Properties

Label 6561.2.a.c.1.41
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.41
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.241745 q^{2} -1.94156 q^{4} -4.24792 q^{5} -1.15215 q^{7} -0.952852 q^{8} -1.02691 q^{10} +1.97459 q^{11} -4.00518 q^{13} -0.278527 q^{14} +3.65277 q^{16} -4.21350 q^{17} +3.02364 q^{19} +8.24758 q^{20} +0.477346 q^{22} -1.21995 q^{23} +13.0448 q^{25} -0.968232 q^{26} +2.23697 q^{28} -0.596851 q^{29} -1.94546 q^{31} +2.78874 q^{32} -1.01859 q^{34} +4.89425 q^{35} +5.27123 q^{37} +0.730948 q^{38} +4.04763 q^{40} +5.72850 q^{41} +7.29895 q^{43} -3.83378 q^{44} -0.294917 q^{46} -0.436661 q^{47} -5.67254 q^{49} +3.15351 q^{50} +7.77630 q^{52} +4.47389 q^{53} -8.38788 q^{55} +1.09783 q^{56} -0.144286 q^{58} +8.33298 q^{59} -10.5469 q^{61} -0.470306 q^{62} -6.63138 q^{64} +17.0137 q^{65} +7.32577 q^{67} +8.18075 q^{68} +1.18316 q^{70} -4.78942 q^{71} +7.20843 q^{73} +1.27429 q^{74} -5.87057 q^{76} -2.27503 q^{77} +12.6029 q^{79} -15.5167 q^{80} +1.38483 q^{82} -11.5763 q^{83} +17.8986 q^{85} +1.76448 q^{86} -1.88149 q^{88} +11.0101 q^{89} +4.61458 q^{91} +2.36861 q^{92} -0.105560 q^{94} -12.8442 q^{95} +6.28775 q^{97} -1.37131 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.241745 0.170939 0.0854697 0.996341i \(-0.472761\pi\)
0.0854697 + 0.996341i \(0.472761\pi\)
\(3\) 0 0
\(4\) −1.94156 −0.970780
\(5\) −4.24792 −1.89973 −0.949863 0.312666i \(-0.898778\pi\)
−0.949863 + 0.312666i \(0.898778\pi\)
\(6\) 0 0
\(7\) −1.15215 −0.435473 −0.217736 0.976008i \(-0.569867\pi\)
−0.217736 + 0.976008i \(0.569867\pi\)
\(8\) −0.952852 −0.336884
\(9\) 0 0
\(10\) −1.02691 −0.324738
\(11\) 1.97459 0.595360 0.297680 0.954666i \(-0.403787\pi\)
0.297680 + 0.954666i \(0.403787\pi\)
\(12\) 0 0
\(13\) −4.00518 −1.11084 −0.555419 0.831571i \(-0.687442\pi\)
−0.555419 + 0.831571i \(0.687442\pi\)
\(14\) −0.278527 −0.0744395
\(15\) 0 0
\(16\) 3.65277 0.913193
\(17\) −4.21350 −1.02192 −0.510961 0.859604i \(-0.670711\pi\)
−0.510961 + 0.859604i \(0.670711\pi\)
\(18\) 0 0
\(19\) 3.02364 0.693669 0.346835 0.937926i \(-0.387256\pi\)
0.346835 + 0.937926i \(0.387256\pi\)
\(20\) 8.24758 1.84422
\(21\) 0 0
\(22\) 0.477346 0.101771
\(23\) −1.21995 −0.254378 −0.127189 0.991879i \(-0.540595\pi\)
−0.127189 + 0.991879i \(0.540595\pi\)
\(24\) 0 0
\(25\) 13.0448 2.60896
\(26\) −0.968232 −0.189886
\(27\) 0 0
\(28\) 2.23697 0.422748
\(29\) −0.596851 −0.110832 −0.0554162 0.998463i \(-0.517649\pi\)
−0.0554162 + 0.998463i \(0.517649\pi\)
\(30\) 0 0
\(31\) −1.94546 −0.349416 −0.174708 0.984620i \(-0.555898\pi\)
−0.174708 + 0.984620i \(0.555898\pi\)
\(32\) 2.78874 0.492985
\(33\) 0 0
\(34\) −1.01859 −0.174687
\(35\) 4.89425 0.827279
\(36\) 0 0
\(37\) 5.27123 0.866585 0.433292 0.901253i \(-0.357352\pi\)
0.433292 + 0.901253i \(0.357352\pi\)
\(38\) 0.730948 0.118575
\(39\) 0 0
\(40\) 4.04763 0.639987
\(41\) 5.72850 0.894641 0.447321 0.894374i \(-0.352378\pi\)
0.447321 + 0.894374i \(0.352378\pi\)
\(42\) 0 0
\(43\) 7.29895 1.11308 0.556540 0.830821i \(-0.312129\pi\)
0.556540 + 0.830821i \(0.312129\pi\)
\(44\) −3.83378 −0.577964
\(45\) 0 0
\(46\) −0.294917 −0.0434832
\(47\) −0.436661 −0.0636935 −0.0318468 0.999493i \(-0.510139\pi\)
−0.0318468 + 0.999493i \(0.510139\pi\)
\(48\) 0 0
\(49\) −5.67254 −0.810363
\(50\) 3.15351 0.445974
\(51\) 0 0
\(52\) 7.77630 1.07838
\(53\) 4.47389 0.614536 0.307268 0.951623i \(-0.400585\pi\)
0.307268 + 0.951623i \(0.400585\pi\)
