Properties

Label 6561.2.a.c.1.42
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.42
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.317274 q^{2} -1.89934 q^{4} +2.12131 q^{5} -2.54355 q^{7} -1.23716 q^{8} +0.673038 q^{10} -3.06004 q^{11} +5.51901 q^{13} -0.807002 q^{14} +3.40616 q^{16} -4.29040 q^{17} -0.0609980 q^{19} -4.02909 q^{20} -0.970873 q^{22} -4.28084 q^{23} -0.500032 q^{25} +1.75104 q^{26} +4.83105 q^{28} +10.6788 q^{29} +4.61351 q^{31} +3.55500 q^{32} -1.36123 q^{34} -5.39566 q^{35} +3.51955 q^{37} -0.0193531 q^{38} -2.62440 q^{40} +2.52003 q^{41} -0.775799 q^{43} +5.81205 q^{44} -1.35820 q^{46} -4.54654 q^{47} -0.530372 q^{49} -0.158647 q^{50} -10.4825 q^{52} -1.97270 q^{53} -6.49131 q^{55} +3.14677 q^{56} +3.38812 q^{58} +7.21340 q^{59} -11.6790 q^{61} +1.46375 q^{62} -5.68440 q^{64} +11.7075 q^{65} -1.21297 q^{67} +8.14892 q^{68} -1.71190 q^{70} -14.2681 q^{71} +9.71508 q^{73} +1.11666 q^{74} +0.115856 q^{76} +7.78336 q^{77} +1.61116 q^{79} +7.22552 q^{80} +0.799542 q^{82} +3.30224 q^{83} -9.10129 q^{85} -0.246141 q^{86} +3.78576 q^{88} -14.0469 q^{89} -14.0379 q^{91} +8.13076 q^{92} -1.44250 q^{94} -0.129396 q^{95} +7.02316 q^{97} -0.168273 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.317274 0.224347 0.112173 0.993689i \(-0.464219\pi\)
0.112173 + 0.993689i \(0.464219\pi\)
\(3\) 0 0
\(4\) −1.89934 −0.949669
\(5\) 2.12131 0.948680 0.474340 0.880342i \(-0.342687\pi\)
0.474340 + 0.880342i \(0.342687\pi\)
\(6\) 0 0
\(7\) −2.54355 −0.961370 −0.480685 0.876893i \(-0.659612\pi\)
−0.480685 + 0.876893i \(0.659612\pi\)
\(8\) −1.23716 −0.437402
\(9\) 0 0
\(10\) 0.673038 0.212833
\(11\) −3.06004 −0.922638 −0.461319 0.887234i \(-0.652624\pi\)
−0.461319 + 0.887234i \(0.652624\pi\)
\(12\) 0 0
\(13\) 5.51901 1.53070 0.765349 0.643616i \(-0.222567\pi\)
0.765349 + 0.643616i \(0.222567\pi\)
\(14\) −0.807002 −0.215680
\(15\) 0 0
\(16\) 3.40616 0.851539
\(17\) −4.29040 −1.04058 −0.520288 0.853991i \(-0.674175\pi\)
−0.520288 + 0.853991i \(0.674175\pi\)
\(18\) 0 0
\(19\) −0.0609980 −0.0139939 −0.00699695 0.999976i \(-0.502227\pi\)
−0.00699695 + 0.999976i \(0.502227\pi\)
\(20\) −4.02909 −0.900931
\(21\) 0 0
\(22\) −0.970873 −0.206991
\(23\) −4.28084 −0.892617 −0.446308 0.894879i \(-0.647262\pi\)
−0.446308 + 0.894879i \(0.647262\pi\)
\(24\) 0 0
\(25\) −0.500032 −0.100006
\(26\) 1.75104 0.343407
\(27\) 0 0
\(28\) 4.83105 0.912983
\(29\) 10.6788 1.98301 0.991504 0.130077i \(-0.0415223\pi\)
0.991504 + 0.130077i \(0.0415223\pi\)
\(30\) 0 0
\(31\) 4.61351 0.828610 0.414305 0.910138i \(-0.364025\pi\)
0.414305 + 0.910138i \(0.364025\pi\)
\(32\) 3.55500 0.628442
\(33\) 0 0
\(34\) −1.36123 −0.233450
\(35\) −5.39566 −0.912033
\(36\) 0 0
\(37\) 3.51955 0.578611 0.289305 0.957237i \(-0.406576\pi\)
0.289305 + 0.957237i \(0.406576\pi\)
\(38\) −0.0193531 −0.00313949
\(39\) 0 0
\(40\) −2.62440 −0.414954
\(41\) 2.52003 0.393563 0.196782 0.980447i \(-0.436951\pi\)
0.196782 + 0.980447i \(0.436951\pi\)
\(42\) 0 0
\(43\) −0.775799 −0.118308 −0.0591541 0.998249i \(-0.518840\pi\)
−0.0591541 + 0.998249i \(0.518840\pi\)
\(44\) 5.81205 0.876200
\(45\) 0 0
\(46\) −1.35820 −0.200256
\(47\) −4.54654 −0.663182 −0.331591 0.943423i \(-0.607585\pi\)
−0.331591 + 0.943423i \(0.607585\pi\)
\(48\) 0 0
\(49\) −0.530372 −0.0757675
\(50\) −0.158647 −0.0224361
\(51\) 0 0
\(52\) −10.4825 −1.45366
\(53\) −1.97270 −0.270971 −0.135485 0.990779i \(-0.543259\pi\)
−0.135485 + 0.990779i \(0.543259\pi\)
\(54\) 0 0
\(55\) −6.49131 −0.875288
\(56\) 3.14677 0.420505
\(57\) 0 0
\(58\) 3.38812 0.444882
\(59\) 7.21340 0.939104 0.469552 0.882905i \(-0.344415\pi\)
0.469552 + 0.882905i \(0.344415\pi\)
\(60\) 0 0
\(61\) −11.6790 −1.49534 −0.747671 0.664070i \(-0.768828\pi\)
−0.747671 + 0.664070i \(0.768828\pi\)
\(62\) 1.46375 0.185896
\(63\) 0 0
\(64\) −5.68440 −0.710550
\(65\) 11.7075 1.45214
\(66\) 0 0
\(67\) −1.21297 −0.148188 −0.0740940 0.997251i \(-0.523606\pi\)
−0.0740940 + 0.997251i \(0.523606\pi\)
\(68\) 8.14892 0.988202
\(69\) 0 0
\(70\) −1.71190 −0.204612
\(71\) −14.2681 −1.69331 −0.846657 0.532139i \(-0.821389\pi\)
−0.846657 + 0.532139i \(0.821389\pi\)
\(72\) 0 0
\(73\) 9.71508 1.13706 0.568532 0.822661i \(-0.307512\pi\)
0.568532 + 0.822661i \(0.307512\pi\)
\(74\) 1.11666 0.129809
\(75\) 0 0
\(76\) 0.115856 0.0132896
\(77\) 7.78336 0.886996
\(78\) 0 0
\(79\) 1.61116 0.181269 0.0906347 0.995884i \(-0.471110\pi\)
0.0906347 + 0.995884i \(0.471110\pi\)
\(80\) 7.22552 0.807838
\(81\) 0 0
\(82\) 0.799542 0.0882947
\(83\) 3.30224 0.362468 0.181234 0.983440i \(-0.441991\pi\)
