Properties

Label 6561.2.a.c.1.65
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.65
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17581 q^{2} +2.73413 q^{4} +0.646494 q^{5} -1.82934 q^{7} +1.59733 q^{8} +1.40664 q^{10} -1.20984 q^{11} -5.33346 q^{13} -3.98029 q^{14} -1.99279 q^{16} +6.84728 q^{17} +6.36190 q^{19} +1.76760 q^{20} -2.63238 q^{22} -3.11666 q^{23} -4.58205 q^{25} -11.6046 q^{26} -5.00165 q^{28} -5.88635 q^{29} -2.77332 q^{31} -7.53058 q^{32} +14.8984 q^{34} -1.18266 q^{35} -1.42881 q^{37} +13.8423 q^{38} +1.03266 q^{40} +1.11540 q^{41} -9.63443 q^{43} -3.30786 q^{44} -6.78124 q^{46} +6.10234 q^{47} -3.65352 q^{49} -9.96964 q^{50} -14.5824 q^{52} -8.52271 q^{53} -0.782154 q^{55} -2.92205 q^{56} -12.8075 q^{58} +2.08811 q^{59} -3.59004 q^{61} -6.03420 q^{62} -12.3995 q^{64} -3.44805 q^{65} +1.21977 q^{67} +18.7214 q^{68} -2.57323 q^{70} +8.15028 q^{71} +6.42239 q^{73} -3.10880 q^{74} +17.3943 q^{76} +2.21321 q^{77} -14.2584 q^{79} -1.28832 q^{80} +2.42689 q^{82} +6.71946 q^{83} +4.42672 q^{85} -20.9627 q^{86} -1.93251 q^{88} -15.5808 q^{89} +9.75671 q^{91} -8.52135 q^{92} +13.2775 q^{94} +4.11293 q^{95} -3.72929 q^{97} -7.94935 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17581 1.53853 0.769264 0.638932i \(-0.220623\pi\)
0.769264 + 0.638932i \(0.220623\pi\)
\(3\) 0 0
\(4\) 2.73413 1.36707
\(5\) 0.646494 0.289121 0.144560 0.989496i \(-0.453823\pi\)
0.144560 + 0.989496i \(0.453823\pi\)
\(6\) 0 0
\(7\) −1.82934 −0.691425 −0.345713 0.938340i \(-0.612363\pi\)
−0.345713 + 0.938340i \(0.612363\pi\)
\(8\) 1.59733 0.564741
\(9\) 0 0
\(10\) 1.40664 0.444820
\(11\) −1.20984 −0.364781 −0.182390 0.983226i \(-0.558383\pi\)
−0.182390 + 0.983226i \(0.558383\pi\)
\(12\) 0 0
\(13\) −5.33346 −1.47924 −0.739618 0.673027i \(-0.764994\pi\)
−0.739618 + 0.673027i \(0.764994\pi\)
\(14\) −3.98029 −1.06378
\(15\) 0 0
\(16\) −1.99279 −0.498197
\(17\) 6.84728 1.66071 0.830355 0.557235i \(-0.188138\pi\)
0.830355 + 0.557235i \(0.188138\pi\)
\(18\) 0 0
\(19\) 6.36190 1.45952 0.729760 0.683704i \(-0.239632\pi\)
0.729760 + 0.683704i \(0.239632\pi\)
\(20\) 1.76760 0.395247
\(21\) 0 0
\(22\) −2.63238 −0.561225
\(23\) −3.11666 −0.649868 −0.324934 0.945737i \(-0.605342\pi\)
−0.324934 + 0.945737i \(0.605342\pi\)
\(24\) 0 0
\(25\) −4.58205 −0.916409
\(26\) −11.6046 −2.27584
\(27\) 0 0
\(28\) −5.00165 −0.945224
\(29\) −5.88635 −1.09307 −0.546533 0.837437i \(-0.684053\pi\)
−0.546533 + 0.837437i \(0.684053\pi\)
\(30\) 0 0
\(31\) −2.77332 −0.498103 −0.249051 0.968490i \(-0.580119\pi\)
−0.249051 + 0.968490i \(0.580119\pi\)
\(32\) −7.53058 −1.33123
\(33\) 0 0
\(34\) 14.8984 2.55505
\(35\) −1.18266 −0.199905
\(36\) 0 0
\(37\) −1.42881 −0.234894 −0.117447 0.993079i \(-0.537471\pi\)
−0.117447 + 0.993079i \(0.537471\pi\)
\(38\) 13.8423 2.24551
\(39\) 0 0
\(40\) 1.03266 0.163278
\(41\) 1.11540 0.174196 0.0870981 0.996200i \(-0.472241\pi\)
0.0870981 + 0.996200i \(0.472241\pi\)
\(42\) 0 0
\(43\) −9.63443 −1.46924 −0.734619 0.678480i \(-0.762639\pi\)
−0.734619 + 0.678480i \(0.762639\pi\)
\(44\) −3.30786 −0.498679
\(45\) 0 0
\(46\) −6.78124 −0.999840
\(47\) 6.10234 0.890118 0.445059 0.895501i \(-0.353183\pi\)
0.445059 + 0.895501i \(0.353183\pi\)
\(48\) 0 0
\(49\) −3.65352 −0.521931
\(50\) −9.96964 −1.40992
\(51\) 0 0
\(52\) −14.5824 −2.02221
\(53\) −8.52271 −1.17068 −0.585342 0.810786i \(-0.699040\pi\)
−0.585342 + 0.810786i \(0.699040\pi\)
\(54\) 0 0
\(55\) −0.782154 −0.105466
\(56\) −2.92205 −0.390476
\(57\) 0 0
\(58\) −12.8075 −1.68171
\(59\) 2.08811 0.271849 0.135925 0.990719i \(-0.456600\pi\)
0.135925 + 0.990719i \(0.456600\pi\)
\(60\) 0 0
\(61\) −3.59004 −0.459658 −0.229829 0.973231i \(-0.573817\pi\)
−0.229829 + 0.973231i \(0.573817\pi\)
\(62\) −6.03420 −0.766344
\(63\) 0 0
\(64\) −12.3995 −1.54994
\(65\) −3.44805 −0.427678
\(66\) 0 0
\(67\) 1.21977 0.149019 0.0745095 0.997220i \(-0.476261\pi\)
0.0745095 + 0.997220i \(0.476261\pi\)
\(68\) 18.7214 2.27030
\(69\) 0 0
\(70\) −2.57323 −0.307560
\(71\) 8.15028 0.967260 0.483630 0.875273i \(-0.339318\pi\)
0.483630 + 0.875273i \(0.339318\pi\)
\(72\) 0 0
\(73\) 6.42239 0.751684 0.375842 0.926684i \(-0.377354\pi\)
0.375842 + 0.926684i \(0.377354\pi\)
\(74\) −3.10880 −0.361391
\(75\) 0 0
\(76\) 17.3943 1.99526
\(77\) 2.21321 0.252219
\(78\) 0 0
\(79\) −14.2584 −1.60419 −0.802096 0.597195i \(-0.796282\pi\)
−0.802096 + 0.597195i \(0.796282\pi\)
\(80\) −1.28832 −0.144039
\(81\) 0 0
\(82\) 2.42689 0.268006
\(83\) 6.71946 0.737556 0.368778 0.929517i \(-0.379776\pi\)