\(54\) 0 0
\(55\) −8.38788 −1.13102
\(56\) 1.09783 0.146704
\(57\) 0 0
\(58\) −0.144286 −0.0189456
\(59\) 8.33298 1.08486 0.542431 0.840100i \(-0.317504\pi\)
0.542431 + 0.840100i \(0.317504\pi\)
\(60\) 0 0
\(61\) −10.5469 −1.35039 −0.675195 0.737639i \(-0.735941\pi\)
−0.675195 + 0.737639i \(0.735941\pi\)
\(62\) −0.470306 −0.0597289
\(63\) 0 0
\(64\) −6.63138 −0.828923
\(65\) 17.0137 2.11029
\(66\) 0 0
\(67\) 7.32577 0.894985 0.447493 0.894288i \(-0.352317\pi\)
0.447493 + 0.894288i \(0.352317\pi\)
\(68\) 8.18075 0.992062
\(69\) 0 0
\(70\) 1.18316 0.141415
\(71\) −4.78942 −0.568400 −0.284200 0.958765i \(-0.591728\pi\)
−0.284200 + 0.958765i \(0.591728\pi\)
\(72\) 0 0
\(73\) 7.20843 0.843683 0.421841 0.906670i \(-0.361384\pi\)
0.421841 + 0.906670i \(0.361384\pi\)
\(74\) 1.27429 0.148133
\(75\) 0 0
\(76\) −5.87057 −0.673400
\(77\) −2.27503 −0.259263
\(78\) 0 0
\(79\) 12.6029 1.41793 0.708967 0.705241i \(-0.249161\pi\)
0.708967 + 0.705241i \(0.249161\pi\)
\(80\) −15.5167 −1.73482
\(81\) 0 0
\(82\) 1.38483 0.152929
\(83\) −11.5763 −1.27066 −0.635332 0.772239i \(-0.719137\pi\)
−0.635332 + 0.772239i \(0.719137\pi\)
\(84\) 0 0
\(85\) 17.8986 1.94137
\(86\) 1.76448 0.190269
\(87\) 0 0
\(88\) −1.88149 −0.200567
\(89\) 11.0101 1.16706 0.583532 0.812090i \(-0.301670\pi\)
0.583532 + 0.812090i \(0.301670\pi\)
\(90\) 0 0
\(91\) 4.61458 0.483740
\(92\) 2.36861 0.246945
\(93\) 0 0
\(94\) −0.105560 −0.0108877
\(95\) −12.8442 −1.31778
\(96\) 0 0
\(97\) 6.28775 0.638424 0.319212 0.947683i \(-0.396582\pi\)
0.319212 + 0.947683i \(0.396582\pi\)
\(98\) −1.37131 −0.138523
\(99\) 0 0
\(100\) −25.3272 −2.53272
\(101\) −4.04781 −0.402772 −0.201386 0.979512i \(-0.564545\pi\)
−0.201386 + 0.979512i \(0.564545\pi\)
\(102\) 0 0
\(103\) 8.28479 0.816325 0.408162 0.912909i \(-0.366170\pi\)
0.408162 + 0.912909i \(0.366170\pi\)
\(104\) 3.81634 0.374223
\(105\) 0 0
\(106\) 1.08154 0.105048
\(107\) −15.9074 −1.53782 −0.768912 0.639355i \(-0.779202\pi\)
−0.768912 + 0.639355i \(0.779202\pi\)
\(108\) 0 0
\(109\) −3.62111 −0.346840 −0.173420 0.984848i \(-0.555482\pi\)
−0.173420 + 0.984848i \(0.555482\pi\)
\(110\) −2.02773 −0.193336
\(111\) 0 0
\(112\) −4.20855 −0.397671
\(113\) −9.49512 −0.893226 −0.446613 0.894727i \(-0.647370\pi\)
−0.446613 + 0.894727i \(0.647370\pi\)
\(114\) 0 0
\(115\) 5.18226 0.483248
\(116\) 1.15882 0.107594
\(117\) 0 0
\(118\) 2.01446 0.185446
\(119\) 4.85459 0.445020
\(120\) 0 0
\(121\) −7.10101 −0.645546
\(122\) −2.54966 −0.230835
\(123\) 0 0
\(124\) 3.77723 0.339206
\(125\) −34.1736 −3.05658
\(126\) 0 0
\(127\) 11.1476 0.989187 0.494594 0.869124i \(-0.335317\pi\)
0.494594 + 0.869124i \(0.335317\pi\)
\(128\) −7.18059 −0.634680
\(129\) 0 0
\(130\) 4.11297 0.360731
\(131\) 12.1313 1.05991 0.529957 0.848024i \(-0.322208\pi\)
0.529957 + 0.848024i \(0.322208\pi\)
\(132\) 0 0
\(133\) −3.48369 −0.302074
\(134\) 1.77097 0.152988
\(135\) 0 0
\(136\) 4.01484 0.344269
\(137\) −0.299217 −0.0255639 −0.0127819 0.999918i \(-0.504069\pi\)
−0.0127819 + 0.999918i \(0.504069\pi\)
\(138\) 0 0
\(139\) −5.60959 −0.475799 −0.237899 0.971290i \(-0.576459\pi\)
−0.237899 + 0.971290i \(0.576459\pi\)
\(140\) −9.50247 −0.803106
\(141\) 0 0
\(142\) −1.15782 −0.0971620
\(143\) −7.90858 −0.661349
\(144\) 0 0
\(145\) 2.53537 0.210551
\(146\) 1.74260 0.144219
\(147\) 0 0
\(148\) −10.2344 −0.841263
\(149\) −13.6263 −1.11631 −0.558154 0.829737i \(-0.688490\pi\)