0.181234 + 0.983440i \(0.441991\pi\)
\(84\) 0 0
\(85\) −9.10129 −0.987173
\(86\) −0.246141 −0.0265421
\(87\) 0 0
\(88\) 3.78576 0.403563
\(89\) −14.0469 −1.48897 −0.744486 0.667639i \(-0.767305\pi\)
−0.744486 + 0.667639i \(0.767305\pi\)
\(90\) 0 0
\(91\) −14.0379 −1.47157
\(92\) 8.13076 0.847690
\(93\) 0 0
\(94\) −1.44250 −0.148783
\(95\) −0.129396 −0.0132757
\(96\) 0 0
\(97\) 7.02316 0.713094 0.356547 0.934277i \(-0.383954\pi\)
0.356547 + 0.934277i \(0.383954\pi\)
\(98\) −0.168273 −0.0169982
\(99\) 0 0
\(100\) 0.949730 0.0949730
\(101\) 10.8538 1.07999 0.539996 0.841668i \(-0.318426\pi\)
0.539996 + 0.841668i \(0.318426\pi\)
\(102\) 0 0
\(103\) −12.4368 −1.22543 −0.612715 0.790304i \(-0.709923\pi\)
−0.612715 + 0.790304i \(0.709923\pi\)
\(104\) −6.82789 −0.669530
\(105\) 0 0
\(106\) −0.625887 −0.0607915
\(107\) 4.97831 0.481271 0.240636 0.970616i \(-0.422644\pi\)
0.240636 + 0.970616i \(0.422644\pi\)
\(108\) 0 0
\(109\) 0.361252 0.0346016 0.0173008 0.999850i \(-0.494493\pi\)
0.0173008 + 0.999850i \(0.494493\pi\)
\(110\) −2.05953 −0.196368
\(111\) 0 0
\(112\) −8.66371 −0.818644
\(113\) −19.7419 −1.85716 −0.928582 0.371126i \(-0.878972\pi\)
−0.928582 + 0.371126i \(0.878972\pi\)
\(114\) 0 0
\(115\) −9.08100 −0.846807
\(116\) −20.2827 −1.88320
\(117\) 0 0
\(118\) 2.28863 0.210685
\(119\) 10.9128 1.00038
\(120\) 0 0
\(121\) −1.63614 −0.148740
\(122\) −3.70544 −0.335475
\(123\) 0 0
\(124\) −8.76260 −0.786905
\(125\) −11.6673 −1.04355
\(126\) 0 0
\(127\) −14.4255 −1.28006 −0.640029 0.768351i \(-0.721078\pi\)
−0.640029 + 0.768351i \(0.721078\pi\)
\(128\) −8.91352 −0.787852
\(129\) 0 0
\(130\) 3.71450 0.325783
\(131\) 3.05479 0.266899 0.133449 0.991056i \(-0.457395\pi\)
0.133449 + 0.991056i \(0.457395\pi\)
\(132\) 0 0
\(133\) 0.155151 0.0134533
\(134\) −0.384845 −0.0332455
\(135\) 0 0
\(136\) 5.30791 0.455150
\(137\) 2.60498 0.222559 0.111279 0.993789i \(-0.464505\pi\)
0.111279 + 0.993789i \(0.464505\pi\)
\(138\) 0 0
\(139\) −18.9841 −1.61021 −0.805104 0.593134i \(-0.797890\pi\)
−0.805104 + 0.593134i \(0.797890\pi\)
\(140\) 10.2482 0.866129
\(141\) 0 0
\(142\) −4.52691 −0.379890
\(143\) −16.8884 −1.41228
\(144\) 0 0
\(145\) 22.6531 1.88124
\(146\) 3.08235 0.255097
\(147\) 0 0
\(148\) −6.68481 −0.549488
\(149\) 4.09763 0.335691 0.167845 0.985813i \(-0.446319\pi\)
0.167845 + 0.985813i \(0.446319\pi\)
\(150\) 0 0
\(151\) 9.94125 0.809007 0.404504 0.914536i \(-0.367444\pi\)
0.404504 + 0.914536i \(0.367444\pi\)
\(152\) 0.0754643 0.00612096
\(153\) 0 0
\(154\) 2.46946 0.198995
\(155\) 9.78669 0.786086
\(156\) 0 0
\(157\) 11.5496 0.921755 0.460878 0.887464i \(-0.347535\pi\)
0.460878 + 0.887464i \(0.347535\pi\)
\(158\) 0.511179 0.0406672
\(159\) 0 0
\(160\) 7.54128 0.596190
\(161\) 10.8885 0.858135
\(162\) 0 0
\(163\) −14.1333 −1.10700 −0.553502 0.832848i \(-0.686709\pi\)
−0.553502 + 0.832848i \(0.686709\pi\)
\(164\) −4.78640 −0.373755
\(165\) 0 0
\(166\) 1.04772 0.0813186
\(167\) −6.70352 −0.518734 −0.259367 0.965779i \(-0.583514\pi\)
−0.259367 + 0.965779i \(0.583514\pi\)
\(168\) 0 0
\(169\) 17.4594 1.34303
\(170\) −2.88760 −0.221469
\(171\) 0 0
\(172\) 1.47350 0.112354
\(173\) −14.7888 −1.12437 −0.562185 0.827011i \(-0.690039\pi\)
−0.562185 + 0.827011i \(0.690039\pi\)
\(174\) 0 0
\(175\) 1.27186 0.0961432
\(176\) −10.4230 −0.785662
\(177\) 0 0
\(178\) −4.45673 −0.334046
\(179\) −0.633753 −0.0473689 −0.0236844 0.999719i \(-0.507540\pi\)
−0.0236844 + 0.999719i \(0.507540\pi\)
\(180\) 0 0
\(181\) −13.9541 −1.03720 −0.518601 0.855016i \(-0.673547\pi\)
−0.518601 + 0.855016i \(0.673547\pi\)
\(182\) −4.45385 −0.330141
\(183\) 0 0
\(184\) 5.29608 0.390432
\(185\) 7.46607 0.548916
\(186\) 0 0
\(187\) 13.1288 0.960074
\(188\) 8.63542 0.629803
\(189\) 0 0
\(190\) −0.0410540 −0.00297837
\(191\) 8.49326 0.614551 0.307275 0.951621i \(-0.400583\pi\)
0.307275 + 0.951621i \(0.400583\pi\)
\(192\) 0 0
\(193\) 13.2510 0.953831 0.476915 0.878949i \(-0.341755\pi\)
0.476915 + 0.878949i \(0.341755\pi\)
\(194\) 2.22827 0.159980
\(195\) 0 0
\(196\) 1.00736 0.0719540
\(197\) −7.54829 −0.537793 −0.268897 0.963169i \(-0.586659\pi\)
−0.268897 + 0.963169i \(0.586659\pi\)
\(198\) 0 0
\(199\) −2.11341 −0.149815 −0.0749077 0.997190i \(-0.523866\pi\)
−0.0749077 + 0.997190i \(0.523866\pi\)
\(200\) 0.618620 0.0437430
\(201\) 0 0
\(202\) 3.44362 0.242293
\(203\) −27.1621 −1.90640
\(204\) 0 0
\(205\) 5.34578 0.373366
\(206\) −3.94586 −0.274921
\(207\) 0 0
\(208\) 18.7986 1.30345
\(209\) 0.186657 0.0129113
\(210\) 0 0
