Properties

Label 6561.2.a.c.1.46
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.46
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.676638 q^{2} -1.54216 q^{4} +0.943174 q^{5} -1.46065 q^{7} -2.39676 q^{8} +0.638188 q^{10} +6.12074 q^{11} -5.24673 q^{13} -0.988331 q^{14} +1.46258 q^{16} -0.0308950 q^{17} +3.65660 q^{19} -1.45453 q^{20} +4.14153 q^{22} +0.104547 q^{23} -4.11042 q^{25} -3.55014 q^{26} +2.25255 q^{28} +0.512704 q^{29} -8.16933 q^{31} +5.78316 q^{32} -0.0209047 q^{34} -1.37765 q^{35} -5.77133 q^{37} +2.47420 q^{38} -2.26056 q^{40} +4.38597 q^{41} +1.37668 q^{43} -9.43916 q^{44} +0.0707407 q^{46} +5.60972 q^{47} -4.86651 q^{49} -2.78127 q^{50} +8.09130 q^{52} +9.78213 q^{53} +5.77293 q^{55} +3.50083 q^{56} +0.346915 q^{58} -5.64940 q^{59} +1.71779 q^{61} -5.52768 q^{62} +0.987951 q^{64} -4.94858 q^{65} +2.73766 q^{67} +0.0476450 q^{68} -0.932169 q^{70} +2.17282 q^{71} -8.33116 q^{73} -3.90511 q^{74} -5.63907 q^{76} -8.94025 q^{77} -12.6128 q^{79} +1.37947 q^{80} +2.96771 q^{82} +17.8244 q^{83} -0.0291393 q^{85} +0.931512 q^{86} -14.6700 q^{88} -13.9487 q^{89} +7.66363 q^{91} -0.161229 q^{92} +3.79575 q^{94} +3.44881 q^{95} -7.01137 q^{97} -3.29286 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.676638 0.478456 0.239228 0.970963i \(-0.423106\pi\)
0.239228 + 0.970963i \(0.423106\pi\)
\(3\) 0 0
\(4\) −1.54216 −0.771080
\(5\) 0.943174 0.421800 0.210900 0.977508i \(-0.432361\pi\)
0.210900 + 0.977508i \(0.432361\pi\)
\(6\) 0 0
\(7\) −1.46065 −0.552073 −0.276037 0.961147i \(-0.589021\pi\)
−0.276037 + 0.961147i \(0.589021\pi\)
\(8\) −2.39676 −0.847383
\(9\) 0 0
\(10\) 0.638188 0.201813
\(11\) 6.12074 1.84547 0.922737 0.385431i \(-0.125947\pi\)
0.922737 + 0.385431i \(0.125947\pi\)
\(12\) 0 0
\(13\) −5.24673 −1.45518 −0.727591 0.686011i \(-0.759360\pi\)
−0.727591 + 0.686011i \(0.759360\pi\)
\(14\) −0.988331 −0.264143
\(15\) 0 0
\(16\) 1.46258 0.365645
\(17\) −0.0308950 −0.00749313 −0.00374656 0.999993i \(-0.501193\pi\)
−0.00374656 + 0.999993i \(0.501193\pi\)
\(18\) 0 0
\(19\) 3.65660 0.838883 0.419441 0.907782i \(-0.362226\pi\)
0.419441 + 0.907782i \(0.362226\pi\)
\(20\) −1.45453 −0.325242
\(21\) 0 0
\(22\) 4.14153 0.882977
\(23\) 0.104547 0.0217996 0.0108998 0.999941i \(-0.496530\pi\)
0.0108998 + 0.999941i \(0.496530\pi\)
\(24\) 0 0
\(25\) −4.11042 −0.822084
\(26\) −3.55014 −0.696240
\(27\) 0 0
\(28\) 2.25255 0.425693
\(29\) 0.512704 0.0952068 0.0476034 0.998866i \(-0.484842\pi\)
0.0476034 + 0.998866i \(0.484842\pi\)
\(30\) 0 0
\(31\) −8.16933 −1.46725 −0.733627 0.679552i \(-0.762174\pi\)
−0.733627 + 0.679552i \(0.762174\pi\)
\(32\) 5.78316 1.02233
\(33\) 0 0
\(34\) −0.0209047 −0.00358513
\(35\) −1.37765 −0.232865
\(36\) 0 0
\(37\) −5.77133 −0.948801 −0.474401 0.880309i \(-0.657335\pi\)
−0.474401 + 0.880309i \(0.657335\pi\)
\(38\) 2.47420 0.401368
\(39\) 0 0
\(40\) −2.26056 −0.357427
\(41\) 4.38597 0.684973 0.342486 0.939523i \(-0.388731\pi\)
0.342486 + 0.939523i \(0.388731\pi\)
\(42\) 0 0
\(43\) 1.37668 0.209941 0.104971 0.994475i \(-0.466525\pi\)
0.104971 + 0.994475i \(0.466525\pi\)
\(44\) −9.43916 −1.42301
\(45\) 0 0
\(46\) 0.0707407 0.0104301
\(47\) 5.60972 0.818262 0.409131 0.912476i \(-0.365832\pi\)
0.409131 + 0.912476i \(0.365832\pi\)
\(48\) 0 0
\(49\) −4.86651 −0.695215
\(50\) −2.78127 −0.393331
\(51\) 0 0
\(52\) 8.09130 1.12206
\(53\) 9.78213 1.34368 0.671839 0.740697i \(-0.265505\pi\)
0.671839 + 0.740697i \(0.265505\pi\)
\(54\) 0 0
\(55\) 5.77293 0.778421
\(56\) 3.50083 0.467818
\(57\) 0 0
\(58\) 0.346915 0.0455522
\(59\) −5.64940 −0.735490 −0.367745 0.929927i \(-0.619870\pi\)
−0.367745 + 0.929927i \(0.619870\pi\)
\(60\) 0 0
\(61\) 1.71779 0.219940 0.109970 0.993935i \(-0.464924\pi\)
0.109970 + 0.993935i \(0.464924\pi\)
\(62\) −5.52768 −0.702016
\(63\) 0 0
\(64\) 0.987951 0.123494
\(65\) −4.94858 −0.613796
\(66\) 0 0
\(67\) 2.73766 0.334459 0.167229 0.985918i \(-0.446518\pi\)
0.167229 + 0.985918i \(0.446518\pi\)
\(68\) 0.0476450 0.00577780
\(69\) 0 0
\(70\) −0.932169 −0.111415
\(71\) 2.17282 0.257866 0.128933 0.991653i \(-0.458845\pi\)
0.128933 + 0.991653i \(0.458845\pi\)
\(72\) 0 0
\(73\) −8.33116 −0.975088 −0.487544 0.873098i \(-0.662107\pi\)
−0.487544 + 0.873098i \(0.662107\pi\)
\(74\) −3.90511 −0.453959
\(75\) 0 0
\(76\) −5.63907 −0.646846
\(77\) −8.94025 −1.01884
\(78\) 0 0
\(79\) −12.6128 −1.41905 −0.709526 0.704679i \(-0.751091\pi\)
−0.709526 + 0.704679i \(0.751091\pi\)
\(80\) 1.37947 0.154229
\(81\) 0 0
\(82\) 2.96771 0.327729
\(83\) 17.8244 1.95648 0.978242 0.207466i \(-0.0665215\pi\)