−0.558154 + 0.829737i \(0.688490\pi\)
\(150\) 0 0
\(151\) −9.45329 −0.769298 −0.384649 0.923063i \(-0.625678\pi\)
−0.384649 + 0.923063i \(0.625678\pi\)
\(152\) −2.88108 −0.233686
\(153\) 0 0
\(154\) −0.549976 −0.0443183
\(155\) 8.26417 0.663794
\(156\) 0 0
\(157\) −9.12227 −0.728036 −0.364018 0.931392i \(-0.618595\pi\)
−0.364018 + 0.931392i \(0.618595\pi\)
\(158\) 3.04668 0.242381
\(159\) 0 0
\(160\) −11.8463 −0.936536
\(161\) 1.40557 0.110775
\(162\) 0 0
\(163\) 7.94158 0.622033 0.311016 0.950405i \(-0.399331\pi\)
0.311016 + 0.950405i \(0.399331\pi\)
\(164\) −11.1222 −0.868500
\(165\) 0 0
\(166\) −2.79851 −0.217207
\(167\) −4.44493 −0.343959 −0.171980 0.985101i \(-0.555016\pi\)
−0.171980 + 0.985101i \(0.555016\pi\)
\(168\) 0 0
\(169\) 3.04148 0.233960
\(170\) 4.32689 0.331857
\(171\) 0 0
\(172\) −14.1713 −1.08055
\(173\) 3.11848 0.237094 0.118547 0.992948i \(-0.462176\pi\)
0.118547 + 0.992948i \(0.462176\pi\)
\(174\) 0 0
\(175\) −15.0296 −1.13613
\(176\) 7.21271 0.543679
\(177\) 0 0
\(178\) 2.66163 0.199497
\(179\) −14.2357 −1.06403 −0.532013 0.846736i \(-0.678564\pi\)
−0.532013 + 0.846736i \(0.678564\pi\)
\(180\) 0 0
\(181\) 15.8923 1.18126 0.590632 0.806941i \(-0.298879\pi\)
0.590632 + 0.806941i \(0.298879\pi\)
\(182\) 1.11555 0.0826901
\(183\) 0 0
\(184\) 1.16243 0.0856958
\(185\) −22.3917 −1.64627
\(186\) 0 0
\(187\) −8.31991 −0.608412
\(188\) 0.847803 0.0618324
\(189\) 0 0
\(190\) −3.10501 −0.225261
\(191\) 20.3075 1.46940 0.734700 0.678392i \(-0.237323\pi\)
0.734700 + 0.678392i \(0.237323\pi\)
\(192\) 0 0
\(193\) −2.67245 −0.192367 −0.0961836 0.995364i \(-0.530664\pi\)
−0.0961836 + 0.995364i \(0.530664\pi\)
\(194\) 1.52003 0.109132
\(195\) 0 0
\(196\) 11.0136 0.786684
\(197\) 16.7217 1.19137 0.595685 0.803218i \(-0.296881\pi\)
0.595685 + 0.803218i \(0.296881\pi\)
\(198\) 0 0
\(199\) 1.95609 0.138663 0.0693317 0.997594i \(-0.477913\pi\)
0.0693317 + 0.997594i \(0.477913\pi\)
\(200\) −12.4298 −0.878916
\(201\) 0 0
\(202\) −0.978536 −0.0688496
\(203\) 0.687664 0.0482645
\(204\) 0 0
\(205\) −24.3342 −1.69957
\(206\) 2.00281 0.139542
\(207\) 0 0
\(208\) −14.6300 −1.01441
\(209\) 5.97043 0.412983
\(210\) 0 0
\(211\) 10.3643 0.713509 0.356754 0.934198i \(-0.383883\pi\)
0.356754 + 0.934198i \(0.383883\pi\)
\(212\) −8.68632 −0.596579
\(213\) 0 0
\(214\) −3.84553 −0.262875
\(215\) −31.0053 −2.11455
\(216\) 0 0
\(217\) 2.24147 0.152161
\(218\) −0.875385 −0.0592886
\(219\) 0 0
\(220\) 16.2856 1.09797
\(221\) 16.8758 1.13519
\(222\) 0 0
\(223\) 7.32809 0.490725 0.245363 0.969431i \(-0.421093\pi\)
0.245363 + 0.969431i \(0.421093\pi\)
\(224\) −3.21306 −0.214681
\(225\) 0 0
\(226\) −2.29540 −0.152688
\(227\) −23.2777 −1.54500 −0.772499 0.635016i \(-0.780993\pi\)
−0.772499 + 0.635016i \(0.780993\pi\)
\(228\) 0 0
\(229\) −0.0499144 −0.00329844 −0.00164922 0.999999i \(-0.500525\pi\)
−0.00164922 + 0.999999i \(0.500525\pi\)
\(230\) 1.25278 0.0826061
\(231\) 0 0
\(232\) 0.568711 0.0373377
\(233\) −22.4092 −1.46807 −0.734037 0.679109i \(-0.762366\pi\)
−0.734037 + 0.679109i \(0.762366\pi\)
\(234\) 0 0
\(235\) 1.85490 0.121000
\(236\) −16.1790 −1.05316
\(237\) 0 0
\(238\) 1.17357 0.0760714
\(239\) −20.5331 −1.32817 −0.664087 0.747655i \(-0.731180\pi\)
−0.664087 + 0.747655i \(0.731180\pi\)
\(240\) 0 0
\(241\) −28.7869 −1.85433 −0.927165 0.374654i \(-0.877762\pi\)
−0.927165 + 0.374654i \(0.877762\pi\)
\(242\) −1.71663 −0.110349
\(243\) 0 0
\(244\) 20.4774 1.31093