\(211\) 0.656477 0.0451937 0.0225969 0.999745i \(-0.492807\pi\)
0.0225969 + 0.999745i \(0.492807\pi\)
\(212\) 3.74682 0.257333
\(213\) 0 0
\(214\) 1.57949 0.107972
\(215\) −1.64571 −0.112237
\(216\) 0 0
\(217\) −11.7347 −0.796601
\(218\) 0.114616 0.00776277
\(219\) 0 0
\(220\) 12.3292 0.831233
\(221\) −23.6788 −1.59281
\(222\) 0 0
\(223\) 22.5110 1.50745 0.753724 0.657191i \(-0.228255\pi\)
0.753724 + 0.657191i \(0.228255\pi\)
\(224\) −9.04232 −0.604165
\(225\) 0 0
\(226\) −6.26361 −0.416649
\(227\) −13.4086 −0.889959 −0.444980 0.895541i \(-0.646789\pi\)
−0.444980 + 0.895541i \(0.646789\pi\)
\(228\) 0 0
\(229\) 6.22339 0.411253 0.205627 0.978631i \(-0.434077\pi\)
0.205627 + 0.978631i \(0.434077\pi\)
\(230\) −2.88117 −0.189979
\(231\) 0 0
\(232\) −13.2114 −0.867372
\(233\) −12.3897 −0.811677 −0.405839 0.913945i \(-0.633021\pi\)
−0.405839 + 0.913945i \(0.633021\pi\)
\(234\) 0 0
\(235\) −9.64464 −0.629147
\(236\) −13.7007 −0.891838
\(237\) 0 0
\(238\) 3.46236 0.224432
\(239\) −9.83205 −0.635983 −0.317991 0.948094i \(-0.603008\pi\)
−0.317991 + 0.948094i \(0.603008\pi\)
\(240\) 0 0
\(241\) −17.3372 −1.11678 −0.558392 0.829577i \(-0.688582\pi\)
−0.558392 + 0.829577i \(0.688582\pi\)
\(242\) −0.519105 −0.0333693
\(243\) 0 0
\(244\) 22.1823 1.42008
\(245\) −1.12509 −0.0718791
\(246\) 0 0
\(247\) −0.336649 −0.0214204
\(248\) −5.70764 −0.362436
\(249\) 0 0
\(250\) −3.70173 −0.234118
\(251\) −25.0330 −1.58007 −0.790034 0.613063i \(-0.789937\pi\)
−0.790034 + 0.613063i \(0.789937\pi\)
\(252\) 0 0
\(253\) 13.0996 0.823562
\(254\) −4.57685 −0.287177
\(255\) 0 0
\(256\) 8.54076 0.533798
\(257\) 2.41046 0.150360 0.0751801 0.997170i \(-0.476047\pi\)
0.0751801 + 0.997170i \(0.476047\pi\)
\(258\) 0 0
\(259\) −8.95214 −0.556259
\(260\) −22.2366 −1.37905
\(261\) 0 0
\(262\) 0.969208 0.0598778
\(263\) −3.92278 −0.241889 −0.120944 0.992659i \(-0.538592\pi\)
−0.120944 + 0.992659i \(0.538592\pi\)
\(264\) 0 0
\(265\) −4.18471 −0.257065
\(266\) 0.0492255 0.00301821
\(267\) 0 0
\(268\) 2.30384 0.140730
\(269\) 11.0903 0.676185 0.338093 0.941113i \(-0.390218\pi\)
0.338093 + 0.941113i \(0.390218\pi\)
\(270\) 0 0
\(271\) 0.794617 0.0482695 0.0241348 0.999709i \(-0.492317\pi\)
0.0241348 + 0.999709i \(0.492317\pi\)
\(272\) −14.6138 −0.886091
\(273\) 0 0
\(274\) 0.826494 0.0499303
\(275\) 1.53012 0.0922697
\(276\) 0 0
\(277\) 29.1878 1.75373 0.876863 0.480741i \(-0.159632\pi\)
0.876863 + 0.480741i \(0.159632\pi\)
\(278\) −6.02316 −0.361245
\(279\) 0 0
\(280\) 6.67529 0.398925
\(281\) −27.5889 −1.64582 −0.822909 0.568173i \(-0.807650\pi\)
−0.822909 + 0.568173i \(0.807650\pi\)
\(282\) 0 0
\(283\) −5.10861 −0.303676 −0.151838 0.988405i \(-0.548519\pi\)
−0.151838 + 0.988405i \(0.548519\pi\)
\(284\) 27.1000 1.60809
\(285\) 0 0
\(286\) −5.35826 −0.316840
\(287\) −6.40983 −0.378360
\(288\) 0 0
\(289\) 1.40756 0.0827979
\(290\) 7.18726 0.422050
\(291\) 0 0
\(292\) −18.4522 −1.07983
\(293\) −2.34345 −0.136906 −0.0684529 0.997654i \(-0.521806\pi\)
−0.0684529 + 0.997654i \(0.521806\pi\)
\(294\) 0 0
\(295\) 15.3019 0.890909
\(296\) −4.35425 −0.253085
\(297\) 0 0
\(298\) 1.30007 0.0753111
\(299\) −23.6260 −1.36633
\(300\) 0 0
\(301\) 1.97328 0.113738
\(302\) 3.15410 0.181498
\(303\) 0 0
\(304\) −0.207769 −0.0119164
\(305\) −24.7748 −1.41860
\(306\) 0 0
\(307\) −16.1673 −0.922718 −0.461359 0.887213i \(-0.652638\pi\)
−0.461359 + 0.887213i \(0.652638\pi\)
\(308\) −14.7832 −0.842352
\(309\) 0 0
\(310\) 3.10507 0.176356
\(311\) −21.1989 −1.20208 −0.601041 0.799218i \(-0.705247\pi\)
−0.601041 + 0.799218i \(0.705247\pi\)
\(312\) 0 0
\(313\) −5.41141 −0.305871 −0.152936 0.988236i \(-0.548873\pi\)
−0.152936 + 0.988236i \(0.548873\pi\)
\(314\) 3.66438 0.206793
\(315\) 0 0
\(316\) −3.06013 −0.172146
\(317\) 8.72733 0.490176 0.245088 0.969501i \(-0.421183\pi\)
0.245088 + 0.969501i \(0.421183\pi\)
\(318\) 0 0
\(319\) −32.6777 −1.82960
\(320\) −12.0584 −0.674084
\(321\) 0 0
\(322\) 3.45465 0.192520
\(323\) 0.261706 0.0145617
\(324\) 0 0
\(325\) −2.75968 −0.153080
\(326\) −4.48412 −0.248353
\(327\) 0 0
\(328\) −3.11769 −0.172145
\(329\) 11.5643 0.637563
\(330\) 0 0
\(331\) −19.6506 −1.08009 −0.540047 0.841635i \(-0.681593\pi\)
−0.540047 + 0.841635i \(0.681593\pi\)
\(332\) −6.27207 −0.344225
\(333\) 0 0
\(334\) −2.12686 −0.116376
\(335\) −2.57309 −0.140583
\(336\) 0 0
\(337\) −7.34551 −0.400136 −0.200068 0.979782i \(-0.564116\pi\)
−0.200068 + 0.979782i \(0.564116\pi\)
\(338\) 5.53943 0.301305
\(339\) 0 0
\(340\) 17.2864 0.937487
\(341\) −14.1175 −0.764507
\(342\) 0 0
\(343\) 19.1539 1.03421