0.368778 + 0.929517i \(0.379776\pi\)
\(84\) 0 0
\(85\) 4.42672 0.480146
\(86\) −20.9627 −2.26046
\(87\) 0 0
\(88\) −1.93251 −0.206006
\(89\) −15.5808 −1.65156 −0.825779 0.563994i \(-0.809264\pi\)
−0.825779 + 0.563994i \(0.809264\pi\)
\(90\) 0 0
\(91\) 9.75671 1.02278
\(92\) −8.52135 −0.888412
\(93\) 0 0
\(94\) 13.2775 1.36947
\(95\) 4.11293 0.421977
\(96\) 0 0
\(97\) −3.72929 −0.378652 −0.189326 0.981914i \(-0.560630\pi\)
−0.189326 + 0.981914i \(0.560630\pi\)
\(98\) −7.94935 −0.803005
\(99\) 0 0
\(100\) −12.5279 −1.25279
\(101\) −4.65058 −0.462750 −0.231375 0.972865i \(-0.574322\pi\)
−0.231375 + 0.972865i \(0.574322\pi\)
\(102\) 0 0
\(103\) 5.16851 0.509268 0.254634 0.967037i \(-0.418045\pi\)
0.254634 + 0.967037i \(0.418045\pi\)
\(104\) −8.51928 −0.835384
\(105\) 0 0
\(106\) −18.5438 −1.80113
\(107\) −12.9906 −1.25584 −0.627922 0.778276i \(-0.716094\pi\)
−0.627922 + 0.778276i \(0.716094\pi\)
\(108\) 0 0
\(109\) 1.77737 0.170241 0.0851207 0.996371i \(-0.472872\pi\)
0.0851207 + 0.996371i \(0.472872\pi\)
\(110\) −1.70182 −0.162262
\(111\) 0 0
\(112\) 3.64549 0.344466
\(113\) 13.8881 1.30648 0.653242 0.757149i \(-0.273409\pi\)
0.653242 + 0.757149i \(0.273409\pi\)
\(114\) 0 0
\(115\) −2.01490 −0.187890
\(116\) −16.0940 −1.49429
\(117\) 0 0
\(118\) 4.54333 0.418247
\(119\) −12.5260 −1.14826
\(120\) 0 0
\(121\) −9.53629 −0.866935
\(122\) −7.81123 −0.707196
\(123\) 0 0
\(124\) −7.58262 −0.680939
\(125\) −6.19473 −0.554074
\(126\) 0 0
\(127\) −11.3955 −1.01119 −0.505595 0.862771i \(-0.668727\pi\)
−0.505595 + 0.862771i \(0.668727\pi\)
\(128\) −11.9177 −1.05339
\(129\) 0 0
\(130\) −7.50228 −0.657994
\(131\) −14.5807 −1.27393 −0.636963 0.770895i \(-0.719810\pi\)
−0.636963 + 0.770895i \(0.719810\pi\)
\(132\) 0 0
\(133\) −11.6381 −1.00915
\(134\) 2.65399 0.229270
\(135\) 0 0
\(136\) 10.9374 0.937870
\(137\) −0.370808 −0.0316803 −0.0158401 0.999875i \(-0.505042\pi\)
−0.0158401 + 0.999875i \(0.505042\pi\)
\(138\) 0 0
\(139\) 14.9775 1.27038 0.635188 0.772357i \(-0.280922\pi\)
0.635188 + 0.772357i \(0.280922\pi\)
\(140\) −3.23354 −0.273284
\(141\) 0 0
\(142\) 17.7334 1.48816
\(143\) 6.45264 0.539596
\(144\) 0 0
\(145\) −3.80549 −0.316028
\(146\) 13.9739 1.15649
\(147\) 0 0
\(148\) −3.90654 −0.321116
\(149\) −1.00026 −0.0819441 −0.0409721 0.999160i \(-0.513045\pi\)
−0.0409721 + 0.999160i \(0.513045\pi\)
\(150\) 0 0
\(151\) 0.0196324 0.00159766 0.000798831 1.00000i \(-0.499746\pi\)
0.000798831 1.00000i \(0.499746\pi\)
\(152\) 10.1620 0.824250
\(153\) 0 0
\(154\) 4.81551 0.388045
\(155\) −1.79293 −0.144012
\(156\) 0 0
\(157\) −7.80457 −0.622872 −0.311436 0.950267i \(-0.600810\pi\)
−0.311436 + 0.950267i \(0.600810\pi\)
\(158\) −31.0235 −2.46809
\(159\) 0 0
\(160\) −4.86847 −0.384886
\(161\) 5.70142 0.449335
\(162\) 0 0
\(163\) −15.3947 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(164\) 3.04965 0.238138
\(165\) 0 0
\(166\) 14.6202 1.13475
\(167\) 3.65482 0.282818 0.141409 0.989951i \(-0.454837\pi\)
0.141409 + 0.989951i \(0.454837\pi\)
\(168\) 0 0
\(169\) 15.4458 1.18814
\(170\) 9.63169 0.738717
\(171\) 0 0
\(172\) −26.3418 −2.00854
\(173\) 13.2826 1.00986 0.504928 0.863161i \(-0.331519\pi\)
0.504928 + 0.863161i \(0.331519\pi\)
\(174\) 0 0
\(175\) 8.38212 0.633628
\(176\) 2.41096 0.181733
\(177\) 0 0
\(178\) −33.9007 −2.54097
\(179\) 0.417943 0.0312385 0.0156193 0.999878i \(-0.495028\pi\)
0.0156193 + 0.999878i \(0.495028\pi\)
\(180\) 0 0
\(181\) 20.8452 1.54941 0.774705 0.632323i \(-0.217898\pi\)
0.774705 + 0.632323i \(0.217898\pi\)
\(182\) 21.2287 1.57358
\(183\) 0 0
\(184\) −4.97832 −0.367007
\(185\) −0.923714 −0.0679128
\(186\) 0 0
\(187\) −8.28412 −0.605795
\(188\) 16.6846 1.21685
\(189\) 0 0
\(190\) 8.94893 0.649223
\(191\) 6.88924 0.498488 0.249244 0.968441i \(-0.419818\pi\)
0.249244 + 0.968441i \(0.419818\pi\)
\(192\) 0 0
\(193\) −8.74639 −0.629579 −0.314789 0.949162i \(-0.601934\pi\)
−0.314789 + 0.949162i \(0.601934\pi\)
\(194\) −8.11422 −0.582567
\(195\) 0 0
\(196\) −9.98920 −0.713514
\(197\) −8.44721 −0.601839 −0.300919 0.953650i \(-0.597294\pi\)
−0.300919 + 0.953650i \(0.597294\pi\)
\(198\) 0 0
\(199\) 12.6206 0.894647 0.447324 0.894372i \(-0.352377\pi\)
0.447324 + 0.894372i \(0.352377\pi\)
\(200\) −7.31903 −0.517533
\(201\) 0 0
\(202\) −10.1188 −0.711953
\(203\) 10.7681 0.755774
\(204\) 0 0
\(205\) 0.721099 0.0503637
\(206\) 11.2457 0.783523
\(207\) 0 0
\(208\) 10.6285 0.736951
\(209\) −7.69688 −0.532404
\(210\) 0 0
\(211\) −5.67591 −0.390746 −0.195373 0.980729i \(-0.562592\pi\)