\(245\) 24.0965 1.53947
\(246\) 0 0
\(247\) −12.1102 −0.770554
\(248\) 1.85374 0.117712
\(249\) 0 0
\(250\) −8.26130 −0.522490
\(251\) −10.1930 −0.643373 −0.321687 0.946846i \(-0.604250\pi\)
−0.321687 + 0.946846i \(0.604250\pi\)
\(252\) 0 0
\(253\) −2.40890 −0.151446
\(254\) 2.69487 0.169091
\(255\) 0 0
\(256\) 11.5269 0.720431
\(257\) 6.06049 0.378043 0.189021 0.981973i \(-0.439468\pi\)
0.189021 + 0.981973i \(0.439468\pi\)
\(258\) 0 0
\(259\) −6.07326 −0.377374
\(260\) −33.0331 −2.04862
\(261\) 0 0
\(262\) 2.93267 0.181181
\(263\) 13.4179 0.827383 0.413691 0.910417i \(-0.364239\pi\)
0.413691 + 0.910417i \(0.364239\pi\)
\(264\) 0 0
\(265\) −19.0047 −1.16745
\(266\) −0.842164 −0.0516364
\(267\) 0 0
\(268\) −14.2234 −0.868834
\(269\) −2.88240 −0.175743 −0.0878715 0.996132i \(-0.528006\pi\)
−0.0878715 + 0.996132i \(0.528006\pi\)
\(270\) 0 0
\(271\) 3.21146 0.195082 0.0975410 0.995232i \(-0.468902\pi\)
0.0975410 + 0.995232i \(0.468902\pi\)
\(272\) −15.3909 −0.933213
\(273\) 0 0
\(274\) −0.0723343 −0.00436987
\(275\) 25.7581 1.55327
\(276\) 0 0
\(277\) −3.40628 −0.204664 −0.102332 0.994750i \(-0.532630\pi\)
−0.102332 + 0.994750i \(0.532630\pi\)
\(278\) −1.35609 −0.0813328
\(279\) 0 0
\(280\) −4.66349 −0.278697
\(281\) −11.4849 −0.685130 −0.342565 0.939494i \(-0.611296\pi\)
−0.342565 + 0.939494i \(0.611296\pi\)
\(282\) 0 0
\(283\) 25.3416 1.50640 0.753202 0.657790i \(-0.228508\pi\)
0.753202 + 0.657790i \(0.228508\pi\)
\(284\) 9.29895 0.551791
\(285\) 0 0
\(286\) −1.91186 −0.113051
\(287\) −6.60011 −0.389592
\(288\) 0 0
\(289\) 0.753549 0.0443264
\(290\) 0.612914 0.0359915
\(291\) 0 0
\(292\) −13.9956 −0.819030
\(293\) −4.01614 −0.234625 −0.117313 0.993095i \(-0.537428\pi\)
−0.117313 + 0.993095i \(0.537428\pi\)
\(294\) 0 0
\(295\) −35.3978 −2.06094
\(296\) −5.02270 −0.291938
\(297\) 0 0
\(298\) −3.29408 −0.190821
\(299\) 4.88613 0.282572
\(300\) 0 0
\(301\) −8.40950 −0.484716
\(302\) −2.28528 −0.131503
\(303\) 0 0
\(304\) 11.0446 0.633454
\(305\) 44.8023 2.56537
\(306\) 0 0
\(307\) 19.8796 1.13459 0.567295 0.823514i \(-0.307990\pi\)
0.567295 + 0.823514i \(0.307990\pi\)
\(308\) 4.41710 0.251687
\(309\) 0 0
\(310\) 1.99782 0.113469
\(311\) 1.54419 0.0875629 0.0437814 0.999041i \(-0.486059\pi\)
0.0437814 + 0.999041i \(0.486059\pi\)
\(312\) 0 0
\(313\) −17.4992 −0.989111 −0.494555 0.869146i \(-0.664669\pi\)
−0.494555 + 0.869146i \(0.664669\pi\)
\(314\) −2.20526 −0.124450
\(315\) 0 0
\(316\) −24.4692 −1.37650
\(317\) 1.96450 0.110337 0.0551685 0.998477i \(-0.482430\pi\)
0.0551685 + 0.998477i \(0.482430\pi\)
\(318\) 0 0
\(319\) −1.17853 −0.0659853
\(320\) 28.1696 1.57473
\(321\) 0 0
\(322\) 0.339790 0.0189357
\(323\) −12.7401 −0.708877
\(324\) 0 0
\(325\) −52.2468 −2.89813
\(326\) 1.91984 0.106330
\(327\) 0 0
\(328\) −5.45841 −0.301390
\(329\) 0.503100 0.0277368
\(330\) 0 0
\(331\) 34.4822 1.89532 0.947658 0.319288i \(-0.103444\pi\)
0.947658 + 0.319288i \(0.103444\pi\)
\(332\) 22.4761 1.23354
\(333\) 0 0
\(334\) −1.07454 −0.0587961
\(335\) −31.1193 −1.70023
\(336\) 0 0
\(337\) 16.1761 0.881167 0.440584 0.897712i \(-0.354772\pi\)
0.440584 + 0.897712i \(0.354772\pi\)
\(338\) 0.735263 0.0399930
\(339\) 0 0
\(340\) −34.7512 −1.88465
\(341\) −3.84149 −0.208028
\(342\) 0 0
\(343\) 14.6007 0.788364
\(344\) −6.95481 −0.374978
\(345\) 0 0
\(346\) 0.753876 0.0405286
\(347\) 31.8148 1.70791 0.853954 0.520348i \(-0.174198\pi\)
0.853954 + 0.520348i \(0.174198\pi\)