\(344\) 0.959788 0.0517483
\(345\) 0 0
\(346\) −4.69210 −0.252249
\(347\) 18.2185 0.978020 0.489010 0.872278i \(-0.337358\pi\)
0.489010 + 0.872278i \(0.337358\pi\)
\(348\) 0 0
\(349\) −16.1102 −0.862361 −0.431180 0.902266i \(-0.641903\pi\)
−0.431180 + 0.902266i \(0.641903\pi\)
\(350\) 0.403527 0.0215694
\(351\) 0 0
\(352\) −10.8785 −0.579824
\(353\) −17.1839 −0.914606 −0.457303 0.889311i \(-0.651185\pi\)
−0.457303 + 0.889311i \(0.651185\pi\)
\(354\) 0 0
\(355\) −30.2671 −1.60641
\(356\) 26.6798 1.41403
\(357\) 0 0
\(358\) −0.201073 −0.0106271
\(359\) −28.4341 −1.50070 −0.750348 0.661043i \(-0.770114\pi\)
−0.750348 + 0.661043i \(0.770114\pi\)
\(360\) 0 0
\(361\) −18.9963 −0.999804
\(362\) −4.42729 −0.232693
\(363\) 0 0
\(364\) 26.6626 1.39750
\(365\) 20.6087 1.07871
\(366\) 0 0
\(367\) 10.3771 0.541679 0.270840 0.962624i \(-0.412699\pi\)
0.270840 + 0.962624i \(0.412699\pi\)
\(368\) −14.5812 −0.760098
\(369\) 0 0
\(370\) 2.36879 0.123148
\(371\) 5.01765 0.260503
\(372\) 0 0
\(373\) 14.8925 0.771104 0.385552 0.922686i \(-0.374011\pi\)
0.385552 + 0.922686i \(0.374011\pi\)
\(374\) 4.16544 0.215390
\(375\) 0 0
\(376\) 5.62480 0.290077
\(377\) 58.9365 3.03538
\(378\) 0 0
\(379\) 11.6243 0.597103 0.298551 0.954394i \(-0.403497\pi\)
0.298551 + 0.954394i \(0.403497\pi\)
\(380\) 0.245766 0.0126075
\(381\) 0 0
\(382\) 2.69469 0.137872
\(383\) −28.5160 −1.45710 −0.728550 0.684993i \(-0.759805\pi\)
−0.728550 + 0.684993i \(0.759805\pi\)
\(384\) 0 0
\(385\) 16.5109 0.841475
\(386\) 4.20421 0.213989
\(387\) 0 0
\(388\) −13.3393 −0.677203
\(389\) 3.07037 0.155674 0.0778369 0.996966i \(-0.475199\pi\)
0.0778369 + 0.996966i \(0.475199\pi\)
\(390\) 0 0
\(391\) 18.3665 0.928835
\(392\) 0.656155 0.0331408
\(393\) 0 0
\(394\) −2.39488 −0.120652
\(395\) 3.41777 0.171967
\(396\) 0 0
\(397\) −10.5098 −0.527470 −0.263735 0.964595i \(-0.584954\pi\)
−0.263735 + 0.964595i \(0.584954\pi\)
\(398\) −0.670529 −0.0336106
\(399\) 0 0
\(400\) −1.70319 −0.0851594
\(401\) 26.4982 1.32326 0.661630 0.749831i \(-0.269865\pi\)
0.661630 + 0.749831i \(0.269865\pi\)
\(402\) 0 0
\(403\) 25.4620 1.26835
\(404\) −20.6150 −1.02563
\(405\) 0 0
\(406\) −8.61783 −0.427696
\(407\) −10.7700 −0.533848
\(408\) 0 0
\(409\) 26.3525 1.30305 0.651523 0.758629i \(-0.274130\pi\)
0.651523 + 0.758629i \(0.274130\pi\)
\(410\) 1.69608 0.0837634
\(411\) 0 0
\(412\) 23.6216 1.16375
\(413\) −18.3476 −0.902827
\(414\) 0 0
\(415\) 7.00509 0.343866
\(416\) 19.6201 0.961954
\(417\) 0 0
\(418\) 0.0592213 0.00289661
\(419\) 7.83156 0.382597 0.191298 0.981532i \(-0.438730\pi\)
0.191298 + 0.981532i \(0.438730\pi\)
\(420\) 0 0
\(421\) −31.8518 −1.55236 −0.776182 0.630509i \(-0.782846\pi\)
−0.776182 + 0.630509i \(0.782846\pi\)
\(422\) 0.208283 0.0101391
\(423\) 0 0
\(424\) 2.44054 0.118523
\(425\) 2.14534 0.104064
\(426\) 0 0
\(427\) 29.7061 1.43758
\(428\) −9.45548 −0.457048
\(429\) 0 0
\(430\) −0.522143 −0.0251799
\(431\) −33.3134 −1.60465 −0.802324 0.596889i \(-0.796403\pi\)
−0.802324 + 0.596889i \(0.796403\pi\)
\(432\) 0 0
\(433\) −5.51586 −0.265075 −0.132538 0.991178i \(-0.542313\pi\)
−0.132538 + 0.991178i \(0.542313\pi\)
\(434\) −3.72311 −0.178715
\(435\) 0 0
\(436\) −0.686139 −0.0328601
\(437\) 0.261123 0.0124912
\(438\) 0 0
\(439\) −3.31005 −0.157980 −0.0789900 0.996875i \(-0.525170\pi\)
−0.0789900 + 0.996875i \(0.525170\pi\)
\(440\) 8.03078 0.382853
\(441\) 0 0
\(442\) −7.51267 −0.357341
\(443\) 17.1859 0.816525 0.408263 0.912865i \(-0.366135\pi\)
0.408263 + 0.912865i \(0.366135\pi\)
\(444\) 0 0
\(445\) −29.7979 −1.41256
\(446\) 7.14216 0.338191
\(447\) 0 0
\(448\) 14.4585 0.683101
\(449\) −17.6006 −0.830625 −0.415312 0.909679i \(-0.636328\pi\)
−0.415312 + 0.909679i \(0.636328\pi\)
\(450\) 0 0
\(451\) −7.71141 −0.363116
\(452\) 37.4966 1.76369
\(453\) 0 0
\(454\) −4.25420 −0.199660
\(455\) −29.7787 −1.39605
\(456\) 0 0
\(457\) 17.8745 0.836135 0.418068 0.908416i \(-0.362707\pi\)
0.418068 + 0.908416i \(0.362707\pi\)
\(458\) 1.97452 0.0922634
\(459\) 0 0
\(460\) 17.2479 0.804186
\(461\) −5.02719 −0.234140 −0.117070 0.993124i \(-0.537350\pi\)
−0.117070 + 0.993124i \(0.537350\pi\)
\(462\) 0 0
\(463\) 17.2052 0.799593 0.399796 0.916604i \(-0.369081\pi\)
0.399796 + 0.916604i \(0.369081\pi\)
\(464\) 36.3737 1.68861
\(465\) 0 0
\(466\) −3.93094 −0.182097
\(467\) −37.4574 −1.73332 −0.866661 0.498897i \(-0.833738\pi\)
−0.866661 + 0.498897i \(0.833738\pi\)
\(468\) 0 0
\(469\) 3.08525 0.142464
\(470\) −3.06000 −0.141147
\(471\) 0 0
\(472\) −8.92412 −0.410766
\(473\) 2.37398 0.109156
\(474\) 0 0