0.978242 + 0.207466i \(0.0665215\pi\)
\(84\) 0 0
\(85\) −0.0291393 −0.00316060
\(86\) 0.931512 0.100448
\(87\) 0 0
\(88\) −14.6700 −1.56382
\(89\) −13.9487 −1.47856 −0.739279 0.673399i \(-0.764833\pi\)
−0.739279 + 0.673399i \(0.764833\pi\)
\(90\) 0 0
\(91\) 7.66363 0.803367
\(92\) −0.161229 −0.0168093
\(93\) 0 0
\(94\) 3.79575 0.391502
\(95\) 3.44881 0.353841
\(96\) 0 0
\(97\) −7.01137 −0.711896 −0.355948 0.934506i \(-0.615842\pi\)
−0.355948 + 0.934506i \(0.615842\pi\)
\(98\) −3.29286 −0.332630
\(99\) 0 0
\(100\) 6.33893 0.633893
\(101\) −8.69078 −0.864765 −0.432383 0.901690i \(-0.642327\pi\)
−0.432383 + 0.901690i \(0.642327\pi\)
\(102\) 0 0
\(103\) −5.12769 −0.505247 −0.252623 0.967565i \(-0.581293\pi\)
−0.252623 + 0.967565i \(0.581293\pi\)
\(104\) 12.5752 1.23310
\(105\) 0 0
\(106\) 6.61896 0.642891
\(107\) 9.95284 0.962177 0.481089 0.876672i \(-0.340242\pi\)
0.481089 + 0.876672i \(0.340242\pi\)
\(108\) 0 0
\(109\) −12.7371 −1.21999 −0.609997 0.792404i \(-0.708829\pi\)
−0.609997 + 0.792404i \(0.708829\pi\)
\(110\) 3.90618 0.372440
\(111\) 0 0
\(112\) −2.13631 −0.201863
\(113\) 5.74689 0.540622 0.270311 0.962773i \(-0.412874\pi\)
0.270311 + 0.962773i \(0.412874\pi\)
\(114\) 0 0
\(115\) 0.0986063 0.00919508
\(116\) −0.790672 −0.0734121
\(117\) 0 0
\(118\) −3.82260 −0.351899
\(119\) 0.0451267 0.00413676
\(120\) 0 0
\(121\) 26.4635 2.40577
\(122\) 1.16232 0.105232
\(123\) 0 0
\(124\) 12.5984 1.13137
\(125\) −8.59272 −0.768556
\(126\) 0 0
\(127\) 10.6013 0.940709 0.470354 0.882478i \(-0.344126\pi\)
0.470354 + 0.882478i \(0.344126\pi\)
\(128\) −10.8978 −0.963242
\(129\) 0 0
\(130\) −3.34840 −0.293674
\(131\) 14.2638 1.24623 0.623116 0.782130i \(-0.285867\pi\)
0.623116 + 0.782130i \(0.285867\pi\)
\(132\) 0 0
\(133\) −5.34101 −0.463125
\(134\) 1.85241 0.160024
\(135\) 0 0
\(136\) 0.0740479 0.00634955
\(137\) 5.33618 0.455900 0.227950 0.973673i \(-0.426798\pi\)
0.227950 + 0.973673i \(0.426798\pi\)
\(138\) 0 0
\(139\) −4.09415 −0.347261 −0.173631 0.984811i \(-0.555550\pi\)
−0.173631 + 0.984811i \(0.555550\pi\)
\(140\) 2.12455 0.179557
\(141\) 0 0
\(142\) 1.47021 0.123378
\(143\) −32.1139 −2.68550
\(144\) 0 0
\(145\) 0.483569 0.0401583
\(146\) −5.63718 −0.466537
\(147\) 0 0
\(148\) 8.90032 0.731602
\(149\) −18.8765 −1.54643 −0.773213 0.634146i \(-0.781352\pi\)
−0.773213 + 0.634146i \(0.781352\pi\)
\(150\) 0 0
\(151\) −3.08043 −0.250682 −0.125341 0.992114i \(-0.540003\pi\)
−0.125341 + 0.992114i \(0.540003\pi\)
\(152\) −8.76401 −0.710855
\(153\) 0 0
\(154\) −6.04932 −0.487468
\(155\) −7.70510 −0.618888
\(156\) 0 0
\(157\) −3.42861 −0.273633 −0.136816 0.990596i \(-0.543687\pi\)
−0.136816 + 0.990596i \(0.543687\pi\)
\(158\) −8.53431 −0.678954
\(159\) 0 0
\(160\) 5.45453 0.431218
\(161\) −0.152707 −0.0120350
\(162\) 0 0
\(163\) −19.7151 −1.54420 −0.772101 0.635500i \(-0.780794\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(164\) −6.76386 −0.528169
\(165\) 0 0
\(166\) 12.0607 0.936091
\(167\) −19.3425 −1.49677 −0.748384 0.663265i \(-0.769170\pi\)
−0.748384 + 0.663265i \(0.769170\pi\)
\(168\) 0 0
\(169\) 14.5282 1.11755
\(170\) −0.0197168 −0.00151221
\(171\) 0 0
\(172\) −2.12306 −0.161881
\(173\) −6.16733 −0.468893 −0.234447 0.972129i \(-0.575328\pi\)
−0.234447 + 0.972129i \(0.575328\pi\)
\(174\) 0 0
\(175\) 6.00388 0.453851
\(176\) 8.95207 0.674788
\(177\) 0 0
\(178\) −9.43822 −0.707424
\(179\) −3.46177 −0.258745 −0.129372 0.991596i \(-0.541296\pi\)
−0.129372 + 0.991596i \(0.541296\pi\)
\(180\) 0 0
\(181\) −19.0803 −1.41823 −0.709115 0.705093i \(-0.750905\pi\)
−0.709115 + 0.705093i \(0.750905\pi\)
\(182\) 5.18551 0.384376
\(183\) 0 0
\(184\) −0.250575 −0.0184726
\(185\) −5.44337 −0.400205
\(186\) 0 0
\(187\) −0.189100 −0.0138284
\(188\) −8.65109 −0.630945
\(189\) 0 0
\(190\) 2.33360 0.169297
\(191\) −19.9278 −1.44192 −0.720962 0.692975i \(-0.756300\pi\)
−0.720962 + 0.692975i \(0.756300\pi\)
\(192\) 0 0
\(193\) −10.7174 −0.771454 −0.385727 0.922613i \(-0.626049\pi\)
−0.385727 + 0.922613i \(0.626049\pi\)
\(194\) −4.74416 −0.340611
\(195\) 0 0
\(196\) 7.50493 0.536067
\(197\) −23.7019 −1.68869 −0.844344 0.535802i \(-0.820009\pi\)
−0.844344 + 0.535802i \(0.820009\pi\)
\(198\) 0 0
\(199\) 8.73512 0.619217 0.309608 0.950864i \(-0.399802\pi\)
0.309608 + 0.950864i \(0.399802\pi\)
\(200\) 9.85170 0.696621
\(201\) 0 0
\(202\) −5.88052 −0.413752
\(203\) −0.748881 −0.0525611
\(204\) 0 0
\(205\) 4.13673 0.288922
\(206\) −3.46960 −0.241738
\(207\) 0 0
\(208\) −7.67376 −0.532080
\(209\) 22.3811 1.54814
\(210\) 0 0