−0.195373 + 0.980729i \(0.562592\pi\)
\(212\) −23.3022 −1.60040
\(213\) 0 0
\(214\) −28.2649 −1.93215
\(215\) −6.22860 −0.424787
\(216\) 0 0
\(217\) 5.07334 0.344401
\(218\) 3.86722 0.261921
\(219\) 0 0
\(220\) −2.13851 −0.144178
\(221\) −36.5197 −2.45658
\(222\) 0 0
\(223\) 7.53286 0.504438 0.252219 0.967670i \(-0.418840\pi\)
0.252219 + 0.967670i \(0.418840\pi\)
\(224\) 13.7760 0.920446
\(225\) 0 0
\(226\) 30.2178 2.01006
\(227\) −13.6431 −0.905527 −0.452764 0.891631i \(-0.649562\pi\)
−0.452764 + 0.891631i \(0.649562\pi\)
\(228\) 0 0
\(229\) 15.9945 1.05695 0.528474 0.848950i \(-0.322765\pi\)
0.528474 + 0.848950i \(0.322765\pi\)
\(230\) −4.38403 −0.289074
\(231\) 0 0
\(232\) −9.40242 −0.617299
\(233\) −5.35914 −0.351089 −0.175544 0.984471i \(-0.556169\pi\)
−0.175544 + 0.984471i \(0.556169\pi\)
\(234\) 0 0
\(235\) 3.94513 0.257352
\(236\) 5.70918 0.371636
\(237\) 0 0
\(238\) −27.2541 −1.76662
\(239\) −16.1436 −1.04424 −0.522121 0.852871i \(-0.674859\pi\)
−0.522121 + 0.852871i \(0.674859\pi\)
\(240\) 0 0
\(241\) −23.3880 −1.50655 −0.753276 0.657705i \(-0.771528\pi\)
−0.753276 + 0.657705i \(0.771528\pi\)
\(242\) −20.7491 −1.33380
\(243\) 0 0
\(244\) −9.81564 −0.628382
\(245\) −2.36198 −0.150901
\(246\) 0 0
\(247\) −33.9309 −2.15897
\(248\) −4.42990 −0.281299
\(249\) 0 0
\(250\) −13.4785 −0.852457
\(251\) 24.2873 1.53300 0.766501 0.642244i \(-0.221996\pi\)
0.766501 + 0.642244i \(0.221996\pi\)
\(252\) 0 0
\(253\) 3.77066 0.237059
\(254\) −24.7945 −1.55574
\(255\) 0 0
\(256\) −1.13171 −0.0707317
\(257\) 9.63393 0.600948 0.300474 0.953790i \(-0.402855\pi\)
0.300474 + 0.953790i \(0.402855\pi\)
\(258\) 0 0
\(259\) 2.61377 0.162412
\(260\) −9.42742 −0.584664
\(261\) 0 0
\(262\) −31.7249 −1.95997
\(263\) 6.64180 0.409551 0.204776 0.978809i \(-0.434354\pi\)
0.204776 + 0.978809i \(0.434354\pi\)
\(264\) 0 0
\(265\) −5.50988 −0.338469
\(266\) −25.3222 −1.55260
\(267\) 0 0
\(268\) 3.33502 0.203719
\(269\) 29.3664 1.79050 0.895251 0.445563i \(-0.146996\pi\)
0.895251 + 0.445563i \(0.146996\pi\)
\(270\) 0 0
\(271\) −18.8791 −1.14683 −0.573413 0.819267i \(-0.694381\pi\)
−0.573413 + 0.819267i \(0.694381\pi\)
\(272\) −13.6452 −0.827361
\(273\) 0 0
\(274\) −0.806806 −0.0487410
\(275\) 5.54354 0.334288
\(276\) 0 0
\(277\) 14.0387 0.843504 0.421752 0.906711i \(-0.361415\pi\)
0.421752 + 0.906711i \(0.361415\pi\)
\(278\) 32.5882 1.95451
\(279\) 0 0
\(280\) −1.88909 −0.112895
\(281\) −22.0804 −1.31721 −0.658604 0.752489i \(-0.728853\pi\)
−0.658604 + 0.752489i \(0.728853\pi\)
\(282\) 0 0
\(283\) 3.95647 0.235188 0.117594 0.993062i \(-0.462482\pi\)
0.117594 + 0.993062i \(0.462482\pi\)
\(284\) 22.2839 1.32231
\(285\) 0 0
\(286\) 14.0397 0.830184
\(287\) −2.04045 −0.120444
\(288\) 0 0
\(289\) 29.8853 1.75796
\(290\) −8.28000 −0.486218
\(291\) 0 0
\(292\) 17.5597 1.02760
\(293\) 7.97726 0.466037 0.233018 0.972472i \(-0.425140\pi\)
0.233018 + 0.972472i \(0.425140\pi\)
\(294\) 0 0
\(295\) 1.34995 0.0785973
\(296\) −2.28227 −0.132654
\(297\) 0 0
\(298\) −2.17636 −0.126073
\(299\) 16.6226 0.961308
\(300\) 0 0
\(301\) 17.6246 1.01587
\(302\) 0.0427163 0.00245805
\(303\) 0 0
\(304\) −12.6779 −0.727128
\(305\) −2.32094 −0.132897
\(306\) 0 0
\(307\) −2.08390 −0.118935 −0.0594673 0.998230i \(-0.518940\pi\)
−0.0594673 + 0.998230i \(0.518940\pi\)
\(308\) 6.05120 0.344799
\(309\) 0 0
\(310\) −3.90107 −0.221566
\(311\) −15.0144 −0.851390 −0.425695 0.904867i \(-0.639970\pi\)
−0.425695 + 0.904867i \(0.639970\pi\)
\(312\) 0 0
\(313\) 5.09090 0.287755 0.143877 0.989596i \(-0.454043\pi\)
0.143877 + 0.989596i \(0.454043\pi\)
\(314\) −16.9812 −0.958306
\(315\) 0 0
\(316\) −38.9843 −2.19304
\(317\) −27.7081 −1.55624 −0.778121 0.628114i \(-0.783827\pi\)
−0.778121 + 0.628114i \(0.783827\pi\)
\(318\) 0 0
\(319\) 7.12154 0.398730
\(320\) −8.01619 −0.448119
\(321\) 0 0
\(322\) 12.4052 0.691314
\(323\) 43.5617 2.42384
\(324\) 0 0
\(325\) 24.4382 1.35559
\(326\) −33.4960 −1.85517
\(327\) 0 0
\(328\) 1.78166 0.0983757
\(329\) −11.1633 −0.615450
\(330\) 0 0
\(331\) 27.2691 1.49885 0.749423 0.662092i \(-0.230331\pi\)
0.749423 + 0.662092i \(0.230331\pi\)
\(332\) 18.3719 1.00829
\(333\) 0 0
\(334\) 7.95217 0.435123
\(335\) 0.788576 0.0430845
\(336\) 0 0
\(337\) −12.7186 −0.692824 −0.346412 0.938082i \(-0.612600\pi\)
−0.346412 + 0.938082i \(0.612600\pi\)
\(338\) 33.6071 1.82798
\(339\) 0 0
\(340\) 12.1032 0.656391
\(341\) 3.35527 0.181698
\(342\) 0 0
\(343\) 19.4889 1.05230
\(344\) −15.3893 −0.829738