\(348\) 0 0
\(349\) −17.3353 −0.927937 −0.463969 0.885852i \(-0.653575\pi\)
−0.463969 + 0.885852i \(0.653575\pi\)
\(350\) −3.63333 −0.194210
\(351\) 0 0
\(352\) 5.50661 0.293503
\(353\) −3.39981 −0.180954 −0.0904768 0.995899i \(-0.528839\pi\)
−0.0904768 + 0.995899i \(0.528839\pi\)
\(354\) 0 0
\(355\) 20.3451 1.07980
\(356\) −21.3767 −1.13296
\(357\) 0 0
\(358\) −3.44141 −0.181884
\(359\) −10.1468 −0.535528 −0.267764 0.963484i \(-0.586285\pi\)
−0.267764 + 0.963484i \(0.586285\pi\)
\(360\) 0 0
\(361\) −9.85763 −0.518823
\(362\) 3.84188 0.201924
\(363\) 0 0
\(364\) −8.95948 −0.469605
\(365\) −30.6208 −1.60277
\(366\) 0 0
\(367\) 14.8640 0.775893 0.387946 0.921682i \(-0.373185\pi\)
0.387946 + 0.921682i \(0.373185\pi\)
\(368\) −4.45621 −0.232296
\(369\) 0 0
\(370\) −5.41309 −0.281413
\(371\) −5.15461 −0.267614
\(372\) 0 0
\(373\) −21.0809 −1.09153 −0.545763 0.837940i \(-0.683760\pi\)
−0.545763 + 0.837940i \(0.683760\pi\)
\(374\) −2.01130 −0.104002
\(375\) 0 0
\(376\) 0.416073 0.0214573
\(377\) 2.39050 0.123117
\(378\) 0 0
\(379\) 6.94925 0.356959 0.178479 0.983944i \(-0.442882\pi\)
0.178479 + 0.983944i \(0.442882\pi\)
\(380\) 24.9377 1.27928
\(381\) 0 0
\(382\) 4.90924 0.251179
\(383\) −35.3323 −1.80540 −0.902699 0.430273i \(-0.858417\pi\)
−0.902699 + 0.430273i \(0.858417\pi\)
\(384\) 0 0
\(385\) 9.66412 0.492529
\(386\) −0.646051 −0.0328831
\(387\) 0 0
\(388\) −12.2080 −0.619769
\(389\) −25.7236 −1.30424 −0.652119 0.758116i \(-0.726120\pi\)
−0.652119 + 0.758116i \(0.726120\pi\)
\(390\) 0 0
\(391\) 5.14027 0.259954
\(392\) 5.40509 0.272998
\(393\) 0 0
\(394\) 4.04238 0.203652
\(395\) −53.5360 −2.69369
\(396\) 0 0
\(397\) 18.5982 0.933416 0.466708 0.884411i \(-0.345440\pi\)
0.466708 + 0.884411i \(0.345440\pi\)
\(398\) 0.472874 0.0237030
\(399\) 0 0
\(400\) 47.6497 2.38248
\(401\) −4.62371 −0.230897 −0.115448 0.993313i \(-0.536831\pi\)
−0.115448 + 0.993313i \(0.536831\pi\)
\(402\) 0 0
\(403\) 7.79194 0.388144
\(404\) 7.85906 0.391003
\(405\) 0 0
\(406\) 0.166239 0.00825031
\(407\) 10.4085 0.515930
\(408\) 0 0
\(409\) −10.9390 −0.540900 −0.270450 0.962734i \(-0.587173\pi\)
−0.270450 + 0.962734i \(0.587173\pi\)
\(410\) −5.88266 −0.290524
\(411\) 0 0
\(412\) −16.0854 −0.792472
\(413\) −9.60087 −0.472428
\(414\) 0 0
\(415\) 49.1752 2.41392
\(416\) −11.1694 −0.547626
\(417\) 0 0
\(418\) 1.44332 0.0705951
\(419\) −33.5412 −1.63859 −0.819297 0.573369i \(-0.805636\pi\)
−0.819297 + 0.573369i \(0.805636\pi\)
\(420\) 0 0
\(421\) 1.65864 0.0808374 0.0404187 0.999183i \(-0.487131\pi\)
0.0404187 + 0.999183i \(0.487131\pi\)
\(422\) 2.50552 0.121967
\(423\) 0 0
\(424\) −4.26295 −0.207027
\(425\) −54.9642 −2.66616
\(426\) 0 0
\(427\) 12.1516 0.588058
\(428\) 30.8851 1.49289
\(429\) 0 0
\(430\) −7.49538 −0.361459
\(431\) −15.1085 −0.727751 −0.363876 0.931448i \(-0.618547\pi\)
−0.363876 + 0.931448i \(0.618547\pi\)
\(432\) 0 0
\(433\) 4.93309 0.237069 0.118535 0.992950i \(-0.462180\pi\)
0.118535 + 0.992950i \(0.462180\pi\)
\(434\) 0.541864 0.0260103
\(435\) 0 0
\(436\) 7.03061 0.336705
\(437\) −3.68869 −0.176454
\(438\) 0 0
\(439\) −20.1806 −0.963169 −0.481584 0.876400i \(-0.659939\pi\)
−0.481584 + 0.876400i \(0.659939\pi\)
\(440\) 7.99240 0.381023
\(441\) 0 0
\(442\) 4.07964 0.194049
\(443\) 28.1863 1.33917 0.669586 0.742734i \(-0.266471\pi\)
0.669586 + 0.742734i \(0.266471\pi\)
\(444\) 0 0
\(445\) −46.7698 −2.21710
\(446\) 1.77153 0.0838843