\(475\) 0.0305010 0.00139948
\(476\) −20.7272 −0.950028
\(477\) 0 0
\(478\) −3.11946 −0.142681
\(479\) −3.42274 −0.156389 −0.0781945 0.996938i \(-0.524916\pi\)
−0.0781945 + 0.996938i \(0.524916\pi\)
\(480\) 0 0
\(481\) 19.4244 0.885678
\(482\) −5.50064 −0.250547
\(483\) 0 0
\(484\) 3.10758 0.141254
\(485\) 14.8983 0.676498
\(486\) 0 0
\(487\) −5.43342 −0.246212 −0.123106 0.992394i \(-0.539285\pi\)
−0.123106 + 0.992394i \(0.539285\pi\)
\(488\) 14.4488 0.654065
\(489\) 0 0
\(490\) −0.356961 −0.0161258
\(491\) 3.97386 0.179338 0.0896690 0.995972i \(-0.471419\pi\)
0.0896690 + 0.995972i \(0.471419\pi\)
\(492\) 0 0
\(493\) −45.8165 −2.06347
\(494\) −0.106810 −0.00480561
\(495\) 0 0
\(496\) 15.7143 0.705594
\(497\) 36.2916 1.62790
\(498\) 0 0
\(499\) −21.4564 −0.960523 −0.480261 0.877125i \(-0.659458\pi\)
−0.480261 + 0.877125i \(0.659458\pi\)
\(500\) 22.1601 0.991030
\(501\) 0 0
\(502\) −7.94233 −0.354483
\(503\) 24.6671 1.09985 0.549926 0.835213i \(-0.314656\pi\)
0.549926 + 0.835213i \(0.314656\pi\)
\(504\) 0 0
\(505\) 23.0243 1.02457
\(506\) 4.15615 0.184763
\(507\) 0 0
\(508\) 27.3989 1.21563
\(509\) −7.34691 −0.325646 −0.162823 0.986655i \(-0.552060\pi\)
−0.162823 + 0.986655i \(0.552060\pi\)
\(510\) 0 0
\(511\) −24.7108 −1.09314
\(512\) 20.5368 0.907607
\(513\) 0 0
\(514\) 0.764776 0.0337328
\(515\) −26.3823 −1.16254
\(516\) 0 0
\(517\) 13.9126 0.611876
\(518\) −2.84028 −0.124795
\(519\) 0 0
\(520\) −14.4841 −0.635170
\(521\) 27.2332 1.19311 0.596555 0.802572i \(-0.296536\pi\)
0.596555 + 0.802572i \(0.296536\pi\)
\(522\) 0 0
\(523\) 15.2184 0.665452 0.332726 0.943023i \(-0.392032\pi\)
0.332726 + 0.943023i \(0.392032\pi\)
\(524\) −5.80208 −0.253465
\(525\) 0 0
\(526\) −1.24460 −0.0542670
\(527\) −19.7938 −0.862232
\(528\) 0 0
\(529\) −4.67442 −0.203235
\(530\) −1.32770 −0.0576716
\(531\) 0 0
\(532\) −0.294685 −0.0127762
\(533\) 13.9081 0.602426
\(534\) 0 0
\(535\) 10.5605 0.456572
\(536\) 1.50064 0.0648177
\(537\) 0 0
\(538\) 3.51866 0.151700
\(539\) 1.62296 0.0699059
\(540\) 0 0
\(541\) 16.6232 0.714686 0.357343 0.933973i \(-0.383683\pi\)
0.357343 + 0.933973i \(0.383683\pi\)
\(542\) 0.252112 0.0108291
\(543\) 0 0
\(544\) −15.2524 −0.653941
\(545\) 0.766328 0.0328259
\(546\) 0 0
\(547\) 11.2829 0.482422 0.241211 0.970473i \(-0.422455\pi\)
0.241211 + 0.970473i \(0.422455\pi\)
\(548\) −4.94774 −0.211357
\(549\) 0 0
\(550\) 0.485468 0.0207004
\(551\) −0.651387 −0.0277500
\(552\) 0 0
\(553\) −4.09805 −0.174267
\(554\) 9.26054 0.393443
\(555\) 0 0
\(556\) 36.0571 1.52916
\(557\) 29.1548 1.23533 0.617665 0.786441i \(-0.288079\pi\)
0.617665 + 0.786441i \(0.288079\pi\)
\(558\) 0 0
\(559\) −4.28164 −0.181094
\(560\) −18.3784 −0.776631
\(561\) 0 0
\(562\) −8.75326 −0.369234
\(563\) −21.4660 −0.904685 −0.452342 0.891844i \(-0.649412\pi\)
−0.452342 + 0.891844i \(0.649412\pi\)
\(564\) 0 0
\(565\) −41.8788 −1.76185
\(566\) −1.62083 −0.0681286
\(567\) 0 0
\(568\) 17.6519 0.740659
\(569\) −2.68116 −0.112400 −0.0562001 0.998420i \(-0.517898\pi\)
−0.0562001 + 0.998420i \(0.517898\pi\)
\(570\) 0 0
\(571\) −2.84080 −0.118884 −0.0594420 0.998232i \(-0.518932\pi\)
−0.0594420 + 0.998232i \(0.518932\pi\)
\(572\) 32.0768 1.34120
\(573\) 0 0
\(574\) −2.03367 −0.0848839
\(575\) 2.14056 0.0892674
\(576\) 0 0
\(577\) 5.92252 0.246558 0.123279 0.992372i \(-0.460659\pi\)
0.123279 + 0.992372i \(0.460659\pi\)
\(578\) 0.446584 0.0185754
\(579\) 0 0
\(580\) −43.0259 −1.78655
\(581\) −8.39940 −0.348466
\(582\) 0 0
\(583\) 6.03654 0.250008
\(584\) −12.0191 −0.497354
\(585\) 0 0
\(586\) −0.743517 −0.0307144
\(587\) −11.2678 −0.465072 −0.232536 0.972588i \(-0.574702\pi\)
−0.232536 + 0.972588i \(0.574702\pi\)
\(588\) 0 0
\(589\) −0.281415 −0.0115955
\(590\) 4.85489 0.199873
\(591\) 0 0
\(592\) 11.9881 0.492709
\(593\) −9.49254 −0.389812 −0.194906 0.980822i \(-0.562440\pi\)
−0.194906 + 0.980822i \(0.562440\pi\)
\(594\) 0 0
\(595\) 23.1495 0.949039
\(596\) −7.78277 −0.318795
\(597\) 0 0
\(598\) −7.49592 −0.306531
\(599\) 24.9508 1.01946 0.509731 0.860334i \(-0.329745\pi\)
0.509731 + 0.860334i \(0.329745\pi\)
\(600\) 0 0
\(601\) −11.4871 −0.468568 −0.234284 0.972168i \(-0.575275\pi\)
−0.234284 + 0.972168i \(0.575275\pi\)
\(602\) 0.626072 0.0255168
\(603\) 0 0
\(604\) −18.8818 −0.768289
\(605\) −3.47076 −0.141107
\(606\) 0 0
\(607\) 39.8542 1.61763 0.808816 0.588061i \(-0.200109\pi\)
0.808816 + 0.588061i \(0.200109\pi\)
\(608\) −0.216848 −0.00879436
\(609\) 0 0
\(610\) −7.86041 −0.318259
\(611\) −25.0924 −1.01513
\(612\) 0 0