\(345\) 0 0
\(346\) 28.9003 1.55369
\(347\) 8.41312 0.451640 0.225820 0.974169i \(-0.427494\pi\)
0.225820 + 0.974169i \(0.427494\pi\)
\(348\) 0 0
\(349\) 30.1432 1.61353 0.806764 0.590873i \(-0.201217\pi\)
0.806764 + 0.590873i \(0.201217\pi\)
\(350\) 18.2379 0.974855
\(351\) 0 0
\(352\) 9.11079 0.485607
\(353\) 23.2314 1.23648 0.618241 0.785989i \(-0.287846\pi\)
0.618241 + 0.785989i \(0.287846\pi\)
\(354\) 0 0
\(355\) 5.26910 0.279655
\(356\) −42.5999 −2.25779
\(357\) 0 0
\(358\) 0.909363 0.0480613
\(359\) 4.16804 0.219981 0.109990 0.993933i \(-0.464918\pi\)
0.109990 + 0.993933i \(0.464918\pi\)
\(360\) 0 0
\(361\) 21.4737 1.13020
\(362\) 45.3551 2.38381
\(363\) 0 0
\(364\) 26.6761 1.39821
\(365\) 4.15203 0.217327
\(366\) 0 0
\(367\) −11.7210 −0.611833 −0.305917 0.952058i \(-0.598963\pi\)
−0.305917 + 0.952058i \(0.598963\pi\)
\(368\) 6.21084 0.323762
\(369\) 0 0
\(370\) −2.00982 −0.104486
\(371\) 15.5909 0.809441
\(372\) 0 0
\(373\) 36.3718 1.88326 0.941629 0.336653i \(-0.109295\pi\)
0.941629 + 0.336653i \(0.109295\pi\)
\(374\) −18.0246 −0.932032
\(375\) 0 0
\(376\) 9.74744 0.502686
\(377\) 31.3946 1.61690
\(378\) 0 0
\(379\) −10.0503 −0.516250 −0.258125 0.966112i \(-0.583105\pi\)
−0.258125 + 0.966112i \(0.583105\pi\)
\(380\) 11.2453 0.576871
\(381\) 0 0
\(382\) 14.9896 0.766937
\(383\) −0.302610 −0.0154626 −0.00773131 0.999970i \(-0.502461\pi\)
−0.00773131 + 0.999970i \(0.502461\pi\)
\(384\) 0 0
\(385\) 1.43083 0.0729216
\(386\) −19.0304 −0.968624
\(387\) 0 0
\(388\) −10.1964 −0.517643
\(389\) 7.51954 0.381256 0.190628 0.981662i \(-0.438948\pi\)
0.190628 + 0.981662i \(0.438948\pi\)
\(390\) 0 0
\(391\) −21.3406 −1.07924
\(392\) −5.83587 −0.294756
\(393\) 0 0
\(394\) −18.3795 −0.925946
\(395\) −9.21795 −0.463805
\(396\) 0 0
\(397\) 17.0450 0.855462 0.427731 0.903906i \(-0.359313\pi\)
0.427731 + 0.903906i \(0.359313\pi\)
\(398\) 27.4599 1.37644
\(399\) 0 0
\(400\) 9.13105 0.456552
\(401\) 13.5774 0.678025 0.339013 0.940782i \(-0.389907\pi\)
0.339013 + 0.940782i \(0.389907\pi\)
\(402\) 0 0
\(403\) 14.7914 0.736811
\(404\) −12.7153 −0.632609
\(405\) 0 0
\(406\) 23.4293 1.16278
\(407\) 1.72863 0.0856848
\(408\) 0 0
\(409\) −0.672351 −0.0332456 −0.0166228 0.999862i \(-0.505291\pi\)
−0.0166228 + 0.999862i \(0.505291\pi\)
\(410\) 1.56897 0.0774860
\(411\) 0 0
\(412\) 14.1314 0.696203
\(413\) −3.81987 −0.187963
\(414\) 0 0
\(415\) 4.34409 0.213243
\(416\) 40.1640 1.96920
\(417\) 0 0
\(418\) −16.7469 −0.819118
\(419\) −19.8861 −0.971498 −0.485749 0.874098i \(-0.661453\pi\)
−0.485749 + 0.874098i \(0.661453\pi\)
\(420\) 0 0
\(421\) 12.5556 0.611921 0.305960 0.952044i \(-0.401023\pi\)
0.305960 + 0.952044i \(0.401023\pi\)
\(422\) −12.3497 −0.601173
\(423\) 0 0
\(424\) −13.6136 −0.661133
\(425\) −31.3746 −1.52189
\(426\) 0 0
\(427\) 6.56740 0.317819
\(428\) −35.5179 −1.71682
\(429\) 0 0
\(430\) −13.5522 −0.653546
\(431\) −21.6026 −1.04056 −0.520281 0.853995i \(-0.674173\pi\)
−0.520281 + 0.853995i \(0.674173\pi\)
\(432\) 0 0
\(433\) 3.99939 0.192199 0.0960993 0.995372i \(-0.469363\pi\)
0.0960993 + 0.995372i \(0.469363\pi\)
\(434\) 11.0386 0.529870
\(435\) 0 0
\(436\) 4.85957 0.232731
\(437\) −19.8279 −0.948495
\(438\) 0 0
\(439\) −31.2112 −1.48963 −0.744814 0.667273i \(-0.767462\pi\)
−0.744814 + 0.667273i \(0.767462\pi\)
\(440\) −1.24936 −0.0595607
\(441\) 0 0
\(442\) −79.4598 −3.77952
\(443\) 1.60218 0.0761217 0.0380609 0.999275i \(-0.487882\pi\)
0.0380609 + 0.999275i \(0.487882\pi\)
\(444\) 0 0
\(445\) −10.0729 −0.477500
\(446\) 16.3900 0.776091
\(447\) 0 0
\(448\) 22.6829 1.07167
\(449\) 10.5049 0.495756 0.247878 0.968791i \(-0.420267\pi\)
0.247878 + 0.968791i \(0.420267\pi\)
\(450\) 0 0
\(451\) −1.34946 −0.0635434
\(452\) 37.9719 1.78605
\(453\) 0 0
\(454\) −29.6848 −1.39318
\(455\) 6.30765 0.295707
\(456\) 0 0
\(457\) 41.1409 1.92449 0.962244 0.272187i \(-0.0877468\pi\)
0.962244 + 0.272187i \(0.0877468\pi\)
\(458\) 34.8010 1.62614
\(459\) 0 0
\(460\) −5.50900 −0.256858
\(461\) −34.2989 −1.59746 −0.798730 0.601689i \(-0.794495\pi\)
−0.798730 + 0.601689i \(0.794495\pi\)
\(462\) 0 0
\(463\) −33.3329 −1.54911 −0.774556 0.632505i \(-0.782027\pi\)
−0.774556 + 0.632505i \(0.782027\pi\)
\(464\) 11.7302 0.544563
\(465\) 0 0
\(466\) −11.6605 −0.540160
\(467\) 10.3904 0.480811 0.240406 0.970673i \(-0.422720\pi\)
0.240406 + 0.970673i \(0.422720\pi\)
\(468\) 0 0
\(469\) −2.23138 −0.103036
\(470\) 8.58383 0.395942
\(471\) 0 0
\(472\) 3.33540 0.153524
\(473\) 11.6561 0.535949
\(474\) 0 0
