\(255\) 0 0
\(256\) −15.0680 −0.941752
\(257\) −14.4723 −0.902757 −0.451378 0.892333i \(-0.649068\pi\)
−0.451378 + 0.892333i \(0.649068\pi\)
\(258\) 0 0
\(259\) −12.8361 −0.797597
\(260\) −7.17562 −0.445013
\(261\) 0 0
\(262\) −16.2591 −1.00449
\(263\) 10.4546 0.644658 0.322329 0.946628i \(-0.395534\pi\)
0.322329 + 0.946628i \(0.395534\pi\)
\(264\) 0 0
\(265\) −15.0284 −0.923185
\(266\) 2.92007 0.179041
\(267\) 0 0
\(268\) 1.08420 0.0662278
\(269\) 0.210748 0.0128495 0.00642476 0.999979i \(-0.497955\pi\)
0.00642476 + 0.999979i \(0.497955\pi\)
\(270\) 0 0
\(271\) −11.4169 −0.693529 −0.346765 0.937952i \(-0.612720\pi\)
−0.346765 + 0.937952i \(0.612720\pi\)
\(272\) 1.19890 0.0726938
\(273\) 0 0
\(274\) 13.2068 0.797850
\(275\) 7.70504 0.464632
\(276\) 0 0
\(277\) −11.1494 −0.669905 −0.334952 0.942235i \(-0.608720\pi\)
−0.334952 + 0.942235i \(0.608720\pi\)
\(278\) 8.69601 0.521552
\(279\) 0 0
\(280\) −4.36777 −0.261024
\(281\) 21.7032 1.29470 0.647351 0.762192i \(-0.275877\pi\)
0.647351 + 0.762192i \(0.275877\pi\)
\(282\) 0 0
\(283\) −0.296522 −0.0176264 −0.00881321 0.999961i \(-0.502805\pi\)
−0.00881321 + 0.999961i \(0.502805\pi\)
\(284\) 9.47076 0.561986
\(285\) 0 0
\(286\) 8.24652 0.487627
\(287\) 7.61072 0.449247
\(288\) 0 0
\(289\) −2.79090 −0.164171
\(290\) −4.17753 −0.245313
\(291\) 0 0
\(292\) 10.6057 0.620653
\(293\) 14.5066 0.847485 0.423743 0.905783i \(-0.360716\pi\)
0.423743 + 0.905783i \(0.360716\pi\)
\(294\) 0 0
\(295\) 13.1565 0.766003
\(296\) 26.8849 1.56265
\(297\) 0 0
\(298\) −2.42833 −0.140669
\(299\) 27.4814 1.58929
\(300\) 0 0
\(301\) 6.64696 0.383125
\(302\) 10.6291 0.611636
\(303\) 0 0
\(304\) 0.847910 0.0486310
\(305\) 14.2243 0.814483
\(306\) 0 0
\(307\) 3.78902 0.216251 0.108126 0.994137i \(-0.465515\pi\)
0.108126 + 0.994137i \(0.465515\pi\)
\(308\) −3.73250 −0.212679
\(309\) 0 0
\(310\) −7.49251 −0.425546
\(311\) −12.3295 −0.699143 −0.349572 0.936910i \(-0.613673\pi\)
−0.349572 + 0.936910i \(0.613673\pi\)
\(312\) 0 0
\(313\) 6.80582 0.384688 0.192344 0.981328i \(-0.438391\pi\)
0.192344 + 0.981328i \(0.438391\pi\)
\(314\) 1.05846 0.0597321
\(315\) 0 0
\(316\) 15.0195 0.844911
\(317\) 14.9365 0.838919 0.419459 0.907774i \(-0.362220\pi\)
0.419459 + 0.907774i \(0.362220\pi\)
\(318\) 0 0
\(319\) −9.03651 −0.505948
\(320\) 5.03310 0.281359
\(321\) 0 0
\(322\) 6.60842 0.368273
\(323\) 10.0493 0.559156
\(324\) 0 0
\(325\) −16.1482 −0.895740
\(326\) −10.2990 −0.570410
\(327\) 0 0
\(328\) −15.9405 −0.880165
\(329\) −3.94198 −0.217328
\(330\) 0 0
\(331\) −3.69381 −0.203030 −0.101515 0.994834i \(-0.532369\pi\)
−0.101515 + 0.994834i \(0.532369\pi\)
\(332\) −6.23636 −0.342265
\(333\) 0 0
\(334\) 3.17673 0.173823
\(335\) −1.00124 −0.0547034
\(336\) 0 0
\(337\) 18.4446 1.00474 0.502371 0.864652i \(-0.332461\pi\)
0.502371 + 0.864652i \(0.332461\pi\)
\(338\) −6.45384 −0.351043
\(339\) 0 0
\(340\) −5.93826 −0.322047
\(341\) −16.2072 −0.877670
\(342\) 0 0
\(343\) 16.1351 0.871216
\(344\) −13.9219 −0.750619
\(345\) 0 0
\(346\) −20.0507 −1.07793
\(347\) 33.5960 1.80353 0.901764 0.432228i \(-0.142272\pi\)
0.901764 + 0.432228i \(0.142272\pi\)
\(348\) 0 0
\(349\) −32.9376 −1.76311 −0.881555 0.472082i \(-0.843503\pi\)