\(447\) 0 0
\(448\) 7.64036 0.360973
\(449\) 0.434117 0.0204873 0.0102436 0.999948i \(-0.496739\pi\)
0.0102436 + 0.999948i \(0.496739\pi\)
\(450\) 0 0
\(451\) 11.3114 0.532634
\(452\) 18.4353 0.867126
\(453\) 0 0
\(454\) −5.62727 −0.264101
\(455\) −19.6024 −0.918973
\(456\) 0 0
\(457\) 27.1019 1.26778 0.633888 0.773425i \(-0.281458\pi\)
0.633888 + 0.773425i \(0.281458\pi\)
\(458\) −0.0120666 −0.000563833 0
\(459\) 0 0
\(460\) −10.0617 −0.469127
\(461\) −42.7262 −1.98996 −0.994980 0.100077i \(-0.968091\pi\)
−0.994980 + 0.100077i \(0.968091\pi\)
\(462\) 0 0
\(463\) −30.3416 −1.41009 −0.705047 0.709161i \(-0.749074\pi\)
−0.705047 + 0.709161i \(0.749074\pi\)
\(464\) −2.18016 −0.101211
\(465\) 0 0
\(466\) −5.41730 −0.250952
\(467\) 13.4560 0.622672 0.311336 0.950300i \(-0.399224\pi\)
0.311336 + 0.950300i \(0.399224\pi\)
\(468\) 0 0
\(469\) −8.44041 −0.389742
\(470\) 0.448412 0.0206837
\(471\) 0 0
\(472\) −7.94010 −0.365473
\(473\) 14.4124 0.662683
\(474\) 0 0
\(475\) 39.4427 1.80976
\(476\) −9.42548 −0.432016
\(477\) 0 0
\(478\) −4.96377 −0.227037
\(479\) −25.9765 −1.18689 −0.593447 0.804873i \(-0.702234\pi\)
−0.593447 + 0.804873i \(0.702234\pi\)
\(480\) 0 0
\(481\) −21.1122 −0.962635
\(482\) −6.95909 −0.316978
\(483\) 0 0
\(484\) 13.7870 0.626683
\(485\) −26.7098 −1.21283
\(486\) 0 0
\(487\) 2.70578 0.122611 0.0613053 0.998119i \(-0.480474\pi\)
0.0613053 + 0.998119i \(0.480474\pi\)
\(488\) 10.0496 0.454925
\(489\) 0 0
\(490\) 5.82520 0.263156
\(491\) 39.8076 1.79649 0.898246 0.439493i \(-0.144842\pi\)
0.898246 + 0.439493i \(0.144842\pi\)
\(492\) 0 0
\(493\) 2.51483 0.113262
\(494\) −2.92758 −0.131718
\(495\) 0 0
\(496\) −7.10633 −0.319084
\(497\) 5.51815 0.247523
\(498\) 0 0
\(499\) 2.48537 0.111260 0.0556302 0.998451i \(-0.482283\pi\)
0.0556302 + 0.998451i \(0.482283\pi\)
\(500\) 66.3501 2.96727
\(501\) 0 0
\(502\) −2.46409 −0.109978
\(503\) −14.7845 −0.659206 −0.329603 0.944120i \(-0.606915\pi\)
−0.329603 + 0.944120i \(0.606915\pi\)
\(504\) 0 0
\(505\) 17.1947 0.765156
\(506\) −0.582340 −0.0258882
\(507\) 0 0
\(508\) −21.6437 −0.960283
\(509\) −24.0089 −1.06418 −0.532089 0.846689i \(-0.678593\pi\)
−0.532089 + 0.846689i \(0.678593\pi\)
\(510\) 0 0
\(511\) −8.30521 −0.367401
\(512\) 17.1477 0.757830
\(513\) 0 0
\(514\) 1.46509 0.0646224
\(515\) −35.1931 −1.55079
\(516\) 0 0
\(517\) −0.862224 −0.0379206
\(518\) −1.46818 −0.0645081
\(519\) 0 0
\(520\) −16.2115 −0.710922
\(521\) −19.7851 −0.866801 −0.433400 0.901201i \(-0.642686\pi\)
−0.433400 + 0.901201i \(0.642686\pi\)
\(522\) 0 0
\(523\) −34.3703 −1.50291 −0.751455 0.659785i \(-0.770648\pi\)
−0.751455 + 0.659785i \(0.770648\pi\)
\(524\) −23.5536 −1.02894
\(525\) 0 0
\(526\) 3.24371 0.141432
\(527\) 8.19720 0.357076
\(528\) 0 0
\(529\) −21.5117 −0.935292
\(530\) −4.59429 −0.199563
\(531\) 0 0
\(532\) 6.76379 0.293247
\(533\) −22.9437 −0.993801
\(534\) 0 0
\(535\) 67.5732 2.92144
\(536\) −6.98037 −0.301506
\(537\) 0 0
\(538\) −0.696805 −0.0300414
\(539\) −11.2009 −0.482458
\(540\) 0 0
\(541\) 36.0540 1.55008 0.775042 0.631909i \(-0.217729\pi\)
0.775042 + 0.631909i \(0.217729\pi\)
\(542\) 0.776353 0.0333472
\(543\) 0 0
\(544\) −11.7504 −0.503792
\(545\) 15.3822 0.658900
\(546\) 0 0
\(547\) 8.64015 0.369426 0.184713 0.982793i \(-0.440864\pi\)
0.184713 + 0.982793i \(0.440864\pi\)
\(548\) 0.580948 0.0248169
\(549\) 0 0
\(550\) 6.22688 0.265515
\(551\) −1.80466 −0.0768811
\(552\) 0 0