\(475\) −29.1505 −1.33752
\(476\) −34.2477 −1.56974
\(477\) 0 0
\(478\) −35.1253 −1.60659
\(479\) 20.2965 0.927370 0.463685 0.886000i \(-0.346527\pi\)
0.463685 + 0.886000i \(0.346527\pi\)
\(480\) 0 0
\(481\) 7.62048 0.347464
\(482\) −50.8877 −2.31787
\(483\) 0 0
\(484\) −26.0735 −1.18516
\(485\) −2.41096 −0.109476
\(486\) 0 0
\(487\) −27.5716 −1.24939 −0.624694 0.780870i \(-0.714776\pi\)
−0.624694 + 0.780870i \(0.714776\pi\)
\(488\) −5.73447 −0.259587
\(489\) 0 0
\(490\) −5.13920 −0.232165
\(491\) 10.2173 0.461099 0.230550 0.973061i \(-0.425948\pi\)
0.230550 + 0.973061i \(0.425948\pi\)
\(492\) 0 0
\(493\) −40.3055 −1.81527
\(494\) −73.8271 −3.32164
\(495\) 0 0
\(496\) 5.52663 0.248153
\(497\) −14.9096 −0.668788
\(498\) 0 0
\(499\) −8.74363 −0.391419 −0.195709 0.980662i \(-0.562701\pi\)
−0.195709 + 0.980662i \(0.562701\pi\)
\(500\) −16.9372 −0.757455
\(501\) 0 0
\(502\) 52.8445 2.35856
\(503\) 13.0837 0.583374 0.291687 0.956514i \(-0.405783\pi\)
0.291687 + 0.956514i \(0.405783\pi\)
\(504\) 0 0
\(505\) −3.00657 −0.133791
\(506\) 8.20422 0.364722
\(507\) 0 0
\(508\) −31.1569 −1.38236
\(509\) −30.4211 −1.34839 −0.674195 0.738554i \(-0.735509\pi\)
−0.674195 + 0.738554i \(0.735509\pi\)
\(510\) 0 0
\(511\) −11.7487 −0.519733
\(512\) 21.3731 0.944567
\(513\) 0 0
\(514\) 20.9616 0.924574
\(515\) 3.34141 0.147240
\(516\) 0 0
\(517\) −7.38286 −0.324698
\(518\) 5.68706 0.249875
\(519\) 0 0
\(520\) −5.50766 −0.241527
\(521\) 10.7817 0.472354 0.236177 0.971710i \(-0.424105\pi\)
0.236177 + 0.971710i \(0.424105\pi\)
\(522\) 0 0
\(523\) 12.3314 0.539217 0.269608 0.962970i \(-0.413106\pi\)
0.269608 + 0.962970i \(0.413106\pi\)
\(524\) −39.8657 −1.74154
\(525\) 0 0
\(526\) 14.4513 0.630106
\(527\) −18.9897 −0.827204
\(528\) 0 0
\(529\) −13.2864 −0.577671
\(530\) −11.9884 −0.520744
\(531\) 0 0
\(532\) −31.8200 −1.37957
\(533\) −5.94894 −0.257677
\(534\) 0 0
\(535\) −8.39831 −0.363091
\(536\) 1.94838 0.0841571
\(537\) 0 0
\(538\) 63.8956 2.75474
\(539\) 4.42017 0.190390
\(540\) 0 0
\(541\) −15.9856 −0.687274 −0.343637 0.939103i \(-0.611659\pi\)
−0.343637 + 0.939103i \(0.611659\pi\)
\(542\) −41.0773 −1.76442
\(543\) 0 0
\(544\) −51.5640 −2.21079
\(545\) 1.14906 0.0492203
\(546\) 0 0
\(547\) 1.23661 0.0528736 0.0264368 0.999650i \(-0.491584\pi\)
0.0264368 + 0.999650i \(0.491584\pi\)
\(548\) −1.01384 −0.0433090
\(549\) 0 0
\(550\) 12.0617 0.514312
\(551\) −37.4483 −1.59535
\(552\) 0 0
\(553\) 26.0834 1.10918
\(554\) 30.5455 1.29775
\(555\) 0 0
\(556\) 40.9505 1.73669
\(557\) 13.1442 0.556936 0.278468 0.960446i \(-0.410173\pi\)
0.278468 + 0.960446i \(0.410173\pi\)
\(558\) 0 0
\(559\) 51.3849 2.17335
\(560\) 2.35678 0.0995923
\(561\) 0 0
\(562\) −48.0428 −2.02656
\(563\) 6.08891 0.256617 0.128308 0.991734i \(-0.459045\pi\)
0.128308 + 0.991734i \(0.459045\pi\)
\(564\) 0 0
\(565\) 8.97858 0.377732
\(566\) 8.60852 0.361843
\(567\) 0 0
\(568\) 13.0187 0.546251
\(569\) 16.5777 0.694974 0.347487 0.937685i \(-0.387035\pi\)
0.347487 + 0.937685i \(0.387035\pi\)
\(570\) 0 0
\(571\) 34.8473 1.45831 0.729157 0.684347i \(-0.239913\pi\)
0.729157 + 0.684347i \(0.239913\pi\)
\(572\) 17.6424 0.737664
\(573\) 0 0
\(574\) −4.43961 −0.185306
\(575\) 14.2807 0.595545
\(576\) 0 0
\(577\) 31.0211 1.29142 0.645712 0.763581i \(-0.276561\pi\)
0.645712 + 0.763581i \(0.276561\pi\)
\(578\) 65.0245 2.70466
\(579\) 0 0
\(580\) −10.4047 −0.432032
\(581\) −12.2922 −0.509965
\(582\) 0 0
\(583\) 10.3111 0.427043
\(584\) 10.2587 0.424506
\(585\) 0 0
\(586\) 17.3570 0.717010
\(587\) −44.5443 −1.83854 −0.919271 0.393626i \(-0.871221\pi\)
−0.919271 + 0.393626i \(0.871221\pi\)
\(588\) 0 0
\(589\) −17.6436 −0.726990
\(590\) 2.93723 0.120924
\(591\) 0 0
\(592\) 2.84731 0.117024
\(593\) −19.8110 −0.813539 −0.406770 0.913531i \(-0.633345\pi\)
−0.406770 + 0.913531i \(0.633345\pi\)
\(594\) 0 0
\(595\) −8.09798 −0.331985
\(596\) −2.73483 −0.112023
\(597\) 0 0
\(598\) 36.1675 1.47900
\(599\) −27.9283 −1.14112 −0.570560 0.821256i \(-0.693274\pi\)
−0.570560 + 0.821256i \(0.693274\pi\)
\(600\) 0 0
\(601\) −10.1448 −0.413813 −0.206907 0.978361i \(-0.566340\pi\)
−0.206907 + 0.978361i \(0.566340\pi\)
\(602\) 38.3478 1.56294
\(603\) 0 0
\(604\) 0.0536776 0.00218411
\(605\) −6.16515 −0.250649
\(606\) 0 0
\(607\) 10.8164 0.439025 0.219512 0.975610i \(-0.429553\pi\)
0.219512 + 0.975610i \(0.429553\pi\)
\(608\) −47.9087 −1.94296
\(609\) 0 0
\(610\) −5.04991 −0.204465
\(611\) −32.5466 −1.31669
\(612\) 0 0
\(613\) 5.40255 0.218207 0.109103 0.994030i \(-0.465202\pi\)