\(211\) −7.27806 −0.501043 −0.250521 0.968111i \(-0.580602\pi\)
−0.250521 + 0.968111i \(0.580602\pi\)
\(212\) −15.0856 −1.03608
\(213\) 0 0
\(214\) 6.73447 0.460359
\(215\) 1.29845 0.0885532
\(216\) 0 0
\(217\) 11.9325 0.810032
\(218\) −8.61842 −0.583713
\(219\) 0 0
\(220\) −8.90278 −0.600225
\(221\) 0.162098 0.0109039
\(222\) 0 0
\(223\) 0.748474 0.0501215 0.0250608 0.999686i \(-0.492022\pi\)
0.0250608 + 0.999686i \(0.492022\pi\)
\(224\) −8.44717 −0.564400
\(225\) 0 0
\(226\) 3.88857 0.258664
\(227\) 7.60596 0.504825 0.252413 0.967620i \(-0.418776\pi\)
0.252413 + 0.967620i \(0.418776\pi\)
\(228\) 0 0
\(229\) −15.6018 −1.03100 −0.515499 0.856890i \(-0.672394\pi\)
−0.515499 + 0.856890i \(0.672394\pi\)
\(230\) 0.0667208 0.00439944
\(231\) 0 0
\(232\) −1.22883 −0.0806766
\(233\) −16.4777 −1.07949 −0.539746 0.841828i \(-0.681480\pi\)
−0.539746 + 0.841828i \(0.681480\pi\)
\(234\) 0 0
\(235\) 5.29094 0.345143
\(236\) 8.71229 0.567122
\(237\) 0 0
\(238\) 0.0305345 0.00197925
\(239\) 19.3469 1.25145 0.625724 0.780044i \(-0.284804\pi\)
0.625724 + 0.780044i \(0.284804\pi\)
\(240\) 0 0
\(241\) 5.76490 0.371350 0.185675 0.982611i \(-0.440553\pi\)
0.185675 + 0.982611i \(0.440553\pi\)
\(242\) 17.9062 1.15105
\(243\) 0 0
\(244\) −2.64910 −0.169591
\(245\) −4.58996 −0.293242
\(246\) 0 0
\(247\) −19.1852 −1.22073
\(248\) 19.5799 1.24333
\(249\) 0 0
\(250\) −5.81416 −0.367720
\(251\) −18.8961 −1.19271 −0.596355 0.802721i \(-0.703385\pi\)
−0.596355 + 0.802721i \(0.703385\pi\)
\(252\) 0 0
\(253\) 0.639907 0.0402306
\(254\) 7.17321 0.450087
\(255\) 0 0
\(256\) −9.34980 −0.584362
\(257\) −18.1207 −1.13034 −0.565169 0.824975i \(-0.691189\pi\)
−0.565169 + 0.824975i \(0.691189\pi\)
\(258\) 0 0
\(259\) 8.42989 0.523808
\(260\) 7.63151 0.473286
\(261\) 0 0
\(262\) 9.65142 0.596267
\(263\) 8.66915 0.534563 0.267281 0.963619i \(-0.413875\pi\)
0.267281 + 0.963619i \(0.413875\pi\)
\(264\) 0 0
\(265\) 9.22625 0.566764
\(266\) −3.61394 −0.221585
\(267\) 0 0
\(268\) −4.22192 −0.257895
\(269\) 11.1861 0.682029 0.341014 0.940058i \(-0.389230\pi\)
0.341014 + 0.940058i \(0.389230\pi\)
\(270\) 0 0
\(271\) −10.1741 −0.618033 −0.309016 0.951057i \(-0.600000\pi\)
−0.309016 + 0.951057i \(0.600000\pi\)
\(272\) −0.0451863 −0.00273982
\(273\) 0 0
\(274\) 3.61066 0.218128
\(275\) −25.1588 −1.51713
\(276\) 0 0
\(277\) −1.30204 −0.0782319 −0.0391160 0.999235i \(-0.512454\pi\)
−0.0391160 + 0.999235i \(0.512454\pi\)
\(278\) −2.77026 −0.166149
\(279\) 0 0
\(280\) 3.30189 0.197326
\(281\) −6.40982 −0.382378 −0.191189 0.981553i \(-0.561234\pi\)
−0.191189 + 0.981553i \(0.561234\pi\)
\(282\) 0 0
\(283\) −19.1171 −1.13640 −0.568198 0.822892i \(-0.692359\pi\)
−0.568198 + 0.822892i \(0.692359\pi\)
\(284\) −3.35083 −0.198835
\(285\) 0 0
\(286\) −21.7295 −1.28489
\(287\) −6.40636 −0.378155
\(288\) 0 0
\(289\) −16.9990 −0.999944
\(290\) 0.327202 0.0192139
\(291\) 0 0
\(292\) 12.8480 0.751871
\(293\) −1.82606 −0.106680 −0.0533398 0.998576i \(-0.516987\pi\)
−0.0533398 + 0.998576i \(0.516987\pi\)
\(294\) 0 0
\(295\) −5.32837 −0.310230
\(296\) 13.8325 0.803998
\(297\) 0 0
\(298\) −12.7726 −0.739896
\(299\) −0.548532 −0.0317224
\(300\) 0 0
\(301\) −2.01084 −0.115903
\(302\) −2.08434 −0.119940
\(303\) 0 0
\(304\) 5.34807 0.306733
\(305\) 1.62017 0.0927708
\(306\) 0 0
\(307\) −14.9847 −0.855225 −0.427612 0.903962i \(-0.640645\pi\)
−0.427612 + 0.903962i \(0.640645\pi\)
\(308\) 13.7873 0.785605
\(309\) 0 0
\(310\) −5.21357 −0.296111
\(311\) 20.6598 1.17151 0.585754 0.810489i \(-0.300799\pi\)
0.585754 + 0.810489i \(0.300799\pi\)
\(312\) 0 0
\(313\) 22.3234 1.26180 0.630898 0.775866i \(-0.282687\pi\)
0.630898 + 0.775866i \(0.282687\pi\)
\(314\) −2.31993 −0.130921
\(315\) 0 0
\(316\) 19.4510 1.09420
\(317\) 11.3601 0.638049 0.319024 0.947747i \(-0.396645\pi\)
0.319024 + 0.947747i \(0.396645\pi\)
\(318\) 0 0
\(319\) 3.13813 0.175702
\(320\) 0.931810 0.0520898
\(321\) 0 0
\(322\) −0.103327 −0.00575821
\(323\) −0.112971 −0.00628586
\(324\) 0 0
\(325\) 21.5663 1.19628
\(326\) −13.3400 −0.738832
\(327\) 0 0
\(328\) −10.5121 −0.580435
\(329\) −8.19383 −0.451740
\(330\) 0 0
\(331\) 14.4072 0.791893 0.395947 0.918274i \(-0.370417\pi\)
0.395947 + 0.918274i \(0.370417\pi\)
\(332\) −27.4881 −1.50861
\(333\) 0 0
\(334\) −13.0879 −0.716137
\(335\) 2.58209 0.141075
\(336\) 0 0
\(337\) −9.90761 −0.539702 −0.269851 0.962902i \(-0.586974\pi\)
−0.269851 + 0.962902i \(0.586974\pi\)
\(338\) 9.83034 0.534700
\(339\) 0 0
\(340\) 0.0449375 0.00243708
\(341\) −50.0023 −2.70778
\(342\) 0 0
\(343\) 17.3328 0.935883
\(344\) −3.29957 −0.177901