\(553\) −14.5204 −0.617472
\(554\) −0.823451 −0.0349851
\(555\) 0 0
\(556\) 10.8913 0.461896
\(557\) 21.3648 0.905255 0.452628 0.891700i \(-0.350487\pi\)
0.452628 + 0.891700i \(0.350487\pi\)
\(558\) 0 0
\(559\) −29.2336 −1.23645
\(560\) 17.8776 0.755465
\(561\) 0 0
\(562\) −2.77641 −0.117116
\(563\) 27.6618 1.16581 0.582903 0.812541i \(-0.301917\pi\)
0.582903 + 0.812541i \(0.301917\pi\)
\(564\) 0 0
\(565\) 40.3345 1.69689
\(566\) 6.12621 0.257504
\(567\) 0 0
\(568\) 4.56361 0.191485
\(569\) 22.1064 0.926750 0.463375 0.886162i \(-0.346638\pi\)
0.463375 + 0.886162i \(0.346638\pi\)
\(570\) 0 0
\(571\) 2.12819 0.0890622 0.0445311 0.999008i \(-0.485821\pi\)
0.0445311 + 0.999008i \(0.485821\pi\)
\(572\) 15.3550 0.642024
\(573\) 0 0
\(574\) −1.59554 −0.0665966
\(575\) −15.9140 −0.663661
\(576\) 0 0
\(577\) −20.7499 −0.863832 −0.431916 0.901914i \(-0.642162\pi\)
−0.431916 + 0.901914i \(0.642162\pi\)
\(578\) 0.182167 0.00757713
\(579\) 0 0
\(580\) −4.92258 −0.204399
\(581\) 13.3377 0.553340
\(582\) 0 0
\(583\) 8.83408 0.365870
\(584\) −6.86856 −0.284223
\(585\) 0 0
\(586\) −0.970881 −0.0401067
\(587\) 11.7448 0.484759 0.242379 0.970182i \(-0.422072\pi\)
0.242379 + 0.970182i \(0.422072\pi\)
\(588\) 0 0
\(589\) −5.88237 −0.242379
\(590\) −8.55724 −0.352296
\(591\) 0 0
\(592\) 19.2546 0.791359
\(593\) −21.7680 −0.893904 −0.446952 0.894558i \(-0.647491\pi\)
−0.446952 + 0.894558i \(0.647491\pi\)
\(594\) 0 0
\(595\) −20.6219 −0.845415
\(596\) 26.4562 1.08369
\(597\) 0 0
\(598\) 1.18120 0.0483027
\(599\) 10.2440 0.418559 0.209279 0.977856i \(-0.432888\pi\)
0.209279 + 0.977856i \(0.432888\pi\)
\(600\) 0 0
\(601\) 2.82256 0.115135 0.0575673 0.998342i \(-0.481666\pi\)
0.0575673 + 0.998342i \(0.481666\pi\)
\(602\) −2.03295 −0.0828570
\(603\) 0 0
\(604\) 18.3541 0.746819
\(605\) 30.1645 1.22636
\(606\) 0 0
\(607\) 13.6040 0.552169 0.276084 0.961133i \(-0.410963\pi\)
0.276084 + 0.961133i \(0.410963\pi\)
\(608\) 8.43214 0.341968
\(609\) 0 0
\(610\) 10.8307 0.438523
\(611\) 1.74891 0.0707532
\(612\) 0 0
\(613\) −16.2937 −0.658098 −0.329049 0.944313i \(-0.606728\pi\)
−0.329049 + 0.944313i \(0.606728\pi\)
\(614\) 4.80580 0.193946
\(615\) 0 0
\(616\) 2.16776 0.0873416
\(617\) −7.76105 −0.312448 −0.156224 0.987722i \(-0.549932\pi\)
−0.156224 + 0.987722i \(0.549932\pi\)
\(618\) 0 0
\(619\) 43.8234 1.76141 0.880705 0.473666i \(-0.157069\pi\)
0.880705 + 0.473666i \(0.157069\pi\)
\(620\) −16.0454 −0.644398
\(621\) 0 0
\(622\) 0.373299 0.0149679
\(623\) −12.6853 −0.508225
\(624\) 0 0
\(625\) 79.9427 3.19771
\(626\) −4.23033 −0.169078
\(627\) 0 0
\(628\) 17.7114 0.706763
\(629\) −22.2103 −0.885583
\(630\) 0 0
\(631\) 20.4859 0.815530 0.407765 0.913087i \(-0.366308\pi\)
0.407765 + 0.913087i \(0.366308\pi\)
\(632\) −12.0087 −0.477679
\(633\) 0 0
\(634\) 0.474907 0.0188609
\(635\) −47.3540 −1.87918
\(636\) 0 0
\(637\) 22.7196 0.900182
\(638\) −0.284905 −0.0112795
\(639\) 0 0
\(640\) 30.5025 1.20572
\(641\) 34.5586 1.36498 0.682492 0.730893i \(-0.260896\pi\)
0.682492 + 0.730893i \(0.260896\pi\)
\(642\) 0 0
\(643\) 29.7415 1.17289 0.586445 0.809989i \(-0.300527\pi\)
0.586445 + 0.809989i \(0.300527\pi\)
\(644\) −2.72900 −0.107538
\(645\) 0 0
\(646\) −3.07985 −0.121175
\(647\) 43.1443 1.69618 0.848089 0.529853i \(-0.177753\pi\)
0.848089 + 0.529853i \(0.177753\pi\)
\(648\) 0 0
\(649\) 16.4542 0.645884
\(650\) −12.6304 −0.495405
\(651\) 0 0
\(652\) −15.4191 −0.603857