0.109103 + 0.994030i \(0.465202\pi\)
\(614\) −4.53417 −0.182984
\(615\) 0 0
\(616\) 3.53522 0.142438
\(617\) −25.0403 −1.00808 −0.504042 0.863679i \(-0.668154\pi\)
−0.504042 + 0.863679i \(0.668154\pi\)
\(618\) 0 0
\(619\) 25.4851 1.02433 0.512166 0.858887i \(-0.328843\pi\)
0.512166 + 0.858887i \(0.328843\pi\)
\(620\) −4.90211 −0.196874
\(621\) 0 0
\(622\) −32.6685 −1.30989
\(623\) 28.5025 1.14193
\(624\) 0 0
\(625\) 18.9054 0.756215
\(626\) 11.0768 0.442718
\(627\) 0 0
\(628\) −21.3387 −0.851507
\(629\) −9.78343 −0.390091
\(630\) 0 0
\(631\) 19.9755 0.795213 0.397607 0.917556i \(-0.369841\pi\)
0.397607 + 0.917556i \(0.369841\pi\)
\(632\) −22.7753 −0.905953
\(633\) 0 0
\(634\) −60.2874 −2.39432
\(635\) −7.36715 −0.292356
\(636\) 0 0
\(637\) 19.4859 0.772059
\(638\) 15.4951 0.613456
\(639\) 0 0
\(640\) −7.70475 −0.304557
\(641\) −8.92956 −0.352696 −0.176348 0.984328i \(-0.556428\pi\)
−0.176348 + 0.984328i \(0.556428\pi\)
\(642\) 0 0
\(643\) 13.3999 0.528441 0.264221 0.964462i \(-0.414885\pi\)
0.264221 + 0.964462i \(0.414885\pi\)
\(644\) 15.5884 0.614271
\(645\) 0 0
\(646\) 94.7818 3.72914
\(647\) −48.7223 −1.91547 −0.957736 0.287649i \(-0.907126\pi\)
−0.957736 + 0.287649i \(0.907126\pi\)
\(648\) 0 0
\(649\) −2.52628 −0.0991653
\(650\) 53.1727 2.08560
\(651\) 0 0
\(652\) −42.0912 −1.64842
\(653\) 4.80493 0.188031 0.0940157 0.995571i \(-0.470030\pi\)
0.0940157 + 0.995571i \(0.470030\pi\)
\(654\) 0 0
\(655\) −9.42636 −0.368318
\(656\) −2.22276 −0.0867840
\(657\) 0 0
\(658\) −24.2891 −0.946887
\(659\) −25.2929 −0.985270 −0.492635 0.870236i \(-0.663966\pi\)
−0.492635 + 0.870236i \(0.663966\pi\)
\(660\) 0 0
\(661\) −14.1363 −0.549840 −0.274920 0.961467i \(-0.588651\pi\)
−0.274920 + 0.961467i \(0.588651\pi\)
\(662\) 59.3323 2.30602
\(663\) 0 0
\(664\) 10.7332 0.416528
\(665\) −7.52394 −0.291766
\(666\) 0 0
\(667\) 18.3457 0.710349
\(668\) 9.99275 0.386631
\(669\) 0 0
\(670\) 1.71579 0.0662867
\(671\) 4.34338 0.167674
\(672\) 0 0
\(673\) 2.66735 0.102819 0.0514094 0.998678i \(-0.483629\pi\)
0.0514094 + 0.998678i \(0.483629\pi\)
\(674\) −27.6731 −1.06593
\(675\) 0 0
\(676\) 42.2308 1.62426
\(677\) −14.7625 −0.567371 −0.283685 0.958917i \(-0.591557\pi\)
−0.283685 + 0.958917i \(0.591557\pi\)
\(678\) 0 0
\(679\) 6.82214 0.261810
\(680\) 7.07093 0.271158
\(681\) 0 0
\(682\) 7.30042 0.279548
\(683\) −20.9795 −0.802758 −0.401379 0.915912i \(-0.631469\pi\)
−0.401379 + 0.915912i \(0.631469\pi\)
\(684\) 0 0
\(685\) −0.239725 −0.00915942
\(686\) 42.4041 1.61899
\(687\) 0 0
\(688\) 19.1994 0.731970
\(689\) 45.4555 1.73172
\(690\) 0 0
\(691\) 34.8338 1.32514 0.662570 0.749000i \(-0.269466\pi\)
0.662570 + 0.749000i \(0.269466\pi\)
\(692\) 36.3163 1.38054
\(693\) 0 0
\(694\) 18.3053 0.694861
\(695\) 9.68287 0.367292
\(696\) 0 0
\(697\) 7.63746 0.289289
\(698\) 65.5858 2.48246
\(699\) 0 0
\(700\) 22.9178 0.866212
\(701\) −43.6106 −1.64715 −0.823576 0.567207i \(-0.808024\pi\)
−0.823576 + 0.567207i \(0.808024\pi\)
\(702\) 0 0
\(703\) −9.08991 −0.342833
\(704\) 15.0014 0.565387
\(705\) 0 0
\(706\) 50.5470 1.90236
\(707\) 8.50748 0.319957
\(708\) 0 0
\(709\) 18.2673 0.686045 0.343022 0.939327i \(-0.388549\pi\)
0.343022 + 0.939327i \(0.388549\pi\)
\(710\) 11.4645 0.430257
\(711\) 0 0
\(712\) −24.8876 −0.932702
\(713\) 8.64348 0.323701
\(714\) 0 0
\(715\) 4.17159 0.156009
\(716\) 1.14271 0.0427051
\(717\) 0 0
\(718\) 9.06885 0.338446
\(719\) −18.1403 −0.676518 −0.338259 0.941053i \(-0.609838\pi\)
−0.338259 + 0.941053i \(0.609838\pi\)
\(720\) 0 0
\(721\) −9.45495 −0.352121
\(722\) 46.7227 1.73884
\(723\) 0 0
\(724\) 56.9934 2.11814
\(725\) 26.9715 1.00170
\(726\) 0 0
\(727\) 20.2539 0.751176 0.375588 0.926787i \(-0.377441\pi\)
0.375588 + 0.926787i \(0.377441\pi\)
\(728\) 15.5847 0.577606
\(729\) 0 0
\(730\) 9.03402 0.334364
\(731\) −65.9697 −2.43998
\(732\) 0 0
\(733\) −1.76799 −0.0653021 −0.0326511 0.999467i \(-0.510395\pi\)
−0.0326511 + 0.999467i \(0.510395\pi\)
\(734\) −25.5027 −0.941322
\(735\) 0 0
\(736\) 23.4702 0.865124
\(737\) −1.47573 −0.0543593
\(738\) 0 0
\(739\) −9.11841 −0.335426 −0.167713 0.985836i \(-0.553638\pi\)
−0.167713 + 0.985836i \(0.553638\pi\)
\(740\) −2.52555 −0.0928412
\(741\) 0 0
\(742\) 33.9228 1.24535
\(743\) −19.9215 −0.730850 −0.365425 0.930841i \(-0.619076\pi\)
−0.365425 + 0.930841i \(0.619076\pi\)
\(744\) 0 0
\(745\) −0.646659 −0.0236917
\(746\) 79.1379 2.89744
\(747\) 0 0
\(748\) −22.6499 −0.828161
\(749\) 23.7641 0.868323
\(750\) 0 0