−0.881555 + 0.472082i \(0.843503\pi\)
\(350\) −3.88313 −0.207562
\(351\) 0 0
\(352\) 12.5468 0.668749
\(353\) −13.3414 −0.710091 −0.355046 0.934849i \(-0.615535\pi\)
−0.355046 + 0.934849i \(0.615535\pi\)
\(354\) 0 0
\(355\) −8.74610 −0.464195
\(356\) 4.35216 0.230664
\(357\) 0 0
\(358\) −5.28064 −0.279090
\(359\) −9.02629 −0.476390 −0.238195 0.971217i \(-0.576556\pi\)
−0.238195 + 0.971217i \(0.576556\pi\)
\(360\) 0 0
\(361\) −11.8927 −0.625934
\(362\) −5.15940 −0.271172
\(363\) 0 0
\(364\) 7.82254 0.410013
\(365\) −9.79422 −0.512653
\(366\) 0 0
\(367\) 25.6039 1.33651 0.668257 0.743931i \(-0.267041\pi\)
0.668257 + 0.743931i \(0.267041\pi\)
\(368\) 1.91891 0.100030
\(369\) 0 0
\(370\) −9.80836 −0.509912
\(371\) 16.3833 0.850576
\(372\) 0 0
\(373\) −21.8677 −1.13227 −0.566133 0.824314i \(-0.691561\pi\)
−0.566133 + 0.824314i \(0.691561\pi\)
\(374\) 6.82449 0.352886
\(375\) 0 0
\(376\) 8.25638 0.425790
\(377\) 18.9387 0.975391
\(378\) 0 0
\(379\) 10.5343 0.541113 0.270556 0.962704i \(-0.412792\pi\)
0.270556 + 0.962704i \(0.412792\pi\)
\(380\) −4.19978 −0.215444
\(381\) 0 0
\(382\) 5.62504 0.287802
\(383\) −21.8686 −1.11743 −0.558716 0.829359i \(-0.688706\pi\)
−0.558716 + 0.829359i \(0.688706\pi\)
\(384\) 0 0
\(385\) 3.44690 0.175670
\(386\) 13.2545 0.674637
\(387\) 0 0
\(388\) −1.78053 −0.0903928
\(389\) −24.3906 −1.23665 −0.618327 0.785921i \(-0.712189\pi\)
−0.618327 + 0.785921i \(0.712189\pi\)
\(390\) 0 0
\(391\) 22.7425 1.15014
\(392\) −14.5166 −0.733197
\(393\) 0 0
\(394\) −9.65655 −0.486490
\(395\) −13.8702 −0.697887
\(396\) 0 0
\(397\) 23.9984 1.20445 0.602223 0.798328i \(-0.294282\pi\)
0.602223 + 0.798328i \(0.294282\pi\)
\(398\) −3.58180 −0.179539
\(399\) 0 0
\(400\) −1.12756 −0.0563779
\(401\) 36.9137 1.84338 0.921692 0.387922i \(-0.126807\pi\)
0.921692 + 0.387922i \(0.126807\pi\)
\(402\) 0 0
\(403\) 33.9670 1.69202
\(404\) 3.02339 0.150419
\(405\) 0 0
\(406\) 4.55416 0.226019
\(407\) −21.2167 −1.05167
\(408\) 0 0
\(409\) −2.85521 −0.141181 −0.0705906 0.997505i \(-0.522488\pi\)
−0.0705906 + 0.997505i \(0.522488\pi\)
\(410\) 5.81553 0.287208
\(411\) 0 0
\(412\) −5.94213 −0.292748
\(413\) −14.3427 −0.705757
\(414\) 0 0
\(415\) 5.75918 0.282707
\(416\) −26.2956 −1.28925
\(417\) 0 0
\(418\) 4.82656 0.236075
\(419\) −34.3748 −1.67932 −0.839659 0.543113i \(-0.817245\pi\)
−0.839659 + 0.543113i \(0.817245\pi\)
\(420\) 0 0
\(421\) 6.25163 0.304686 0.152343 0.988328i \(-0.451318\pi\)
0.152343 + 0.988328i \(0.451318\pi\)
\(422\) −11.8965 −0.579110
\(423\) 0 0
\(424\) −34.3143 −1.66645
\(425\) −13.3636 −0.648229
\(426\) 0 0
\(427\) −15.5067 −0.750424
\(428\) −16.0562 −0.776104
\(429\) 0 0
\(430\) 5.07910 0.244936
\(431\) −3.01725 −0.145336 −0.0726679 0.997356i \(-0.523151\pi\)
−0.0726679 + 0.997356i \(0.523151\pi\)
\(432\) 0 0
\(433\) 30.7319 1.47688 0.738439 0.674320i \(-0.235563\pi\)
0.738439 + 0.674320i \(0.235563\pi\)
\(434\) 8.16800 0.392077
\(435\) 0 0
\(436\) 11.6328 0.557108
\(437\) 16.0845 0.769424
\(438\) 0 0
\(439\) 0.457630 0.0218415 0.0109207 0.999940i \(-0.496524\pi\)
0.0109207 + 0.999940i \(0.496524\pi\)
\(440\) −7.21945 −0.344174
\(441\) 0 0
\(442\) −14.3027 −0.680311