\(613\) 17.9916 0.726672 0.363336 0.931658i \(-0.381638\pi\)
0.363336 + 0.931658i \(0.381638\pi\)
\(614\) −5.12948 −0.207009
\(615\) 0 0
\(616\) −9.62926 −0.387974
\(617\) 18.3474 0.738640 0.369320 0.929302i \(-0.379591\pi\)
0.369320 + 0.929302i \(0.379591\pi\)
\(618\) 0 0
\(619\) −44.9371 −1.80617 −0.903086 0.429459i \(-0.858704\pi\)
−0.903086 + 0.429459i \(0.858704\pi\)
\(620\) −18.5882 −0.746521
\(621\) 0 0
\(622\) −6.72588 −0.269683
\(623\) 35.7290 1.43145
\(624\) 0 0
\(625\) −22.2498 −0.889992
\(626\) −1.71690 −0.0686212
\(627\) 0 0
\(628\) −21.9365 −0.875362
\(629\) −15.1003 −0.602088
\(630\) 0 0
\(631\) 34.0139 1.35407 0.677036 0.735950i \(-0.263264\pi\)
0.677036 + 0.735950i \(0.263264\pi\)
\(632\) −1.99326 −0.0792876
\(633\) 0 0
\(634\) 2.76896 0.109969
\(635\) −30.6010 −1.21437
\(636\) 0 0
\(637\) −2.92713 −0.115977
\(638\) −10.3678 −0.410464
\(639\) 0 0
\(640\) −18.9084 −0.747419
\(641\) −0.314618 −0.0124267 −0.00621333 0.999981i \(-0.501978\pi\)
−0.00621333 + 0.999981i \(0.501978\pi\)
\(642\) 0 0
\(643\) −33.1338 −1.30667 −0.653335 0.757069i \(-0.726631\pi\)
−0.653335 + 0.757069i \(0.726631\pi\)
\(644\) −20.6810 −0.814944
\(645\) 0 0
\(646\) 0.0830326 0.00326688
\(647\) 14.0510 0.552403 0.276201 0.961100i \(-0.410924\pi\)
0.276201 + 0.961100i \(0.410924\pi\)
\(648\) 0 0
\(649\) −22.0733 −0.866453
\(650\) −0.875576 −0.0343429
\(651\) 0 0
\(652\) 26.8438 1.05129
\(653\) −44.9131 −1.75759 −0.878793 0.477204i \(-0.841650\pi\)
−0.878793 + 0.477204i \(0.841650\pi\)
\(654\) 0 0
\(655\) 6.48017 0.253201
\(656\) 8.58363 0.335134
\(657\) 0 0
\(658\) 3.66907 0.143035
\(659\) −33.5200 −1.30575 −0.652876 0.757465i \(-0.726438\pi\)
−0.652876 + 0.757465i \(0.726438\pi\)
\(660\) 0 0
\(661\) 16.2273 0.631169 0.315584 0.948897i \(-0.397799\pi\)
0.315584 + 0.948897i \(0.397799\pi\)
\(662\) −6.23463 −0.242316
\(663\) 0 0
\(664\) −4.08540 −0.158544
\(665\) 0.329124 0.0127629
\(666\) 0 0
\(667\) −45.7143 −1.77007
\(668\) 12.7323 0.492626
\(669\) 0 0
\(670\) −0.816376 −0.0315394
\(671\) 35.7382 1.37966
\(672\) 0 0
\(673\) 1.96712 0.0758269 0.0379134 0.999281i \(-0.487929\pi\)
0.0379134 + 0.999281i \(0.487929\pi\)
\(674\) −2.33054 −0.0897691
\(675\) 0 0
\(676\) −33.1614 −1.27544
\(677\) 20.5194 0.788623 0.394311 0.918977i \(-0.370983\pi\)
0.394311 + 0.918977i \(0.370983\pi\)
\(678\) 0 0
\(679\) −17.8637 −0.685547
\(680\) 11.2597 0.431792
\(681\) 0 0
\(682\) −4.47913 −0.171515
\(683\) −21.4331 −0.820115 −0.410057 0.912060i \(-0.634491\pi\)
−0.410057 + 0.912060i \(0.634491\pi\)
\(684\) 0 0
\(685\) 5.52598 0.211137
\(686\) 6.07702 0.232022
\(687\) 0 0
\(688\) −2.64249 −0.100744
\(689\) −10.8873 −0.414775
\(690\) 0 0
\(691\) 27.7607 1.05607 0.528034 0.849223i \(-0.322929\pi\)
0.528034 + 0.849223i \(0.322929\pi\)
\(692\) 28.0889 1.06778
\(693\) 0 0
\(694\) 5.78026 0.219416
\(695\) −40.2711 −1.52757
\(696\) 0 0
\(697\) −10.8120 −0.409532
\(698\) −5.11136 −0.193468
\(699\) 0 0
\(700\) −2.41568 −0.0913042
\(701\) 0.709747 0.0268068 0.0134034 0.999910i \(-0.495733\pi\)
0.0134034 + 0.999910i \(0.495733\pi\)
\(702\) 0 0
\(703\) −0.214686 −0.00809702
\(704\) 17.3945 0.655580
\(705\) 0 0
\(706\) −5.45201 −0.205189
\(707\) −27.6071 −1.03827
\(708\) 0 0
\(709\) −20.1907 −0.758279 −0.379139 0.925340i \(-0.623780\pi\)
−0.379139 + 0.925340i \(0.623780\pi\)
\(710\) −9.60299 −0.360394
\(711\) 0 0
\(712\) 17.3783 0.651279
\(713\) −19.7497 −0.739631
\(714\) 0 0
\(715\) −35.8256 −1.33980
\(716\) 1.20371 0.0449847
\(717\) 0 0
\(718\) −9.02142 −0.336676
\(719\) 16.7747 0.625592 0.312796 0.949820i \(-0.398734\pi\)
0.312796 + 0.949820i \(0.398734\pi\)
\(720\) 0 0
\(721\) 31.6335 1.17809
\(722\) −6.02703 −0.224303
\(723\) 0 0
\(724\) 26.5036 0.984999
\(725\) −5.33976 −0.198314
\(726\) 0 0
\(727\) −22.2022 −0.823435 −0.411717 0.911312i \(-0.635071\pi\)
−0.411717 + 0.911312i \(0.635071\pi\)
\(728\) 17.3671 0.643666
\(729\) 0 0
\(730\) 6.53862 0.242005
\(731\) 3.32849 0.123109
\(732\) 0 0
\(733\) 3.89468 0.143853 0.0719267 0.997410i \(-0.477085\pi\)
0.0719267 + 0.997410i \(0.477085\pi\)
\(734\) 3.29238 0.121524
\(735\) 0 0
\(736\) −15.2184 −0.560958
\(737\) 3.71174 0.136724
\(738\) 0 0
\(739\) −19.8726 −0.731025 −0.365512 0.930806i \(-0.619106\pi\)
−0.365512 + 0.930806i \(0.619106\pi\)
\(740\) −14.1806 −0.521288
\(741\) 0 0
\(742\) 1.59197 0.0584431
\(743\) 6.21847 0.228133 0.114067 0.993473i \(-0.463612\pi\)
0.114067 + 0.993473i \(0.463612\pi\)
\(744\) 0 0
\(745\) 8.69235 0.318463
\(746\) 4.72501 0.172995
\(747\) 0 0
\(748\) −24.9361 −0.911752
\(749\) −12.6626 −0.462680