\(751\) −38.5558 −1.40692 −0.703460 0.710735i \(-0.748363\pi\)
−0.703460 + 0.710735i \(0.748363\pi\)
\(752\) −12.1607 −0.443454
\(753\) 0 0
\(754\) 68.3085 2.48765
\(755\) 0.0126922 0.000461917 0
\(756\) 0 0
\(757\) −50.9458 −1.85166 −0.925829 0.377943i \(-0.876632\pi\)
−0.925829 + 0.377943i \(0.876632\pi\)
\(758\) −21.8675 −0.794265
\(759\) 0 0
\(760\) 6.56969 0.238308
\(761\) 38.9404 1.41159 0.705794 0.708417i \(-0.250591\pi\)
0.705794 + 0.708417i \(0.250591\pi\)
\(762\) 0 0
\(763\) −3.25142 −0.117709
\(764\) 18.8361 0.681466
\(765\) 0 0
\(766\) −0.658420 −0.0237897
\(767\) −11.1369 −0.402129
\(768\) 0 0
\(769\) 34.1515 1.23153 0.615767 0.787928i \(-0.288846\pi\)
0.615767 + 0.787928i \(0.288846\pi\)
\(770\) 3.11320 0.112192
\(771\) 0 0
\(772\) −23.9138 −0.860676
\(773\) −3.02782 −0.108903 −0.0544516 0.998516i \(-0.517341\pi\)
−0.0544516 + 0.998516i \(0.517341\pi\)
\(774\) 0 0
\(775\) 12.7075 0.456466
\(776\) −5.95690 −0.213840
\(777\) 0 0
\(778\) 16.3611 0.586573
\(779\) 7.09606 0.254243
\(780\) 0 0
\(781\) −9.86053 −0.352838
\(782\) −46.4331 −1.66044
\(783\) 0 0
\(784\) 7.28069 0.260025
\(785\) −5.04560 −0.180085
\(786\) 0 0
\(787\) 2.27120 0.0809594 0.0404797 0.999180i \(-0.487111\pi\)
0.0404797 + 0.999180i \(0.487111\pi\)
\(788\) −23.0958 −0.822753
\(789\) 0 0
\(790\) −20.0565 −0.713577
\(791\) −25.4061 −0.903336
\(792\) 0 0
\(793\) 19.1473 0.679942
\(794\) 37.0865 1.31615
\(795\) 0 0
\(796\) 34.5062 1.22304
\(797\) 12.5831 0.445716 0.222858 0.974851i \(-0.428461\pi\)
0.222858 + 0.974851i \(0.428461\pi\)
\(798\) 0 0
\(799\) 41.7844 1.47823
\(800\) 34.5054 1.21995
\(801\) 0 0
\(802\) 29.5419 1.04316
\(803\) −7.77007 −0.274200
\(804\) 0 0
\(805\) 3.68593 0.129912
\(806\) 32.1832 1.13360
\(807\) 0 0
\(808\) −7.42850 −0.261334
\(809\) −13.7132 −0.482129 −0.241065 0.970509i \(-0.577497\pi\)
−0.241065 + 0.970509i \(0.577497\pi\)
\(810\) 0 0
\(811\) 1.72288 0.0604985 0.0302493 0.999542i \(-0.490370\pi\)
0.0302493 + 0.999542i \(0.490370\pi\)
\(812\) 29.4415 1.03319
\(813\) 0 0
\(814\) 3.76116 0.131828
\(815\) −9.95260 −0.348624
\(816\) 0 0
\(817\) −61.2933 −2.14438
\(818\) −1.46290 −0.0511493
\(819\) 0 0
\(820\) 1.97158 0.0688506
\(821\) −51.7042 −1.80449 −0.902244 0.431225i \(-0.858081\pi\)
−0.902244 + 0.431225i \(0.858081\pi\)
\(822\) 0 0
\(823\) 20.3847 0.710566 0.355283 0.934759i \(-0.384384\pi\)
0.355283 + 0.934759i \(0.384384\pi\)
\(824\) 8.25580 0.287604
\(825\) 0 0
\(826\) −8.31129 −0.289187
\(827\) −42.8995 −1.49176 −0.745881 0.666079i \(-0.767971\pi\)
−0.745881 + 0.666079i \(0.767971\pi\)
\(828\) 0 0
\(829\) 14.2775 0.495880 0.247940 0.968775i \(-0.420246\pi\)
0.247940 + 0.968775i \(0.420246\pi\)
\(830\) 9.45189 0.328080
\(831\) 0 0
\(832\) 66.1322 2.29272
\(833\) −25.0167 −0.866776
\(834\) 0 0
\(835\) 2.36282 0.0817686
\(836\) −21.0443 −0.727832
\(837\) 0 0
\(838\) −43.2682 −1.49468
\(839\) 30.0586 1.03774 0.518869 0.854854i \(-0.326353\pi\)
0.518869 + 0.854854i \(0.326353\pi\)
\(840\) 0 0
\(841\) 5.64907 0.194795
\(842\) 27.3185 0.941456
\(843\) 0 0
\(844\) −15.5187 −0.534175
\(845\) 9.98561 0.343515
\(846\) 0 0
\(847\) 17.4451 0.599421
\(848\) 16.9840 0.583231
\(849\) 0 0
\(850\) −68.2650 −2.34147
\(851\) 4.45310 0.152650
\(852\) 0 0
\(853\) 36.5392 1.25108 0.625539 0.780193i \(-0.284879\pi\)
0.625539 + 0.780193i \(0.284879\pi\)
\(854\) 14.2894 0.488973
\(855\) 0 0
\(856\) −20.7502 −0.709226
\(857\) −46.1597 −1.57678 −0.788392 0.615173i \(-0.789086\pi\)
−0.788392 + 0.615173i \(0.789086\pi\)
\(858\) 0 0
\(859\) −0.308649 −0.0105310 −0.00526549 0.999986i \(-0.501676\pi\)
−0.00526549 + 0.999986i \(0.501676\pi\)
\(860\) −17.0298 −0.580712
\(861\) 0 0
\(862\) −47.0031 −1.60093
\(863\) −32.6353 −1.11092 −0.555459 0.831544i \(-0.687457\pi\)
−0.555459 + 0.831544i \(0.687457\pi\)
\(864\) 0 0
\(865\) 8.58711 0.291970
\(866\) 8.70190 0.295703
\(867\) 0 0
\(868\) 13.8712 0.470818
\(869\) 17.2504 0.585178
\(870\) 0 0
\(871\) −6.50562 −0.220434
\(872\) 2.83905 0.0961422
\(873\) 0 0
\(874\) −43.1416 −1.45929
\(875\) 11.3323 0.383101
\(876\) 0 0
\(877\) 6.95284 0.234781 0.117390 0.993086i \(-0.462547\pi\)
0.117390 + 0.993086i \(0.462547\pi\)
\(878\) −67.9094 −2.29183
\(879\) 0 0
\(880\) 1.55867 0.0525427
\(881\) 37.2923 1.25641 0.628204 0.778049i \(-0.283790\pi\)
0.628204 + 0.778049i \(0.283790\pi\)
\(882\) 0 0
\(883\) 6.18813 0.208247 0.104124 0.994564i \(-0.466796\pi\)
0.104124 + 0.994564i \(0.466796\pi\)
\(884\) −99.8497 −3.35831
\(885\) 0 0
\(886\) 3.48603 0.117115