\(443\) 34.9086 1.65856 0.829278 0.558836i \(-0.188752\pi\)
0.829278 + 0.558836i \(0.188752\pi\)
\(444\) 0 0
\(445\) −4.01915 −0.190526
\(446\) 16.8187 0.796389
\(447\) 0 0
\(448\) −5.48686 −0.259230
\(449\) 7.15619 0.337722 0.168861 0.985640i \(-0.445991\pi\)
0.168861 + 0.985640i \(0.445991\pi\)
\(450\) 0 0
\(451\) 12.5797 0.592355
\(452\) −22.7139 −1.06837
\(453\) 0 0
\(454\) 2.26866 0.106473
\(455\) −7.22400 −0.338666
\(456\) 0 0
\(457\) −12.6824 −0.593258 −0.296629 0.954993i \(-0.595863\pi\)
−0.296629 + 0.954993i \(0.595863\pi\)
\(458\) −1.27164 −0.0594198
\(459\) 0 0
\(460\) −9.50454 −0.443152
\(461\) −0.461815 −0.0215089 −0.0107544 0.999942i \(-0.503423\pi\)
−0.0107544 + 0.999942i \(0.503423\pi\)
\(462\) 0 0
\(463\) 37.1009 1.72423 0.862113 0.506716i \(-0.169141\pi\)
0.862113 + 0.506716i \(0.169141\pi\)
\(464\) 1.32240 0.0613911
\(465\) 0 0
\(466\) −5.43741 −0.251883
\(467\) −27.5069 −1.27287 −0.636434 0.771331i \(-0.719591\pi\)
−0.636434 + 0.771331i \(0.719591\pi\)
\(468\) 0 0
\(469\) 1.09150 0.0504010
\(470\) −3.01216 −0.138940
\(471\) 0 0
\(472\) 30.0404 1.38272
\(473\) 10.9867 0.505169
\(474\) 0 0
\(475\) −9.45129 −0.433655
\(476\) 6.47362 0.296718
\(477\) 0 0
\(478\) −14.0759 −0.643816
\(479\) 14.2605 0.651579 0.325789 0.945442i \(-0.394370\pi\)
0.325789 + 0.945442i \(0.394370\pi\)
\(480\) 0 0
\(481\) 44.4658 2.02747
\(482\) 10.4951 0.478037
\(483\) 0 0
\(484\) 8.19759 0.372618
\(485\) 1.64429 0.0746634
\(486\) 0 0
\(487\) 9.07752 0.411342 0.205671 0.978621i \(-0.434062\pi\)
0.205671 + 0.978621i \(0.434062\pi\)
\(488\) 32.4785 1.47023
\(489\) 0 0
\(490\) 5.29604 0.239251
\(491\) 27.8829 1.25834 0.629169 0.777268i \(-0.283395\pi\)
0.629169 + 0.777268i \(0.283395\pi\)
\(492\) 0 0
\(493\) 15.6729 0.705871
\(494\) −10.1155 −0.455117
\(495\) 0 0
\(496\) 2.37177 0.106495
\(497\) 9.53460 0.427685
\(498\) 0 0
\(499\) −23.7912 −1.06504 −0.532520 0.846417i \(-0.678755\pi\)
−0.532520 + 0.846417i \(0.678755\pi\)
\(500\) 13.4616 0.602022
\(501\) 0 0
\(502\) −21.4936 −0.959308
\(503\) 8.05599 0.359199 0.179600 0.983740i \(-0.442520\pi\)
0.179600 + 0.983740i \(0.442520\pi\)
\(504\) 0 0
\(505\) −2.79205 −0.124245
\(506\) 10.9230 0.485587
\(507\) 0 0
\(508\) −7.42100 −0.329254
\(509\) 19.3048 0.855670 0.427835 0.903857i \(-0.359276\pi\)
0.427835 + 0.903857i \(0.359276\pi\)
\(510\) 0 0
\(511\) 10.6772 0.472333
\(512\) −3.58795 −0.158566
\(513\) 0 0
\(514\) 12.0556 0.531750
\(515\) 5.48747 0.241807
\(516\) 0 0
\(517\) −6.51566 −0.286559
\(518\) 10.6926 0.469807
\(519\) 0 0
\(520\) 15.1305 0.663515
\(521\) −2.66895 −0.116929 −0.0584644 0.998289i \(-0.518620\pi\)
−0.0584644 + 0.998289i \(0.518620\pi\)
\(522\) 0 0
\(523\) 15.3637 0.671809 0.335905 0.941896i \(-0.390958\pi\)
0.335905 + 0.941896i \(0.390958\pi\)
\(524\) −25.4929 −1.11366
\(525\) 0 0
\(526\) −8.70881 −0.379722
\(527\) 28.1097 1.22448
\(528\) 0 0
\(529\) 13.4008 0.582643
\(530\) 12.5188 0.543783
\(531\) 0 0
\(532\) 4.57842 0.198500
\(533\) −26.3645 −1.14197
\(534\) 0 0
\(535\) 14.8276 0.641053
\(536\) −2.28613 −0.0987457
\(537\) 0 0
\(538\) −0.175556 −0.00756874
\(539\) 11.4560 0.493444
\(540\) 0 0
\(541\) −18.7884 −0.807777 −0.403889 0.914808i \(-0.632342\pi\)
−0.403889 + 0.914808i \(0.632342\pi\)