\(345\) 0 0
\(346\) −4.17305 −0.224345
\(347\) −3.37824 −0.181353 −0.0906766 0.995880i \(-0.528903\pi\)
−0.0906766 + 0.995880i \(0.528903\pi\)
\(348\) 0 0
\(349\) −1.32993 −0.0711897 −0.0355949 0.999366i \(-0.511333\pi\)
−0.0355949 + 0.999366i \(0.511333\pi\)
\(350\) 4.06246 0.217148
\(351\) 0 0
\(352\) 35.3972 1.88668
\(353\) 11.7936 0.627709 0.313854 0.949471i \(-0.398380\pi\)
0.313854 + 0.949471i \(0.398380\pi\)
\(354\) 0 0
\(355\) 2.04935 0.108768
\(356\) 21.5111 1.14009
\(357\) 0 0
\(358\) −2.34236 −0.123798
\(359\) −29.7113 −1.56810 −0.784052 0.620696i \(-0.786850\pi\)
−0.784052 + 0.620696i \(0.786850\pi\)
\(360\) 0 0
\(361\) −5.62924 −0.296276
\(362\) −12.9105 −0.678560
\(363\) 0 0
\(364\) −11.8186 −0.619460
\(365\) −7.85773 −0.411293
\(366\) 0 0
\(367\) −8.02701 −0.419006 −0.209503 0.977808i \(-0.567185\pi\)
−0.209503 + 0.977808i \(0.567185\pi\)
\(368\) 0.152909 0.00797092
\(369\) 0 0
\(370\) −3.68319 −0.191480
\(371\) −14.2883 −0.741809
\(372\) 0 0
\(373\) −2.99382 −0.155014 −0.0775072 0.996992i \(-0.524696\pi\)
−0.0775072 + 0.996992i \(0.524696\pi\)
\(374\) −0.127952 −0.00661626
\(375\) 0 0
\(376\) −13.4452 −0.693381
\(377\) −2.69002 −0.138543
\(378\) 0 0
\(379\) −22.1075 −1.13558 −0.567792 0.823172i \(-0.692202\pi\)
−0.567792 + 0.823172i \(0.692202\pi\)
\(380\) −5.31863 −0.272840
\(381\) 0 0
\(382\) −13.4839 −0.689896
\(383\) 14.3576 0.733641 0.366820 0.930292i \(-0.380446\pi\)
0.366820 + 0.930292i \(0.380446\pi\)
\(384\) 0 0
\(385\) −8.43222 −0.429746
\(386\) −7.25179 −0.369106
\(387\) 0 0
\(388\) 10.8127 0.548929
\(389\) −18.2300 −0.924298 −0.462149 0.886802i \(-0.652922\pi\)
−0.462149 + 0.886802i \(0.652922\pi\)
\(390\) 0 0
\(391\) −0.00322998 −0.000163347 0
\(392\) 11.6639 0.589114
\(393\) 0 0
\(394\) −16.0376 −0.807962
\(395\) −11.8961 −0.598557
\(396\) 0 0
\(397\) 1.38700 0.0696115 0.0348057 0.999394i \(-0.488919\pi\)
0.0348057 + 0.999394i \(0.488919\pi\)
\(398\) 5.91052 0.296268
\(399\) 0 0
\(400\) −6.01182 −0.300591
\(401\) 22.0863 1.10294 0.551468 0.834196i \(-0.314068\pi\)
0.551468 + 0.834196i \(0.314068\pi\)
\(402\) 0 0
\(403\) 42.8623 2.13512
\(404\) 13.4026 0.666803
\(405\) 0 0
\(406\) −0.506722 −0.0251482
\(407\) −35.3248 −1.75099
\(408\) 0 0
\(409\) 0.577381 0.0285497 0.0142748 0.999898i \(-0.495456\pi\)
0.0142748 + 0.999898i \(0.495456\pi\)
\(410\) 2.79907 0.138236
\(411\) 0 0
\(412\) 7.90773 0.389586
\(413\) 8.25179 0.406044
\(414\) 0 0
\(415\) 16.8115 0.825246
\(416\) −30.3427 −1.48767
\(417\) 0 0
\(418\) 15.1439 0.740714
\(419\) −12.6315 −0.617091 −0.308546 0.951210i \(-0.599842\pi\)
−0.308546 + 0.951210i \(0.599842\pi\)
\(420\) 0 0
\(421\) 21.4260 1.04424 0.522121 0.852872i \(-0.325141\pi\)
0.522121 + 0.852872i \(0.325141\pi\)
\(422\) −4.92462 −0.239727
\(423\) 0 0
\(424\) −23.4454 −1.13861
\(425\) 0.126991 0.00615999
\(426\) 0 0
\(427\) −2.50908 −0.121423
\(428\) −15.3489 −0.741916
\(429\) 0 0
\(430\) 0.878578 0.0423688
\(431\) 4.47131 0.215376 0.107688 0.994185i \(-0.465655\pi\)
0.107688 + 0.994185i \(0.465655\pi\)
\(432\) 0 0
\(433\) 9.13341 0.438924 0.219462 0.975621i \(-0.429570\pi\)
0.219462 + 0.975621i \(0.429570\pi\)
\(434\) 8.07400 0.387564
\(435\) 0 0
\(436\) 19.6427 0.940713
\(437\) 0.382288 0.0182873
\(438\) 0 0
\(439\) 2.84864 0.135958 0.0679790 0.997687i \(-0.478345\pi\)
0.0679790 + 0.997687i \(0.478345\pi\)
\(440\) −13.8363 −0.659621
\(441\) 0 0
\(442\) 0.109681 0.00521702
\(443\) −12.3716 −0.587791 −0.293895 0.955838i \(-0.594952\pi\)
−0.293895 + 0.955838i \(0.594952\pi\)
\(444\) 0 0
\(445\) −13.1560 −0.623656
\(446\) 0.506446 0.0239809
\(447\) 0 0
\(448\) −1.44305 −0.0681777
\(449\) 17.1746 0.810521 0.405260 0.914201i \(-0.367181\pi\)
0.405260 + 0.914201i \(0.367181\pi\)
\(450\) 0 0
\(451\) 26.8454 1.26410
\(452\) −8.86262 −0.416863
\(453\) 0 0
\(454\) 5.14649 0.241537
\(455\) 7.22814 0.338860
\(456\) 0 0
\(457\) 0.884764 0.0413875 0.0206938 0.999786i \(-0.493413\pi\)
0.0206938 + 0.999786i \(0.493413\pi\)
\(458\) −10.5568 −0.493287
\(459\) 0 0
\(460\) −0.152067 −0.00709015
\(461\) −15.2318 −0.709416 −0.354708 0.934977i \(-0.615420\pi\)
−0.354708 + 0.934977i \(0.615420\pi\)
\(462\) 0 0
\(463\) 33.6370 1.56324 0.781621 0.623753i \(-0.214393\pi\)
0.781621 + 0.623753i \(0.214393\pi\)
\(464\) 0.749871 0.0348119
\(465\) 0 0
\(466\) −11.1495 −0.516489
\(467\) 11.0292 0.510370 0.255185 0.966892i \(-0.417864\pi\)
0.255185 + 0.966892i \(0.417864\pi\)
\(468\) 0 0
\(469\) −3.99877 −0.184646
\(470\) 3.58005 0.165136
\(471\) 0 0
\(472\) 13.5403 0.623242
\(473\) 8.42628 0.387441
\(474\) 0 0