\(750\) 0 0
\(751\) −16.1144 −0.588023 −0.294012 0.955802i \(-0.594990\pi\)
−0.294012 + 0.955802i \(0.594990\pi\)
\(752\) −15.4862 −0.564725
\(753\) 0 0
\(754\) 18.6990 0.680979
\(755\) 21.0885 0.767489
\(756\) 0 0
\(757\) −35.5236 −1.29113 −0.645563 0.763707i \(-0.723377\pi\)
−0.645563 + 0.763707i \(0.723377\pi\)
\(758\) 3.68811 0.133958
\(759\) 0 0
\(760\) 0.160083 0.00580683
\(761\) −20.3537 −0.737820 −0.368910 0.929465i \(-0.620269\pi\)
−0.368910 + 0.929465i \(0.620269\pi\)
\(762\) 0 0
\(763\) −0.918861 −0.0332650
\(764\) −16.1316 −0.583619
\(765\) 0 0
\(766\) −9.04739 −0.326896
\(767\) 39.8108 1.43748
\(768\) 0 0
\(769\) −18.6207 −0.671479 −0.335739 0.941955i \(-0.608986\pi\)
−0.335739 + 0.941955i \(0.608986\pi\)
\(770\) 5.23850 0.188782
\(771\) 0 0
\(772\) −25.1682 −0.905823
\(773\) −3.93462 −0.141518 −0.0707592 0.997493i \(-0.522542\pi\)
−0.0707592 + 0.997493i \(0.522542\pi\)
\(774\) 0 0
\(775\) −2.30690 −0.0828664
\(776\) −8.68877 −0.311909
\(777\) 0 0
\(778\) 0.974148 0.0349249
\(779\) −0.153717 −0.00550749
\(780\) 0 0
\(781\) 43.6611 1.56232
\(782\) 5.82723 0.208381
\(783\) 0 0
\(784\) −1.80653 −0.0645189
\(785\) 24.5002 0.874451
\(786\) 0 0
\(787\) 7.37679 0.262954 0.131477 0.991319i \(-0.458028\pi\)
0.131477 + 0.991319i \(0.458028\pi\)
\(788\) 14.3367 0.510725
\(789\) 0 0
\(790\) 1.08437 0.0385802
\(791\) 50.2145 1.78542
\(792\) 0 0
\(793\) −64.4564 −2.28892
\(794\) −3.33448 −0.118336
\(795\) 0 0
\(796\) 4.01407 0.142275
\(797\) 14.9474 0.529464 0.264732 0.964322i \(-0.414717\pi\)
0.264732 + 0.964322i \(0.414717\pi\)
\(798\) 0 0
\(799\) 19.5065 0.690091
\(800\) −1.77762 −0.0628483
\(801\) 0 0
\(802\) 8.40721 0.296869
\(803\) −29.7286 −1.04910
\(804\) 0 0
\(805\) 23.0979 0.814095
\(806\) 8.07843 0.284551
\(807\) 0 0
\(808\) −13.4279 −0.472390
\(809\) −28.6228 −1.00633 −0.503163 0.864192i \(-0.667830\pi\)
−0.503163 + 0.864192i \(0.667830\pi\)
\(810\) 0 0
\(811\) 15.2720 0.536273 0.268136 0.963381i \(-0.413592\pi\)
0.268136 + 0.963381i \(0.413592\pi\)
\(812\) 51.5900 1.81045
\(813\) 0 0
\(814\) −3.41704 −0.119767
\(815\) −29.9811 −1.05019
\(816\) 0 0
\(817\) 0.0473222 0.00165559
\(818\) 8.36097 0.292334
\(819\) 0 0
\(820\) −10.1534 −0.354574
\(821\) −3.11253 −0.108628 −0.0543141 0.998524i \(-0.517297\pi\)
−0.0543141 + 0.998524i \(0.517297\pi\)
\(822\) 0 0
\(823\) 38.5247 1.34289 0.671444 0.741055i \(-0.265674\pi\)
0.671444 + 0.741055i \(0.265674\pi\)
\(824\) 15.3863 0.536006
\(825\) 0 0
\(826\) −5.82122 −0.202546
\(827\) −7.92730 −0.275659 −0.137830 0.990456i \(-0.544013\pi\)
−0.137830 + 0.990456i \(0.544013\pi\)
\(828\) 0 0
\(829\) 31.7471 1.10262 0.551312 0.834299i \(-0.314128\pi\)
0.551312 + 0.834299i \(0.314128\pi\)
\(830\) 2.22253 0.0771453
\(831\) 0 0
\(832\) −31.3722 −1.08764
\(833\) 2.27551 0.0788418
\(834\) 0 0
\(835\) −14.2203 −0.492113
\(836\) −0.354524 −0.0122615
\(837\) 0 0
\(838\) 2.48475 0.0858343
\(839\) 45.2670 1.56279 0.781396 0.624036i \(-0.214508\pi\)
0.781396 + 0.624036i \(0.214508\pi\)
\(840\) 0 0
\(841\) 85.0373 2.93232
\(842\) −10.1058 −0.348268
\(843\) 0 0
\(844\) −1.24687 −0.0429191
\(845\) 37.0369 1.27411
\(846\) 0 0
\(847\) 4.16160 0.142994
\(848\) −6.71932 −0.230742
\(849\) 0 0
\(850\) 0.680662 0.0233465
\(851\) −15.0666 −0.516477
\(852\) 0 0
\(853\) 46.6312 1.59662 0.798312 0.602245i \(-0.205727\pi\)
0.798312 + 0.602245i \(0.205727\pi\)
\(854\) 9.42497 0.322516
\(855\) 0 0
\(856\) −6.15896 −0.210509
\(857\) −6.82673 −0.233197 −0.116598 0.993179i \(-0.537199\pi\)
−0.116598 + 0.993179i \(0.537199\pi\)
\(858\) 0 0
\(859\) 10.9872 0.374878 0.187439 0.982276i \(-0.439981\pi\)
0.187439 + 0.982276i \(0.439981\pi\)
\(860\) 3.12576 0.106588
\(861\) 0 0
\(862\) −10.5695 −0.359998
\(863\) −55.6284 −1.89361 −0.946807 0.321802i \(-0.895711\pi\)
−0.946807 + 0.321802i \(0.895711\pi\)
\(864\) 0 0
\(865\) −31.3716 −1.06667
\(866\) −1.75004 −0.0594688
\(867\) 0 0
\(868\) 22.2881 0.756507
\(869\) −4.93021 −0.167246
\(870\) 0 0
\(871\) −6.69440 −0.226831
\(872\) −0.446926 −0.0151348
\(873\) 0 0
\(874\) 0.0828475 0.00280236
\(875\) 29.6763 1.00324
\(876\) 0 0
\(877\) 24.6736 0.833168 0.416584 0.909097i \(-0.363227\pi\)
0.416584 + 0.909097i \(0.363227\pi\)
\(878\) −1.05019 −0.0354423
\(879\) 0 0
\(880\) −22.1104 −0.745341
\(881\) −17.2629 −0.581601 −0.290800 0.956784i \(-0.593922\pi\)
−0.290800 + 0.956784i \(0.593922\pi\)
\(882\) 0 0
\(883\) −31.4366 −1.05793 −0.528963 0.848645i \(-0.677419\pi\)
−0.528963 + 0.848645i \(0.677419\pi\)
\(884\) 44.9740 1.51264
\(885\) 0 0
\(886\) 5.45263 0.183185