\(542\) 9.51044 0.408509
\(543\) 0 0
\(544\) −21.7612 −0.933003
\(545\) −10.7427 −0.460165
\(546\) 0 0
\(547\) −11.4609 −0.490031 −0.245015 0.969519i \(-0.578793\pi\)
−0.245015 + 0.969519i \(0.578793\pi\)
\(548\) 20.7071 0.884561
\(549\) 0 0
\(550\) −6.41840 −0.273681
\(551\) 11.0845 0.472216
\(552\) 0 0
\(553\) 15.1207 0.642998
\(554\) 9.28762 0.394593
\(555\) 0 0
\(556\) 13.6346 0.578235
\(557\) −24.9737 −1.05817 −0.529086 0.848568i \(-0.677465\pi\)
−0.529086 + 0.848568i \(0.677465\pi\)
\(558\) 0 0
\(559\) −23.0259 −0.973891
\(560\) −0.504420 −0.0213156
\(561\) 0 0
\(562\) −18.0790 −0.762616
\(563\) 17.5812 0.740960 0.370480 0.928840i \(-0.379193\pi\)
0.370480 + 0.928840i \(0.379193\pi\)
\(564\) 0 0
\(565\) 20.9759 0.882463
\(566\) 0.247007 0.0103825
\(567\) 0 0
\(568\) −19.9700 −0.837922
\(569\) −15.9891 −0.670298 −0.335149 0.942165i \(-0.608787\pi\)
−0.335149 + 0.942165i \(0.608787\pi\)
\(570\) 0 0
\(571\) 10.3301 0.432303 0.216151 0.976360i \(-0.430650\pi\)
0.216151 + 0.976360i \(0.430650\pi\)
\(572\) 12.9298 0.540623
\(573\) 0 0
\(574\) −6.33983 −0.264619
\(575\) −21.3892 −0.891993
\(576\) 0 0
\(577\) 39.1473 1.62972 0.814861 0.579656i \(-0.196813\pi\)
0.814861 + 0.579656i \(0.196813\pi\)
\(578\) 2.32485 0.0967012
\(579\) 0 0
\(580\) −6.55000 −0.271974
\(581\) −6.27840 −0.260472
\(582\) 0 0
\(583\) 27.0797 1.12153
\(584\) −22.3632 −0.925395
\(585\) 0 0
\(586\) −12.0842 −0.499193
\(587\) 17.8017 0.734756 0.367378 0.930072i \(-0.380256\pi\)
0.367378 + 0.930072i \(0.380256\pi\)
\(588\) 0 0
\(589\) 19.8804 0.819156
\(590\) −10.9596 −0.451198
\(591\) 0 0
\(592\) 3.10485 0.127609
\(593\) 13.8537 0.568905 0.284452 0.958690i \(-0.408188\pi\)
0.284452 + 0.958690i \(0.408188\pi\)
\(594\) 0 0
\(595\) −5.97829 −0.245086
\(596\) −3.80740 −0.155957
\(597\) 0 0
\(598\) −22.8924 −0.936139
\(599\) −3.61907 −0.147871 −0.0739356 0.997263i \(-0.523556\pi\)
−0.0739356 + 0.997263i \(0.523556\pi\)
\(600\) 0 0
\(601\) −10.3830 −0.423531 −0.211766 0.977321i \(-0.567921\pi\)
−0.211766 + 0.977321i \(0.567921\pi\)
\(602\) −5.53700 −0.225671
\(603\) 0 0
\(604\) 16.6655 0.678109
\(605\) −7.57034 −0.307778
\(606\) 0 0
\(607\) 13.4329 0.545223 0.272611 0.962124i \(-0.412113\pi\)
0.272611 + 0.962124i \(0.412113\pi\)
\(608\) −15.3904 −0.624164
\(609\) 0 0
\(610\) −11.8491 −0.479754
\(611\) 13.6555 0.552442
\(612\) 0 0
\(613\) 29.0651 1.17393 0.586964 0.809613i \(-0.300323\pi\)
0.586964 + 0.809613i \(0.300323\pi\)
\(614\) −3.15630 −0.127378
\(615\) 0 0
\(616\) 7.87032 0.317104
\(617\) −12.4304 −0.500427 −0.250214 0.968191i \(-0.580501\pi\)
−0.250214 + 0.968191i \(0.580501\pi\)
\(618\) 0 0
\(619\) 34.5654 1.38930 0.694651 0.719347i \(-0.255559\pi\)
0.694651 + 0.719347i \(0.255559\pi\)
\(620\) −11.7476 −0.471795
\(621\) 0 0
\(622\) 10.2707 0.411816
\(623\) 4.38150 0.175541
\(624\) 0 0
\(625\) 5.29436 0.211775
\(626\) −5.66934 −0.226592
\(627\) 0 0
\(628\) 1.65956 0.0662239
\(629\) 36.7981 1.46724
\(630\) 0 0
\(631\) −13.2232 −0.526409 −0.263205 0.964740i \(-0.584779\pi\)
−0.263205 + 0.964740i \(0.584779\pi\)
\(632\) −31.6699 −1.25976
\(633\) 0 0
\(634\) −12.4423 −0.494147
\(635\) 6.85318 0.271960
\(636\) 0 0