\(475\) −15.0302 −0.689632
\(476\) −0.0695926 −0.00318977
\(477\) 0 0
\(478\) 13.0909 0.598763
\(479\) −11.9228 −0.544768 −0.272384 0.962189i \(-0.587812\pi\)
−0.272384 + 0.962189i \(0.587812\pi\)
\(480\) 0 0
\(481\) 30.2806 1.38068
\(482\) 3.90075 0.177674
\(483\) 0 0
\(484\) −40.8109 −1.85504
\(485\) −6.61294 −0.300278
\(486\) 0 0
\(487\) 38.2435 1.73298 0.866489 0.499196i \(-0.166371\pi\)
0.866489 + 0.499196i \(0.166371\pi\)
\(488\) −4.11713 −0.186374
\(489\) 0 0
\(490\) −3.10575 −0.140303
\(491\) 4.23956 0.191329 0.0956644 0.995414i \(-0.469502\pi\)
0.0956644 + 0.995414i \(0.469502\pi\)
\(492\) 0 0
\(493\) −0.0158400 −0.000713397 0
\(494\) −12.9815 −0.584064
\(495\) 0 0
\(496\) −11.9483 −0.536494
\(497\) −3.17373 −0.142361
\(498\) 0 0
\(499\) 37.4040 1.67443 0.837216 0.546873i \(-0.184182\pi\)
0.837216 + 0.546873i \(0.184182\pi\)
\(500\) 13.2513 0.592618
\(501\) 0 0
\(502\) −12.7858 −0.570659
\(503\) 0.342107 0.0152538 0.00762689 0.999971i \(-0.497572\pi\)
0.00762689 + 0.999971i \(0.497572\pi\)
\(504\) 0 0
\(505\) −8.19692 −0.364758
\(506\) 0.432986 0.0192486
\(507\) 0 0
\(508\) −16.3488 −0.725362
\(509\) −6.25390 −0.277199 −0.138600 0.990348i \(-0.544260\pi\)
−0.138600 + 0.990348i \(0.544260\pi\)
\(510\) 0 0
\(511\) 12.1689 0.538320
\(512\) 15.4692 0.683650
\(513\) 0 0
\(514\) −12.2612 −0.540817
\(515\) −4.83631 −0.213113
\(516\) 0 0
\(517\) 34.3356 1.51008
\(518\) 5.70399 0.250619
\(519\) 0 0
\(520\) 11.8606 0.520121
\(521\) −31.4377 −1.37731 −0.688655 0.725089i \(-0.741799\pi\)
−0.688655 + 0.725089i \(0.741799\pi\)
\(522\) 0 0
\(523\) 21.4197 0.936619 0.468309 0.883565i \(-0.344863\pi\)
0.468309 + 0.883565i \(0.344863\pi\)
\(524\) −21.9970 −0.960944
\(525\) 0 0
\(526\) 5.86588 0.255765
\(527\) 0.252391 0.0109943
\(528\) 0 0
\(529\) −22.9891 −0.999525
\(530\) 6.24284 0.271171
\(531\) 0 0
\(532\) 8.23670 0.357106
\(533\) −23.0120 −0.996760
\(534\) 0 0
\(535\) 9.38726 0.405847
\(536\) −6.56153 −0.283415
\(537\) 0 0
\(538\) 7.56895 0.326320
\(539\) −29.7866 −1.28300
\(540\) 0 0
\(541\) −0.376066 −0.0161683 −0.00808416 0.999967i \(-0.502573\pi\)
−0.00808416 + 0.999967i \(0.502573\pi\)
\(542\) −6.88419 −0.295701
\(543\) 0 0
\(544\) −0.178671 −0.00766044
\(545\) −12.0133 −0.514594
\(546\) 0 0
\(547\) −6.67720 −0.285496 −0.142748 0.989759i \(-0.545594\pi\)
−0.142748 + 0.989759i \(0.545594\pi\)
\(548\) −8.22924 −0.351536
\(549\) 0 0
\(550\) −17.0234 −0.725882
\(551\) 1.87476 0.0798673
\(552\) 0 0
\(553\) 18.4229 0.783421
\(554\) −0.881010 −0.0374305
\(555\) 0 0
\(556\) 6.31384 0.267766
\(557\) 3.00742 0.127429 0.0637143 0.997968i \(-0.479705\pi\)
0.0637143 + 0.997968i \(0.479705\pi\)
\(558\) 0 0
\(559\) −7.22305 −0.305503
\(560\) −2.01492 −0.0851458
\(561\) 0 0
\(562\) −4.33713 −0.182951
\(563\) −32.8109 −1.38282 −0.691408 0.722465i \(-0.743009\pi\)
−0.691408 + 0.722465i \(0.743009\pi\)
\(564\) 0 0
\(565\) 5.42032 0.228034
\(566\) −12.9354 −0.543715
\(567\) 0 0
\(568\) −5.20773 −0.218511
\(569\) 26.1470 1.09614 0.548070 0.836433i \(-0.315363\pi\)
0.548070 + 0.836433i \(0.315363\pi\)
\(570\) 0 0
\(571\) −0.800753 −0.0335105 −0.0167552 0.999860i \(-0.505334\pi\)
−0.0167552 + 0.999860i \(0.505334\pi\)
\(572\) 49.5248 2.07073
\(573\) 0 0
\(574\) −4.33479 −0.180931
\(575\) −0.429733 −0.0179211
\(576\) 0 0
\(577\) −42.2910 −1.76060 −0.880298 0.474422i \(-0.842657\pi\)
−0.880298 + 0.474422i \(0.842657\pi\)
\(578\) −11.5022 −0.478429
\(579\) 0 0
\(580\) −0.745742 −0.0309652
\(581\) −26.0352 −1.08012
\(582\) 0 0
\(583\) 59.8739 2.47972
\(584\) 19.9678 0.826274
\(585\) 0 0
\(586\) −1.23558 −0.0510415
\(587\) 13.3448 0.550800 0.275400 0.961330i \(-0.411190\pi\)
0.275400 + 0.961330i \(0.411190\pi\)
\(588\) 0 0
\(589\) −29.8720 −1.23085
\(590\) −3.60538 −0.148431
\(591\) 0 0
\(592\) −8.44103 −0.346924
\(593\) 34.4089 1.41301 0.706503 0.707710i \(-0.250272\pi\)
0.706503 + 0.707710i \(0.250272\pi\)
\(594\) 0 0
\(595\) 0.0425623 0.00174489
\(596\) 29.1106 1.19242
\(597\) 0 0
\(598\) −0.371158 −0.0151778
\(599\) −40.0605 −1.63683 −0.818413 0.574630i \(-0.805146\pi\)
−0.818413 + 0.574630i \(0.805146\pi\)
\(600\) 0 0
\(601\) −43.1861 −1.76160 −0.880798 0.473492i \(-0.842993\pi\)
−0.880798 + 0.473492i \(0.842993\pi\)
\(602\) −1.36061 −0.0554544
\(603\) 0 0
\(604\) 4.75052 0.193296
\(605\) 24.9597 1.01475
\(606\) 0 0
\(607\) 17.6200 0.715174 0.357587 0.933880i \(-0.383600\pi\)
0.357587 + 0.933880i \(0.383600\pi\)
\(608\) 21.1467 0.857613
\(609\) 0 0
\(610\) 1.09627 0.0443867
\(611\) −29.4327 −1.19072
\(612\) 0 0