\(887\) −18.6235 −0.625316 −0.312658 0.949866i \(-0.601219\pi\)
−0.312658 + 0.949866i \(0.601219\pi\)
\(888\) 0 0
\(889\) 20.8463 0.699163
\(890\) −21.9166 −0.734646
\(891\) 0 0
\(892\) 20.5958 0.689599
\(893\) 38.8225 1.29914
\(894\) 0 0
\(895\) 0.270198 0.00903171
\(896\) 21.8016 0.728340
\(897\) 0 0
\(898\) 22.8566 0.762734
\(899\) 16.3247 0.544460
\(900\) 0 0
\(901\) −58.3574 −1.94417
\(902\) −2.93615 −0.0977632
\(903\) 0 0
\(904\) 22.1839 0.737824
\(905\) 13.4763 0.447967
\(906\) 0 0
\(907\) 26.1827 0.869381 0.434691 0.900580i \(-0.356858\pi\)
0.434691 + 0.900580i \(0.356858\pi\)
\(908\) −37.3021 −1.23791
\(909\) 0 0
\(910\) 13.7242 0.454954
\(911\) 7.96133 0.263771 0.131885 0.991265i \(-0.457897\pi\)
0.131885 + 0.991265i \(0.457897\pi\)
\(912\) 0 0
\(913\) −8.12947 −0.269046
\(914\) 89.5146 2.96088
\(915\) 0 0
\(916\) 43.7311 1.44492
\(917\) 26.6731 0.880824
\(918\) 0 0
\(919\) 55.0648 1.81642 0.908210 0.418515i \(-0.137449\pi\)
0.908210 + 0.418515i \(0.137449\pi\)
\(920\) −3.21845 −0.106109
\(921\) 0 0
\(922\) −74.6278 −2.45774
\(923\) −43.4692 −1.43081
\(924\) 0 0
\(925\) 6.54685 0.215259
\(926\) −72.5260 −2.38335
\(927\) 0 0
\(928\) 44.3276 1.45512
\(929\) −43.8587 −1.43896 −0.719478 0.694515i \(-0.755619\pi\)
−0.719478 + 0.694515i \(0.755619\pi\)
\(930\) 0 0
\(931\) −23.2433 −0.761768
\(932\) −14.6526 −0.479962
\(933\) 0 0
\(934\) 22.6075 0.739741
\(935\) −5.35563 −0.175148
\(936\) 0 0
\(937\) 33.2464 1.08611 0.543056 0.839696i \(-0.317267\pi\)
0.543056 + 0.839696i \(0.317267\pi\)
\(938\) −4.85505 −0.158523
\(939\) 0 0
\(940\) 10.7865 0.351817
\(941\) 11.2079 0.365366 0.182683 0.983172i \(-0.441522\pi\)
0.182683 + 0.983172i \(0.441522\pi\)
\(942\) 0 0
\(943\) −3.47632 −0.113205
\(944\) −4.16117 −0.135434
\(945\) 0 0
\(946\) 25.3615 0.824572
\(947\) 4.73110 0.153740 0.0768700 0.997041i \(-0.475507\pi\)
0.0768700 + 0.997041i \(0.475507\pi\)
\(948\) 0 0
\(949\) −34.2536 −1.11192
\(950\) −63.4258 −2.05781
\(951\) 0 0
\(952\) −20.0081 −0.648467
\(953\) −1.88947 −0.0612061 −0.0306030 0.999532i \(-0.509743\pi\)
−0.0306030 + 0.999532i \(0.509743\pi\)
\(954\) 0 0
\(955\) 4.45385 0.144123
\(956\) −44.1387 −1.42755
\(957\) 0 0
\(958\) 44.1612 1.42678
\(959\) 0.678334 0.0219045
\(960\) 0 0
\(961\) −23.3087 −0.751894
\(962\) 16.5807 0.534583
\(963\) 0 0
\(964\) −63.9458 −2.05956
\(965\) −5.65449 −0.182024
\(966\) 0 0
\(967\) −55.8457 −1.79588 −0.897939 0.440120i \(-0.854936\pi\)
−0.897939 + 0.440120i \(0.854936\pi\)
\(968\) −15.2326 −0.489593
\(969\) 0 0
\(970\) −5.24579 −0.168432
\(971\) −6.12547 −0.196576 −0.0982879 0.995158i \(-0.531337\pi\)
−0.0982879 + 0.995158i \(0.531337\pi\)
\(972\) 0 0
\(973\) −27.3990 −0.878370
\(974\) −59.9904 −1.92222
\(975\) 0 0
\(976\) 7.15419 0.229000
\(977\) 28.5472 0.913305 0.456652 0.889645i \(-0.349048\pi\)
0.456652 + 0.889645i \(0.349048\pi\)
\(978\) 0 0
\(979\) 18.8502 0.602456
\(980\) −6.45795 −0.206292
\(981\) 0 0
\(982\) 22.2308 0.709414
\(983\) −22.0774 −0.704160 −0.352080 0.935970i \(-0.614526\pi\)
−0.352080 + 0.935970i \(0.614526\pi\)
\(984\) 0 0
\(985\) −5.46107 −0.174004
\(986\) −87.6969 −2.79284
\(987\) 0 0
\(988\) −92.7716 −2.95146
\(989\) 30.0272 0.954810
\(990\) 0 0
\(991\) −35.5812 −1.13028 −0.565138 0.824997i \(-0.691177\pi\)
−0.565138 + 0.824997i \(0.691177\pi\)
\(992\) 20.8847 0.663089
\(993\) 0 0
\(994\) −32.4404 −1.02895
\(995\) 8.15911 0.258661
\(996\) 0 0
\(997\) 36.8282 1.16636 0.583180 0.812343i \(-0.301808\pi\)
0.583180 + 0.812343i \(0.301808\pi\)
\(998\) −19.0244 −0.602208
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.65 72
3.2 odd 2 6561.2.a.d.1.8 72
81.5 odd 54 243.2.g.a.73.1 144
81.11 odd 54 729.2.g.a.514.8 144
81.16 even 27 81.2.g.a.13.8 144
81.22 even 27 729.2.g.d.217.1 144
81.32 odd 54 729.2.g.b.703.8 144
81.38 odd 54 729.2.g.b.28.8 144
81.43 even 27 729.2.g.c.28.1 144
81.49 even 27 729.2.g.c.703.1 144
81.59 odd 54 729.2.g.a.217.8 144
81.65 odd 54 243.2.g.a.10.1 144
81.70 even 27 729.2.g.d.514.1 144
81.76 even 27 81.2.g.a.25.8 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.8 144 81.16 even 27
81.2.g.a.25.8 yes 144 81.76 even 27
243.2.g.a.10.1 144 81.65 odd 54
243.2.g.a.73.1 144 81.5 odd 54
729.2.g.a.217.8 144 81.59 odd 54
729.2.g.a.514.8 144 81.11 odd 54
729.2.g.b.28.8 144 81.38 odd 54
729.2.g.b.703.8 144 81.32 odd 54
729.2.g.c.28.1 144 81.43 even 27
729.2.g.c.703.1 144 81.49 even 27
729.2.g.d.217.1 144 81.22 even 27
729.2.g.d.514.1 144 81.70 even 27
6561.2.a.c.1.65 72 1.1 even 1 trivial
6561.2.a.d.1.8 72 3.2 odd 2