\(637\) −24.0094 −0.951287
\(638\) 7.52753 0.298018
\(639\) 0 0
\(640\) 9.73354 0.384752
\(641\) 5.27288 0.208266 0.104133 0.994563i \(-0.466793\pi\)
0.104133 + 0.994563i \(0.466793\pi\)
\(642\) 0 0
\(643\) 4.37661 0.172597 0.0862983 0.996269i \(-0.472496\pi\)
0.0862983 + 0.996269i \(0.472496\pi\)
\(644\) 10.3614 0.408297
\(645\) 0 0
\(646\) −8.37117 −0.329359
\(647\) −5.42624 −0.213327 −0.106664 0.994295i \(-0.534017\pi\)
−0.106664 + 0.994295i \(0.534017\pi\)
\(648\) 0 0
\(649\) −23.7069 −0.930576
\(650\) 13.4516 0.527617
\(651\) 0 0
\(652\) −16.1480 −0.632403
\(653\) −11.1010 −0.434416 −0.217208 0.976125i \(-0.569695\pi\)
−0.217208 + 0.976125i \(0.569695\pi\)
\(654\) 0 0
\(655\) 23.5423 0.919873
\(656\) −1.84091 −0.0718756
\(657\) 0 0
\(658\) 3.28372 0.128013
\(659\) 7.43530 0.289638 0.144819 0.989458i \(-0.453740\pi\)
0.144819 + 0.989458i \(0.453740\pi\)
\(660\) 0 0
\(661\) −3.83162 −0.149033 −0.0745164 0.997220i \(-0.523741\pi\)
−0.0745164 + 0.997220i \(0.523741\pi\)
\(662\) 3.07699 0.119591
\(663\) 0 0
\(664\) 13.1500 0.510317
\(665\) −4.22810 −0.163958
\(666\) 0 0
\(667\) 25.0854 0.971311
\(668\) 4.98083 0.192714
\(669\) 0 0
\(670\) 0.834043 0.0322219
\(671\) −25.6309 −0.989472
\(672\) 0 0
\(673\) 42.0913 1.62250 0.811250 0.584700i \(-0.198788\pi\)
0.811250 + 0.584700i \(0.198788\pi\)
\(674\) −15.3646 −0.591822
\(675\) 0 0
\(676\) −10.1191 −0.389194
\(677\) 2.49239 0.0957902 0.0478951 0.998852i \(-0.484749\pi\)
0.0478951 + 0.998852i \(0.484749\pi\)
\(678\) 0 0
\(679\) −1.79253 −0.0687911
\(680\) 12.5214 0.480173
\(681\) 0 0
\(682\) 13.5008 0.516973
\(683\) 15.3269 0.586468 0.293234 0.956041i \(-0.405269\pi\)
0.293234 + 0.956041i \(0.405269\pi\)
\(684\) 0 0
\(685\) −19.1226 −0.730638
\(686\) −13.4408 −0.513171
\(687\) 0 0
\(688\) −1.60780 −0.0612967
\(689\) −56.7536 −2.16214
\(690\) 0 0
\(691\) 37.1091 1.41170 0.705848 0.708363i \(-0.250566\pi\)
0.705848 + 0.708363i \(0.250566\pi\)
\(692\) −31.4378 −1.19508
\(693\) 0 0
\(694\) −27.9859 −1.06233
\(695\) −12.5913 −0.477616
\(696\) 0 0
\(697\) −21.8182 −0.826422
\(698\) 27.4374 1.03852
\(699\) 0 0
\(700\) −6.08841 −0.230120
\(701\) −6.70977 −0.253425 −0.126712 0.991940i \(-0.540443\pi\)
−0.126712 + 0.991940i \(0.540443\pi\)
\(702\) 0 0
\(703\) 26.0252 0.981558
\(704\) −9.06918 −0.341808
\(705\) 0 0
\(706\) 11.1136 0.418264
\(707\) 3.04377 0.114473
\(708\) 0 0
\(709\) −23.7811 −0.893117 −0.446558 0.894755i \(-0.647350\pi\)
−0.446558 + 0.894755i \(0.647350\pi\)
\(710\) 7.28561 0.273424
\(711\) 0 0
\(712\) −9.17694 −0.343921
\(713\) 44.9913 1.68494
\(714\) 0 0
\(715\) −11.9405 −0.446548
\(716\) −8.27958 −0.309422
\(717\) 0 0
\(718\) 7.51901 0.280607
\(719\) 42.6841 1.59185 0.795924 0.605396i \(-0.206985\pi\)
0.795924 + 0.605396i \(0.206985\pi\)
\(720\) 0 0
\(721\) −5.98219 −0.222788
\(722\) 9.90680 0.368693
\(723\) 0 0
\(724\) −8.08949 −0.300643
\(725\) −14.7403 −0.547440
\(726\) 0 0
\(727\) 19.0558 0.706740 0.353370 0.935484i \(-0.385036\pi\)
0.353370 + 0.935484i \(0.385036\pi\)
\(728\) −16.4946 −0.611329
\(729\) 0 0
\(730\) 8.15871 0.301967
\(731\) −19.0553 −0.704785
\(732\) 0 0
\(733\) −17.9632 −0.663488 −0.331744 0.943369i \(-0.607637\pi\)
−0.331744 + 0.943369i \(0.607637\pi\)