\(613\) −27.6357 −1.11620 −0.558098 0.829775i \(-0.688469\pi\)
−0.558098 + 0.829775i \(0.688469\pi\)
\(614\) −10.1393 −0.409187
\(615\) 0 0
\(616\) 21.4277 0.863345
\(617\) 4.40957 0.177523 0.0887613 0.996053i \(-0.471709\pi\)
0.0887613 + 0.996053i \(0.471709\pi\)
\(618\) 0 0
\(619\) −25.0160 −1.00548 −0.502739 0.864438i \(-0.667674\pi\)
−0.502739 + 0.864438i \(0.667674\pi\)
\(620\) 11.8825 0.477213
\(621\) 0 0
\(622\) 13.9792 0.560514
\(623\) 20.3741 0.816272
\(624\) 0 0
\(625\) 12.4477 0.497907
\(626\) 15.1049 0.603713
\(627\) 0 0
\(628\) 5.28746 0.210993
\(629\) 0.178305 0.00710949
\(630\) 0 0
\(631\) 14.1166 0.561974 0.280987 0.959712i \(-0.409338\pi\)
0.280987 + 0.959712i \(0.409338\pi\)
\(632\) 30.2299 1.20248
\(633\) 0 0
\(634\) 7.68670 0.305278
\(635\) 9.99883 0.396791
\(636\) 0 0
\(637\) 25.5332 1.01166
\(638\) 2.12338 0.0840654
\(639\) 0 0
\(640\) −10.2786 −0.406296
\(641\) 34.2091 1.35118 0.675588 0.737279i \(-0.263890\pi\)
0.675588 + 0.737279i \(0.263890\pi\)
\(642\) 0 0
\(643\) −13.4865 −0.531856 −0.265928 0.963993i \(-0.585678\pi\)
−0.265928 + 0.963993i \(0.585678\pi\)
\(644\) 0.235498 0.00927994
\(645\) 0 0
\(646\) −0.0764403 −0.00300750
\(647\) 3.19249 0.125510 0.0627548 0.998029i \(-0.480011\pi\)
0.0627548 + 0.998029i \(0.480011\pi\)
\(648\) 0 0
\(649\) −34.5785 −1.35733
\(650\) 14.5926 0.572368
\(651\) 0 0
\(652\) 30.4038 1.19070
\(653\) −32.1675 −1.25881 −0.629405 0.777077i \(-0.716701\pi\)
−0.629405 + 0.777077i \(0.716701\pi\)
\(654\) 0 0
\(655\) 13.4532 0.525661
\(656\) 6.41482 0.250457
\(657\) 0 0
\(658\) −5.54426 −0.216138
\(659\) 14.5942 0.568510 0.284255 0.958749i \(-0.408254\pi\)
0.284255 + 0.958749i \(0.408254\pi\)
\(660\) 0 0
\(661\) −7.79173 −0.303063 −0.151532 0.988452i \(-0.548421\pi\)
−0.151532 + 0.988452i \(0.548421\pi\)
\(662\) 9.74849 0.378886
\(663\) 0 0
\(664\) −42.7209 −1.65789
\(665\) −5.03751 −0.195346
\(666\) 0 0
\(667\) 0.0536018 0.00207547
\(668\) 29.8293 1.15413
\(669\) 0 0
\(670\) 1.74714 0.0674981
\(671\) 10.5141 0.405894
\(672\) 0 0
\(673\) 8.01766 0.309058 0.154529 0.987988i \(-0.450614\pi\)
0.154529 + 0.987988i \(0.450614\pi\)
\(674\) −6.70387 −0.258223
\(675\) 0 0
\(676\) −22.4048 −0.861723
\(677\) 8.51903 0.327413 0.163707 0.986509i \(-0.447655\pi\)
0.163707 + 0.986509i \(0.447655\pi\)
\(678\) 0 0
\(679\) 10.2411 0.393019
\(680\) 0.0698401 0.00267824
\(681\) 0 0
\(682\) −33.8335 −1.29555
\(683\) 14.4153 0.551588 0.275794 0.961217i \(-0.411059\pi\)
0.275794 + 0.961217i \(0.411059\pi\)
\(684\) 0 0
\(685\) 5.03295 0.192299
\(686\) 11.7280 0.447779
\(687\) 0 0
\(688\) 2.01350 0.0767639
\(689\) −51.3242 −1.95530
\(690\) 0 0
\(691\) 36.4694 1.38736 0.693681 0.720283i \(-0.255988\pi\)
0.693681 + 0.720283i \(0.255988\pi\)
\(692\) 9.51101 0.361554
\(693\) 0 0
\(694\) −2.28584 −0.0867695
\(695\) −3.86150 −0.146475
\(696\) 0 0
\(697\) −0.135504 −0.00513259
\(698\) −0.899885 −0.0340611
\(699\) 0 0
\(700\) −9.25895 −0.349955
\(701\) 9.52020 0.359573 0.179787 0.983706i \(-0.442459\pi\)
0.179787 + 0.983706i \(0.442459\pi\)
\(702\) 0 0
\(703\) −21.1035 −0.795933
\(704\) 6.04699 0.227905
\(705\) 0 0
\(706\) 7.97999 0.300331
\(707\) 12.6942 0.477414
\(708\) 0 0
\(709\) 11.9597 0.449157 0.224579 0.974456i \(-0.427899\pi\)
0.224579 + 0.974456i \(0.427899\pi\)
\(710\) 1.38667 0.0520407
\(711\) 0 0
\(712\) 33.4317 1.25291
\(713\) −0.854081 −0.0319856
\(714\) 0 0
\(715\) −30.2890 −1.13274
\(716\) 5.33860 0.199513
\(717\) 0 0
\(718\) −20.1038 −0.750268
\(719\) −21.3781 −0.797269 −0.398634 0.917110i \(-0.630516\pi\)
−0.398634 + 0.917110i \(0.630516\pi\)
\(720\) 0 0
\(721\) 7.48976 0.278933
\(722\) −3.80896 −0.141755
\(723\) 0 0
\(724\) 29.4249 1.09357
\(725\) −2.10743 −0.0782680
\(726\) 0 0
\(727\) −7.88115 −0.292296 −0.146148 0.989263i \(-0.546688\pi\)
−0.146148 + 0.989263i \(0.546688\pi\)
\(728\) −18.3679 −0.680760
\(729\) 0 0
\(730\) −5.31685 −0.196785
\(731\) −0.0425324 −0.00157312
\(732\) 0 0
\(733\) 34.8233 1.28623 0.643114 0.765771i \(-0.277642\pi\)
0.643114 + 0.765771i \(0.277642\pi\)
\(734\) −5.43138 −0.200476
\(735\) 0 0
\(736\) 0.604614 0.0222864
\(737\) 16.7565 0.617235
\(738\) 0 0
\(739\) 43.8485 1.61299 0.806497 0.591238i \(-0.201361\pi\)
0.806497 + 0.591238i \(0.201361\pi\)
\(740\) 8.39455 0.308590
\(741\) 0 0
\(742\) −9.66798 −0.354923
\(743\) 21.3524 0.783344 0.391672 0.920105i \(-0.371897\pi\)
0.391672 + 0.920105i \(0.371897\pi\)
\(744\) 0 0
\(745\) −17.8039 −0.652283
\(746\) −2.02574 −0.0741675
\(747\) 0 0
\(748\) 0.291623 0.0106628
\(749\) −14.5376 −0.531192
\(750\) 0 0