\(887\) 44.2247 1.48492 0.742460 0.669890i \(-0.233659\pi\)
0.742460 + 0.669890i \(0.233659\pi\)
\(888\) 0 0
\(889\) 36.6920 1.23061
\(890\) −9.45412 −0.316903
\(891\) 0 0
\(892\) −42.7560 −1.43158
\(893\) 0.277330 0.00928050
\(894\) 0 0
\(895\) −1.34439 −0.0449379
\(896\) 22.6720 0.757417
\(897\) 0 0
\(898\) −5.58423 −0.186348
\(899\) 49.2668 1.64314
\(900\) 0 0
\(901\) 8.46367 0.281966
\(902\) −2.44663 −0.0814640
\(903\) 0 0
\(904\) 24.4239 0.812328
\(905\) −29.6011 −0.983974
\(906\) 0 0
\(907\) 14.7813 0.490805 0.245402 0.969421i \(-0.421080\pi\)
0.245402 + 0.969421i \(0.421080\pi\)
\(908\) 25.4674 0.845166
\(909\) 0 0
\(910\) −9.44801 −0.313198
\(911\) −38.7546 −1.28400 −0.641998 0.766707i \(-0.721894\pi\)
−0.641998 + 0.766707i \(0.721894\pi\)
\(912\) 0 0
\(913\) −10.1050 −0.334427
\(914\) 5.67113 0.187584
\(915\) 0 0
\(916\) −11.8203 −0.390554
\(917\) −7.77001 −0.256588
\(918\) 0 0
\(919\) 41.7879 1.37846 0.689228 0.724545i \(-0.257950\pi\)
0.689228 + 0.724545i \(0.257950\pi\)
\(920\) 11.2346 0.370395
\(921\) 0 0
\(922\) −1.59500 −0.0525285
\(923\) −78.7459 −2.59195
\(924\) 0 0
\(925\) −1.75989 −0.0578648
\(926\) 5.45876 0.179386
\(927\) 0 0
\(928\) 37.9633 1.24621
\(929\) −26.6246 −0.873525 −0.436763 0.899577i \(-0.643875\pi\)
−0.436763 + 0.899577i \(0.643875\pi\)
\(930\) 0 0
\(931\) 0.0323517 0.00106028
\(932\) 23.5322 0.770824
\(933\) 0 0
\(934\) −11.8843 −0.388865
\(935\) 27.8503 0.910803
\(936\) 0 0
\(937\) −11.2669 −0.368073 −0.184036 0.982919i \(-0.558916\pi\)
−0.184036 + 0.982919i \(0.558916\pi\)
\(938\) 0.978870 0.0319613
\(939\) 0 0
\(940\) 18.3184 0.597481
\(941\) 17.7098 0.577322 0.288661 0.957431i \(-0.406790\pi\)
0.288661 + 0.957431i \(0.406790\pi\)
\(942\) 0 0
\(943\) −10.7879 −0.351301
\(944\) 24.5699 0.799684
\(945\) 0 0
\(946\) 0.753203 0.0244887
\(947\) −59.4221 −1.93096 −0.965479 0.260479i \(-0.916119\pi\)
−0.965479 + 0.260479i \(0.916119\pi\)
\(948\) 0 0
\(949\) 53.6176 1.74050
\(950\) 0.00967718 0.000313969 0
\(951\) 0 0
\(952\) −13.5009 −0.437567
\(953\) 54.5065 1.76564 0.882819 0.469712i \(-0.155642\pi\)
0.882819 + 0.469712i \(0.155642\pi\)
\(954\) 0 0
\(955\) 18.0169 0.583012
\(956\) 18.6744 0.603973
\(957\) 0 0
\(958\) −1.08595 −0.0350854
\(959\) −6.62589 −0.213961
\(960\) 0 0
\(961\) −9.71556 −0.313405
\(962\) 6.16287 0.198699
\(963\) 0 0
\(964\) 32.9291 1.06058
\(965\) 28.1096 0.904880
\(966\) 0 0
\(967\) 28.3395 0.911337 0.455668 0.890150i \(-0.349400\pi\)
0.455668 + 0.890150i \(0.349400\pi\)
\(968\) 2.02416 0.0650591
\(969\) 0 0
\(970\) 4.72685 0.151770
\(971\) −34.6038 −1.11049 −0.555244 0.831687i \(-0.687375\pi\)
−0.555244 + 0.831687i \(0.687375\pi\)
\(972\) 0 0
\(973\) 48.2868 1.54801
\(974\) −1.72388 −0.0552368
\(975\) 0 0
\(976\) −39.7805 −1.27334
\(977\) −13.2704 −0.424557 −0.212278 0.977209i \(-0.568088\pi\)
−0.212278 + 0.977209i \(0.568088\pi\)
\(978\) 0 0
\(979\) 42.9842 1.37378
\(980\) 2.13692 0.0682613
\(981\) 0 0
\(982\) 1.26080 0.0402339
\(983\) 36.0019 1.14828 0.574141 0.818757i \(-0.305336\pi\)
0.574141 + 0.818757i \(0.305336\pi\)
\(984\) 0 0
\(985\) −16.0123 −0.510193
\(986\) −14.5364 −0.462933
\(987\) 0 0
\(988\) 0.639409 0.0203423
\(989\) 3.32107 0.105604
\(990\) 0 0
\(991\) 52.1849 1.65771 0.828854 0.559466i \(-0.188994\pi\)
0.828854 + 0.559466i \(0.188994\pi\)
\(992\) 16.4010 0.520733
\(993\) 0 0
\(994\) 11.5144 0.365215
\(995\) −4.48319 −0.142127
\(996\) 0 0
\(997\) 18.0502 0.571654 0.285827 0.958281i \(-0.407732\pi\)
0.285827 + 0.958281i \(0.407732\pi\)
\(998\) −6.80758 −0.215490
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.42 72
3.2 odd 2 6561.2.a.d.1.31 72
81.4 even 27 81.2.g.a.16.5 144
81.7 even 27 729.2.g.c.352.4 144
81.20 odd 54 243.2.g.a.118.4 144
81.23 odd 54 729.2.g.b.379.5 144
81.31 even 27 729.2.g.d.622.4 144
81.34 even 27 729.2.g.d.109.4 144
81.47 odd 54 729.2.g.a.109.5 144
81.50 odd 54 729.2.g.a.622.5 144
81.58 even 27 729.2.g.c.379.4 144
81.61 even 27 81.2.g.a.76.5 yes 144
81.74 odd 54 729.2.g.b.352.5 144
81.77 odd 54 243.2.g.a.208.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.16.5 144 81.4 even 27
81.2.g.a.76.5 yes 144 81.61 even 27
243.2.g.a.118.4 144 81.20 odd 54
243.2.g.a.208.4 144 81.77 odd 54
729.2.g.a.109.5 144 81.47 odd 54
729.2.g.a.622.5 144 81.50 odd 54
729.2.g.b.352.5 144 81.74 odd 54
729.2.g.b.379.5 144 81.23 odd 54
729.2.g.c.352.4 144 81.7 even 27
729.2.g.c.379.4 144 81.58 even 27
729.2.g.d.109.4 144 81.34 even 27
729.2.g.d.622.4 144 81.31 even 27
6561.2.a.c.1.42 72 1.1 even 1 trivial
6561.2.a.d.1.31 72 3.2 odd 2