\(734\) −21.3284 −0.787245
\(735\) 0 0
\(736\) −34.8301 −1.28385
\(737\) 1.80414 0.0664562
\(738\) 0 0
\(739\) 12.4736 0.458849 0.229424 0.973327i \(-0.426316\pi\)
0.229424 + 0.973327i \(0.426316\pi\)
\(740\) −15.3786 −0.565330
\(741\) 0 0
\(742\) −13.6475 −0.501014
\(743\) 25.9170 0.950802 0.475401 0.879769i \(-0.342303\pi\)
0.475401 + 0.879769i \(0.342303\pi\)
\(744\) 0 0
\(745\) 3.51608 0.128819
\(746\) 18.2161 0.666937
\(747\) 0 0
\(748\) 10.7002 0.391238
\(749\) −16.1644 −0.590634
\(750\) 0 0
\(751\) 10.4960 0.383003 0.191501 0.981492i \(-0.438664\pi\)
0.191501 + 0.981492i \(0.438664\pi\)
\(752\) 0.953503 0.0347707
\(753\) 0 0
\(754\) −15.7762 −0.574534
\(755\) −15.3903 −0.560111
\(756\) 0 0
\(757\) 0.172834 0.00628176 0.00314088 0.999995i \(-0.499000\pi\)
0.00314088 + 0.999995i \(0.499000\pi\)
\(758\) −8.77523 −0.318731
\(759\) 0 0
\(760\) 8.85564 0.321228
\(761\) −1.87314 −0.0679014 −0.0339507 0.999424i \(-0.510809\pi\)
−0.0339507 + 0.999424i \(0.510809\pi\)
\(762\) 0 0
\(763\) 11.7112 0.423973
\(764\) 8.81957 0.319081
\(765\) 0 0
\(766\) 18.2168 0.658200
\(767\) 49.6847 1.79401
\(768\) 0 0
\(769\) −27.9100 −1.00646 −0.503230 0.864153i \(-0.667855\pi\)
−0.503230 + 0.864153i \(0.667855\pi\)
\(770\) −2.87131 −0.103475
\(771\) 0 0
\(772\) 20.7819 0.747958
\(773\) −0.0545862 −0.00196333 −0.000981664 1.00000i \(-0.500312\pi\)
−0.000981664 1.00000i \(0.500312\pi\)
\(774\) 0 0
\(775\) −26.4371 −0.949648
\(776\) 3.75442 0.134776
\(777\) 0 0
\(778\) 20.3177 0.728425
\(779\) −15.4307 −0.552863
\(780\) 0 0
\(781\) 15.7597 0.563925
\(782\) −18.9448 −0.677465
\(783\) 0 0
\(784\) −1.67647 −0.0598740
\(785\) −1.53258 −0.0547002
\(786\) 0 0
\(787\) −33.9196 −1.20910 −0.604551 0.796567i \(-0.706647\pi\)
−0.604551 + 0.796567i \(0.706647\pi\)
\(788\) −15.1406 −0.539362
\(789\) 0 0
\(790\) 11.5541 0.411076
\(791\) −22.8670 −0.813056
\(792\) 0 0
\(793\) 53.7172 1.90755
\(794\) −19.9910 −0.709453
\(795\) 0 0
\(796\) −5.61595 −0.199052
\(797\) −14.5628 −0.515841 −0.257920 0.966166i \(-0.583037\pi\)
−0.257920 + 0.966166i \(0.583037\pi\)
\(798\) 0 0
\(799\) 11.3007 0.399791
\(800\) 20.4663 0.723593
\(801\) 0 0
\(802\) −30.7496 −1.08581
\(803\) 17.6483 0.622794
\(804\) 0 0
\(805\) −9.56861 −0.337249
\(806\) −28.2949 −0.996647
\(807\) 0 0
\(808\) −6.37511 −0.224275
\(809\) −28.0189 −0.985092 −0.492546 0.870286i \(-0.663934\pi\)
−0.492546 + 0.870286i \(0.663934\pi\)
\(810\) 0 0
\(811\) 29.1924 1.02508 0.512542 0.858662i \(-0.328704\pi\)
0.512542 + 0.858662i \(0.328704\pi\)
\(812\) 7.14052 0.250583
\(813\) 0 0
\(814\) 17.6738 0.619465
\(815\) 14.9124 0.522358
\(816\) 0 0
\(817\) −13.4767 −0.471490
\(818\) 2.37843 0.0831597
\(819\) 0 0
\(820\) 9.11824 0.318423
\(821\) 29.8559 1.04198 0.520989 0.853563i \(-0.325563\pi\)
0.520989 + 0.853563i \(0.325563\pi\)
\(822\) 0 0
\(823\) −40.1919 −1.40100 −0.700502 0.713651i \(-0.747040\pi\)
−0.700502 + 0.713651i \(0.747040\pi\)
\(824\) 12.5295 0.436488
\(825\) 0 0
\(826\) 11.9476 0.415711
\(827\) 42.5136 1.47834 0.739172 0.673517i \(-0.235217\pi\)
0.739172 + 0.673517i \(0.235217\pi\)
\(828\) 0 0
\(829\) −6.28502 −0.218288 −0.109144 0.994026i \(-0.534811\pi\)
−0.109144 + 0.994026i \(0.534811\pi\)