\(751\) 4.52817 0.165235 0.0826177 0.996581i \(-0.473672\pi\)
0.0826177 + 0.996581i \(0.473672\pi\)
\(752\) 8.20466 0.299193
\(753\) 0 0
\(754\) −1.82017 −0.0662868
\(755\) −2.90539 −0.105738
\(756\) 0 0
\(757\) 30.7938 1.11922 0.559610 0.828756i \(-0.310951\pi\)
0.559610 + 0.828756i \(0.310951\pi\)
\(758\) −14.9588 −0.543327
\(759\) 0 0
\(760\) −8.26599 −0.299839
\(761\) −3.57881 −0.129732 −0.0648658 0.997894i \(-0.520662\pi\)
−0.0648658 + 0.997894i \(0.520662\pi\)
\(762\) 0 0
\(763\) 18.6045 0.673526
\(764\) 30.7318 1.11184
\(765\) 0 0
\(766\) 9.71493 0.351015
\(767\) 29.6409 1.07027
\(768\) 0 0
\(769\) −14.6050 −0.526669 −0.263335 0.964705i \(-0.584822\pi\)
−0.263335 + 0.964705i \(0.584822\pi\)
\(770\) −5.70556 −0.205614
\(771\) 0 0
\(772\) 16.5279 0.594853
\(773\) 20.0048 0.719521 0.359760 0.933045i \(-0.382858\pi\)
0.359760 + 0.933045i \(0.382858\pi\)
\(774\) 0 0
\(775\) 33.5794 1.20621
\(776\) 16.8046 0.603249
\(777\) 0 0
\(778\) −12.3351 −0.442236
\(779\) 16.0377 0.574612
\(780\) 0 0
\(781\) 13.2993 0.475885
\(782\) −0.00218553 −7.81545e−5 0
\(783\) 0 0
\(784\) −7.11765 −0.254202
\(785\) −3.23378 −0.115418
\(786\) 0 0
\(787\) −13.5451 −0.482829 −0.241415 0.970422i \(-0.577611\pi\)
−0.241415 + 0.970422i \(0.577611\pi\)
\(788\) 36.5521 1.30211
\(789\) 0 0
\(790\) −8.04935 −0.286383
\(791\) −8.39418 −0.298463
\(792\) 0 0
\(793\) −9.01277 −0.320053
\(794\) 0.938497 0.0333060
\(795\) 0 0
\(796\) −13.4710 −0.477466
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678306\pi\)
−0.531327 + 0.847167i \(0.678306\pi\)
\(798\) 0 0
\(799\) −0.173312 −0.00613134
\(800\) −23.7712 −0.840440
\(801\) 0 0
\(802\) 14.9444 0.527706
\(803\) −50.9929 −1.79950
\(804\) 0 0
\(805\) −0.144029 −0.00507636
\(806\) 29.0023 1.02156
\(807\) 0 0
\(808\) 20.8297 0.732788
\(809\) 48.8577 1.71774 0.858872 0.512190i \(-0.171166\pi\)
0.858872 + 0.512190i \(0.171166\pi\)
\(810\) 0 0
\(811\) −14.0558 −0.493566 −0.246783 0.969071i \(-0.579373\pi\)
−0.246783 + 0.969071i \(0.579373\pi\)
\(812\) 1.15489 0.0405288
\(813\) 0 0
\(814\) −23.9021 −0.837770
\(815\) −18.5947 −0.651345
\(816\) 0 0
\(817\) 5.03396 0.176116
\(818\) 0.390679 0.0136598
\(819\) 0 0
\(820\) −6.37950 −0.222782
\(821\) 32.2456 1.12538 0.562689 0.826668i \(-0.309767\pi\)
0.562689 + 0.826668i \(0.309767\pi\)
\(822\) 0 0
\(823\) −33.0814 −1.15315 −0.576573 0.817046i \(-0.695610\pi\)
−0.576573 + 0.817046i \(0.695610\pi\)
\(824\) 12.2899 0.428138
\(825\) 0 0
\(826\) 5.58348 0.194274
\(827\) 39.9115 1.38786 0.693929 0.720043i \(-0.255878\pi\)
0.693929 + 0.720043i \(0.255878\pi\)
\(828\) 0 0
\(829\) −17.4600 −0.606410 −0.303205 0.952925i \(-0.598057\pi\)
−0.303205 + 0.952925i \(0.598057\pi\)
\(830\) 11.3753 0.394844
\(831\) 0 0
\(832\) −5.18352 −0.179706
\(833\) 0.150351 0.00520934
\(834\) 0 0
\(835\) −18.2434 −0.631337
\(836\) −34.5153 −1.19374
\(837\) 0 0
\(838\) −8.54698 −0.295251
\(839\) −39.4855 −1.36319 −0.681595 0.731730i \(-0.738713\pi\)
−0.681595 + 0.731730i \(0.738713\pi\)
\(840\) 0 0
\(841\) −28.7371 −0.990936
\(842\) 14.4977 0.499623
\(843\) 0 0
\(844\) 11.2239 0.386344
\(845\) 13.7026 0.471384
\(846\) 0 0
\(847\) −38.6538 −1.32816
\(848\) 14.3071 0.491309
\(849\) 0 0
\(850\) 0.0859272 0.00294728
\(851\) −0.603377 −0.0206835
\(852\) 0 0
\(853\) −31.3190 −1.07234 −0.536171 0.844109i \(-0.680130\pi\)
−0.536171 + 0.844109i \(0.680130\pi\)
\(854\) −1.69774 −0.0580956
\(855\) 0 0
\(856\) −23.8546 −0.815333
\(857\) 35.3472 1.20744 0.603719 0.797197i \(-0.293685\pi\)
0.603719 + 0.797197i \(0.293685\pi\)
\(858\) 0 0
\(859\) 28.2526 0.963968 0.481984 0.876180i \(-0.339916\pi\)
0.481984 + 0.876180i \(0.339916\pi\)
\(860\) −2.00241 −0.0682817
\(861\) 0 0
\(862\) 3.02546 0.103048
\(863\) 3.82178 0.130095 0.0650475 0.997882i \(-0.479280\pi\)
0.0650475 + 0.997882i \(0.479280\pi\)
\(864\) 0 0
\(865\) −5.81686 −0.197779
\(866\) 6.18002 0.210006
\(867\) 0 0
\(868\) −18.4019 −0.624600
\(869\) −77.1998 −2.61882
\(870\) 0 0
\(871\) −14.3638 −0.486698
\(872\) 30.5278 1.03380
\(873\) 0 0
\(874\) 0.258671 0.00874967
\(875\) 12.5509 0.424299
\(876\) 0 0
\(877\) −34.2898 −1.15788 −0.578942 0.815369i \(-0.696534\pi\)
−0.578942 + 0.815369i \(0.696534\pi\)
\(878\) 1.92750 0.0650499
\(879\) 0 0
\(880\) 8.44336 0.284626
\(881\) 51.0611 1.72029 0.860147 0.510047i \(-0.170372\pi\)
0.860147 + 0.510047i \(0.170372\pi\)
\(882\) 0 0
\(883\) −40.0329 −1.34721 −0.673606 0.739090i \(-0.735256\pi\)
−0.673606 + 0.739090i \(0.735256\pi\)
\(884\) −0.249981 −0.00840775
\(885\) 0 0
\(886\) −8.37107 −0.281232
\(887\) 22.8986 0.768861 0.384430 0.923154i \(-0.374398\pi\)
0.384430 + 0.923154i \(0.374398\pi\)
\(888\) 0 0
\(889\) −15.4847 −0.519340
\(890\) −8.90188 −0.298392
\(891\) 0 0
\(892\) −1.15427 −0.0386477
\(893\) 20.5125 0.686425
\(894\) 0 0
\(895\) −3.26505 −0.109139
\(896\) 15.9179 0.531780
\(897\) 0 0
\(898\) 11.6210 0.387798
\(899\) −4.18845 −0.139693
\(900\) 0 0
\(901\) −0.302218 −0.0100684
\(902\) 18.1646 0.604815
\(903\) 0 0
\(904\) −13.7739 −0.458114
\(905\) −17.9961 −0.598210
\(906\) 0 0
\(907\) −23.9431 −0.795018 −0.397509 0.917598i \(-0.630125\pi\)
−0.397509 + 0.917598i \(0.630125\pi\)
\(908\) −11.7296 −0.389261
\(909\) 0 0
\(910\) 4.89084 0.162130
\(911\) −30.7833 −1.01990 −0.509948 0.860206i \(-0.670335\pi\)
−0.509948 + 0.860206i \(0.670335\pi\)
\(912\) 0 0
\(913\) 109.099 3.61064
\(914\) 0.598665 0.0198021
\(915\) 0 0
\(916\) 24.0605 0.794982
\(917\) −20.8344 −0.688011
\(918\) 0 0
\(919\) −43.9789 −1.45073 −0.725365 0.688365i \(-0.758329\pi\)
−0.725365 + 0.688365i \(0.758329\pi\)
\(920\) −0.236336 −0.00779176
\(921\) 0 0
\(922\) −10.3064 −0.339424
\(923\) −11.4002 −0.375242
\(924\) 0 0
\(925\) 23.7226 0.779995
\(926\) 22.7601 0.747942
\(927\) 0 0
\(928\) 2.96505 0.0973326
\(929\) −28.3360 −0.929672 −0.464836 0.885397i \(-0.653887\pi\)
−0.464836 + 0.885397i \(0.653887\pi\)
\(930\) 0 0
\(931\) −17.7949 −0.583204
\(932\) 25.4113 0.832376
\(933\) 0 0
\(934\) 7.46278 0.244190
\(935\) −0.178354 −0.00583281
\(936\) 0 0
\(937\) −13.2836 −0.433957 −0.216979 0.976176i \(-0.569620\pi\)
−0.216979 + 0.976176i \(0.569620\pi\)
\(938\) −2.70572 −0.0883449
\(939\) 0 0
\(940\) −8.15948 −0.266133
\(941\) −14.1023 −0.459722 −0.229861 0.973224i \(-0.573827\pi\)
−0.229861 + 0.973224i \(0.573827\pi\)
\(942\) 0 0
\(943\) 0.458541 0.0149321
\(944\) −8.26270 −0.268928
\(945\) 0 0
\(946\) 5.70154 0.185373
\(947\) 24.2008 0.786419 0.393209 0.919449i \(-0.371365\pi\)
0.393209 + 0.919449i \(0.371365\pi\)
\(948\) 0 0
\(949\) 43.7114 1.41893
\(950\) −10.1700 −0.329959
\(951\) 0 0
\(952\) −0.108158 −0.00350542
\(953\) −1.81703 −0.0588592 −0.0294296 0.999567i \(-0.509369\pi\)
−0.0294296 + 0.999567i \(0.509369\pi\)
\(954\) 0 0
\(955\) −18.7954 −0.608204
\(956\) −29.8361 −0.964967
\(957\) 0 0
\(958\) −8.06744 −0.260647
\(959\) −7.79428 −0.251691
\(960\) 0 0
\(961\) 35.7379 1.15284
\(962\) 20.4890 0.660593
\(963\) 0 0
\(964\) −8.89040 −0.286340
\(965\) −10.1084 −0.325400
\(966\) 0 0
\(967\) −1.89675 −0.0609954 −0.0304977 0.999535i \(-0.509709\pi\)
−0.0304977 + 0.999535i \(0.509709\pi\)
\(968\) −63.4267 −2.03861
\(969\) 0 0
\(970\) −4.47457 −0.143670
\(971\) −27.1629 −0.871698 −0.435849 0.900020i \(-0.643552\pi\)
−0.435849 + 0.900020i \(0.643552\pi\)
\(972\) 0 0
\(973\) 5.98012 0.191714
\(974\) 25.8770 0.829153
\(975\) 0 0
\(976\) 2.51240 0.0804200
\(977\) −25.6090 −0.819304 −0.409652 0.912242i \(-0.634350\pi\)
−0.409652 + 0.912242i \(0.634350\pi\)
\(978\) 0 0
\(979\) −85.3763 −2.72864
\(980\) 7.07846 0.226113
\(981\) 0 0
\(982\) 2.86865 0.0915424
\(983\) −29.0429 −0.926324 −0.463162 0.886274i \(-0.653285\pi\)
−0.463162 + 0.886274i \(0.653285\pi\)
\(984\) 0 0
\(985\) −22.3550 −0.712289
\(986\) −0.0107179 −0.000341329 0
\(987\) 0 0
\(988\) 29.5867 0.941278
\(989\) 0.143928 0.00457664
\(990\) 0 0
\(991\) 36.2171 1.15047 0.575237 0.817987i \(-0.304910\pi\)
0.575237 + 0.817987i \(0.304910\pi\)
\(992\) −47.2445 −1.50002
\(993\) 0 0
\(994\) −2.14746 −0.0681134
\(995\) 8.23874 0.261186
\(996\) 0 0
\(997\) −15.1740 −0.480565 −0.240283 0.970703i \(-0.577240\pi\)
−0.240283 + 0.970703i \(0.577240\pi\)
\(998\) 25.3090 0.801141
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.46 72
3.2 odd 2 6561.2.a.d.1.27 72
81.4 even 27 81.2.g.a.16.6 144
81.7 even 27 729.2.g.c.352.3 144
81.20 odd 54 243.2.g.a.118.3 144
81.23 odd 54 729.2.g.b.379.6 144
81.31 even 27 729.2.g.d.622.3 144
81.34 even 27 729.2.g.d.109.3 144
81.47 odd 54 729.2.g.a.109.6 144
81.50 odd 54 729.2.g.a.622.6 144
81.58 even 27 729.2.g.c.379.3 144
81.61 even 27 81.2.g.a.76.6 yes 144
81.74 odd 54 729.2.g.b.352.6 144
81.77 odd 54 243.2.g.a.208.3 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.6 144 81.4 even 27
81.2.g.a.76.6 yes 144 81.61 even 27
243.2.g.a.118.3 144 81.20 odd 54
243.2.g.a.208.3 144 81.77 odd 54
729.2.g.a.109.6 144 81.47 odd 54
729.2.g.a.622.6 144 81.50 odd 54
729.2.g.b.352.6 144 81.74 odd 54
729.2.g.b.379.6 144 81.23 odd 54
729.2.g.c.352.3 144 81.7 even 27
729.2.g.c.379.3 144 81.58 even 27
729.2.g.d.109.3 144 81.34 even 27
729.2.g.d.622.3 144 81.31 even 27
6561.2.a.c.1.46 72 1.1 even 1 trivial
6561.2.a.d.1.27 72 3.2 odd 2