\(830\) −4.79747 −0.166523
\(831\) 0 0
\(832\) 19.0071 0.658954
\(833\) −19.8692 −0.688427
\(834\) 0 0
\(835\) −4.59972 −0.159180
\(836\) 7.56762 0.261732
\(837\) 0 0
\(838\) 28.6346 0.989167
\(839\) −16.5622 −0.571790 −0.285895 0.958261i \(-0.592291\pi\)
−0.285895 + 0.958261i \(0.592291\pi\)
\(840\) 0 0
\(841\) −11.7125 −0.403880
\(842\) −5.20768 −0.179469
\(843\) 0 0
\(844\) −18.6526 −0.642049
\(845\) 9.34479 0.321470
\(846\) 0 0
\(847\) 8.25285 0.283571
\(848\) −3.96285 −0.136085
\(849\) 0 0
\(850\) 11.1320 0.381826
\(851\) 58.8976 2.01898
\(852\) 0 0
\(853\) −52.1207 −1.78458 −0.892289 0.451464i \(-0.850902\pi\)
−0.892289 + 0.451464i \(0.850902\pi\)
\(854\) 12.9173 0.442021
\(855\) 0 0
\(856\) 33.8559 1.15717
\(857\) 38.8823 1.32820 0.664098 0.747646i \(-0.268816\pi\)
0.664098 + 0.747646i \(0.268816\pi\)
\(858\) 0 0
\(859\) −21.7038 −0.740523 −0.370261 0.928928i \(-0.620732\pi\)
−0.370261 + 0.928928i \(0.620732\pi\)
\(860\) 7.96358 0.271556
\(861\) 0 0
\(862\) 2.51341 0.0856069
\(863\) −43.8809 −1.49372 −0.746861 0.664980i \(-0.768440\pi\)
−0.746861 + 0.664980i \(0.768440\pi\)
\(864\) 0 0
\(865\) 29.0323 0.987127
\(866\) −25.6000 −0.869924
\(867\) 0 0
\(868\) 12.8067 0.434688
\(869\) 24.9929 0.847825
\(870\) 0 0
\(871\) −3.78110 −0.128118
\(872\) −24.5288 −0.830649
\(873\) 0 0
\(874\) −13.3986 −0.453213
\(875\) 13.5524 0.458154
\(876\) 0 0
\(877\) −25.1209 −0.848272 −0.424136 0.905598i \(-0.639422\pi\)
−0.424136 + 0.905598i \(0.639422\pi\)
\(878\) −0.381211 −0.0128653
\(879\) 0 0
\(880\) −0.833751 −0.0281057
\(881\) −2.67121 −0.0899953 −0.0449976 0.998987i \(-0.514328\pi\)
−0.0449976 + 0.998987i \(0.514328\pi\)
\(882\) 0 0
\(883\) 39.3118 1.32295 0.661473 0.749969i \(-0.269931\pi\)
0.661473 + 0.749969i \(0.269931\pi\)
\(884\) −22.4254 −0.754248
\(885\) 0 0
\(886\) −29.0793 −0.976937
\(887\) −33.4197 −1.12212 −0.561062 0.827774i \(-0.689607\pi\)
−0.561062 + 0.827774i \(0.689607\pi\)
\(888\) 0 0
\(889\) −7.47103 −0.250570
\(890\) 3.34800 0.112225
\(891\) 0 0
\(892\) 26.3703 0.882942
\(893\) 7.99235 0.267454
\(894\) 0 0
\(895\) 7.64606 0.255579
\(896\) −10.6111 −0.354491
\(897\) 0 0
\(898\) −5.96120 −0.198928
\(899\) 31.0055 1.03409
\(900\) 0 0
\(901\) −46.9670 −1.56470
\(902\) −10.4790 −0.348914
\(903\) 0 0
\(904\) 47.8943 1.59294
\(905\) 7.47051 0.248328
\(906\) 0 0
\(907\) −12.3034 −0.408526 −0.204263 0.978916i \(-0.565480\pi\)
−0.204263 + 0.978916i \(0.565480\pi\)
\(908\) 3.55706 0.118045
\(909\) 0 0
\(910\) 6.01768 0.199484
\(911\) 21.8531 0.724027 0.362013 0.932173i \(-0.382089\pi\)
0.362013 + 0.932173i \(0.382089\pi\)
\(912\) 0 0
\(913\) −10.3775 −0.343446
\(914\) 10.5646 0.349446
\(915\) 0 0
\(916\) −1.99382 −0.0658777
\(917\) −25.6647 −0.847524
\(918\) 0 0
\(919\) −55.8698 −1.84297 −0.921487 0.388410i \(-0.873024\pi\)
−0.921487 + 0.388410i \(0.873024\pi\)
\(920\) 20.0412 0.660739
\(921\) 0 0
\(922\) 0.384698 0.0126694
\(923\) −33.0290 −1.08716
\(924\) 0 0
\(925\) −34.6085 −1.13792
\(926\) −30.9055 −1.01562
\(927\) 0 0
\(928\) −24.0030 −0.787936
\(929\) −42.9044 −1.40765 −0.703823 0.710375i \(-0.748525\pi\)
−0.703823 + 0.710375i \(0.748525\pi\)
\(930\) 0 0
\(931\) −14.0523 −0.460547
\(932\) −8.52539 −0.279258
\(933\) 0 0
\(934\) 22.9136 0.749756
\(935\) −9.88146 −0.323158
\(936\) 0 0
\(937\) −13.6439 −0.445728 −0.222864 0.974850i \(-0.571541\pi\)
−0.222864 + 0.974850i \(0.571541\pi\)
\(938\) −0.909236 −0.0296876
\(939\) 0 0
\(940\) −4.72280 −0.154041
\(941\) −44.4550 −1.44919 −0.724595 0.689175i \(-0.757973\pi\)
−0.724595 + 0.689175i \(0.757973\pi\)
\(942\) 0 0
\(943\) −34.9213 −1.13719
\(944\) 3.46927 0.112915
\(945\) 0 0
\(946\) −9.15206 −0.297559
\(947\) 4.33524 0.140876 0.0704381 0.997516i \(-0.477560\pi\)
0.0704381 + 0.997516i \(0.477560\pi\)
\(948\) 0 0
\(949\) −36.9872 −1.20065
\(950\) 7.87304 0.255435
\(951\) 0 0
\(952\) −13.6502 −0.442407
\(953\) −36.8566 −1.19390 −0.596952 0.802277i \(-0.703622\pi\)
−0.596952 + 0.802277i \(0.703622\pi\)
\(954\) 0 0
\(955\) −8.14473 −0.263557
\(956\) −22.0698 −0.713787
\(957\) 0 0
\(958\) −11.8792 −0.383798
\(959\) 20.8466 0.673173
\(960\) 0 0
\(961\) 24.6092 0.793845
\(962\) −37.0406 −1.19424
\(963\) 0 0
\(964\) 16.4553 0.529991
\(965\) −19.1918 −0.617805
\(966\) 0 0
\(967\) −10.2338 −0.329095 −0.164548 0.986369i \(-0.552616\pi\)
−0.164548 + 0.986369i \(0.552616\pi\)
\(968\) −17.2854 −0.555573
\(969\) 0 0
\(970\) −1.36972 −0.0439789
\(971\) 43.9486 1.41038 0.705188 0.709020i \(-0.250862\pi\)
0.705188 + 0.709020i \(0.250862\pi\)
\(972\) 0 0
\(973\) 13.7265 0.440051
\(974\) −7.56169 −0.242292
\(975\) 0 0
\(976\) 3.75084 0.120061
\(977\) −59.0076 −1.88782 −0.943911 0.330200i \(-0.892884\pi\)
−0.943911 + 0.330200i \(0.892884\pi\)
\(978\) 0 0
\(979\) 7.24214 0.231460
\(980\) 8.30373 0.265253
\(981\) 0 0
\(982\) −23.2268 −0.741198
\(983\) 26.7887 0.854428 0.427214 0.904151i \(-0.359495\pi\)
0.427214 + 0.904151i \(0.359495\pi\)
\(984\) 0 0
\(985\) 13.9821 0.445507
\(986\) −13.0557 −0.415779
\(987\) 0 0
\(988\) −15.8602 −0.504580
\(989\) −30.4991 −0.969816
\(990\) 0 0
\(991\) −9.15461 −0.290806 −0.145403 0.989373i \(-0.546448\pi\)
−0.145403 + 0.989373i \(0.546448\pi\)
\(992\) −43.0500 −1.36684
\(993\) 0 0
\(994\) −7.94244 −0.251919
\(995\) 5.18624 0.164415
\(996\) 0 0
\(997\) 42.3276 1.34053 0.670265 0.742122i \(-0.266181\pi\)
0.670265 + 0.742122i \(0.266181\pi\)
\(998\) 19.8184 0.627339
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.d.1.24 72
3.2 odd 2 6561.2.a.c.1.49 72
81.5 odd 54 81.2.g.a.25.6 yes 144
81.11 odd 54 729.2.g.d.514.3 144
81.16 even 27 243.2.g.a.10.3 144
81.22 even 27 729.2.g.a.217.6 144
81.32 odd 54 729.2.g.c.703.3 144
81.38 odd 54 729.2.g.c.28.3 144
81.43 even 27 729.2.g.b.28.6 144
81.49 even 27 729.2.g.b.703.6 144
81.59 odd 54 729.2.g.d.217.3 144
81.65 odd 54 81.2.g.a.13.6 144
81.70 even 27 729.2.g.a.514.6 144
81.76 even 27 243.2.g.a.73.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.6 144 81.65 odd 54
81.2.g.a.25.6 yes 144 81.5 odd 54
243.2.g.a.10.3 144 81.16 even 27
243.2.g.a.73.3 144 81.76 even 27
729.2.g.a.217.6 144 81.22 even 27
729.2.g.a.514.6 144 81.70 even 27
729.2.g.b.28.6 144 81.43 even 27
729.2.g.b.703.6 144 81.49 even 27
729.2.g.c.28.3 144 81.38 odd 54
729.2.g.c.703.3 144 81.32 odd 54
729.2.g.d.217.3 144 81.59 odd 54
729.2.g.d.514.3 144 81.11 odd 54
6561.2.a.c.1.49 72 3.2 odd 2
6561.2.a.d.1.24 72 1.1 even 1 trivial