\(653\) −31.1897 −1.22055 −0.610273 0.792191i \(-0.708940\pi\)
−0.610273 + 0.792191i \(0.708940\pi\)
\(654\) 0 0
\(655\) −51.5326 −2.01355
\(656\) 20.9249 0.816980
\(657\) 0 0
\(658\) 0.121622 0.00474131
\(659\) 40.6668 1.58415 0.792077 0.610421i \(-0.209000\pi\)
0.792077 + 0.610421i \(0.209000\pi\)
\(660\) 0 0
\(661\) 17.3627 0.675329 0.337665 0.941266i \(-0.390363\pi\)
0.337665 + 0.941266i \(0.390363\pi\)
\(662\) 8.33590 0.323984
\(663\) 0 0
\(664\) 11.0305 0.428067
\(665\) 14.7984 0.573858
\(666\) 0 0
\(667\) 0.728130 0.0281933
\(668\) 8.63010 0.333908
\(669\) 0 0
\(670\) −7.52292 −0.290636
\(671\) −20.8257 −0.803969
\(672\) 0 0
\(673\) 44.0885 1.69949 0.849743 0.527198i \(-0.176757\pi\)
0.849743 + 0.527198i \(0.176757\pi\)
\(674\) 3.91048 0.150626
\(675\) 0 0
\(676\) −5.90522 −0.227124
\(677\) 34.6936 1.33338 0.666691 0.745334i \(-0.267710\pi\)
0.666691 + 0.745334i \(0.267710\pi\)
\(678\) 0 0
\(679\) −7.24445 −0.278016
\(680\) −17.0547 −0.654018
\(681\) 0 0
\(682\) −0.928659 −0.0355602
\(683\) 42.7336 1.63515 0.817577 0.575819i \(-0.195317\pi\)
0.817577 + 0.575819i \(0.195317\pi\)
\(684\) 0 0
\(685\) 1.27105 0.0485644
\(686\) 3.52964 0.134762
\(687\) 0 0
\(688\) 26.6614 1.01646
\(689\) −17.9187 −0.682650
\(690\) 0 0
\(691\) −16.0321 −0.609888 −0.304944 0.952370i \(-0.598638\pi\)
−0.304944 + 0.952370i \(0.598638\pi\)
\(692\) −6.05471 −0.230166
\(693\) 0 0
\(694\) 7.69106 0.291949
\(695\) 23.8291 0.903888
\(696\) 0 0
\(697\) −24.1370 −0.914254
\(698\) −4.19072 −0.158621
\(699\) 0 0
\(700\) 29.1809 1.10293
\(701\) −41.7837 −1.57815 −0.789075 0.614297i \(-0.789440\pi\)
−0.789075 + 0.614297i \(0.789440\pi\)
\(702\) 0 0
\(703\) 15.9383 0.601123
\(704\) −13.0942 −0.493507
\(705\) 0 0
\(706\) −0.821886 −0.0309321
\(707\) 4.66369 0.175396
\(708\) 0 0
\(709\) −16.8956 −0.634527 −0.317263 0.948337i \(-0.602764\pi\)
−0.317263 + 0.948337i \(0.602764\pi\)
\(710\) 4.91832 0.184581
\(711\) 0 0
\(712\) −10.4910 −0.393165
\(713\) 2.37337 0.0888835
\(714\) 0 0
\(715\) 33.5950 1.25638
\(716\) 27.6395 1.03294
\(717\) 0 0
\(718\) −2.45294 −0.0915429
\(719\) −16.7005 −0.622825 −0.311412 0.950275i \(-0.600802\pi\)
−0.311412 + 0.950275i \(0.600802\pi\)
\(720\) 0 0
\(721\) −9.54535 −0.355487
\(722\) −2.38303 −0.0886872
\(723\) 0 0
\(724\) −30.8558 −1.14675
\(725\) −7.78580 −0.289157
\(726\) 0 0
\(727\) 22.1192 0.820356 0.410178 0.912005i \(-0.365466\pi\)
0.410178 + 0.912005i \(0.365466\pi\)
\(728\) −4.39701 −0.162964
\(729\) 0 0
\(730\) −7.40242 −0.273976
\(731\) −30.7541 −1.13748
\(732\) 0 0
\(733\) −13.1367 −0.485217 −0.242608 0.970124i \(-0.578003\pi\)
−0.242608 + 0.970124i \(0.578003\pi\)
\(734\) 3.59329 0.132631
\(735\) 0 0
\(736\) −3.40213 −0.125404
\(737\) 14.4654 0.532839
\(738\) 0 0
\(739\) −44.9292 −1.65275 −0.826373 0.563123i \(-0.809600\pi\)
−0.826373 + 0.563123i \(0.809600\pi\)
\(740\) 43.4749 1.59817
\(741\) 0 0
\(742\) −1.24610 −0.0457457
\(743\) −22.3697 −0.820666 −0.410333 0.911936i \(-0.634587\pi\)
−0.410333 + 0.911936i \(0.634587\pi\)
\(744\) 0 0
\(745\) 57.8833 2.12068
\(746\) −5.09619 −0.186585
\(747\) 0 0
\(748\) 16.1536 0.590634
\(749\) 18.3277 0.669680
\(750\) 0 0
\(751\) 11.8860 0.433728 0.216864 0.976202i \(-0.430417\pi\)
0.216864 + 0.976202i \(0.430417\pi\)
\(752\) −1.59502 −0.0581645
\(753\) 0 0
\(754\) 0.577890 0.0210455
\(755\) 40.1568 1.46146
\(756\) 0 0
\(757\) 5.21780 0.189644 0.0948221 0.995494i \(-0.469772\pi\)
0.0948221 + 0.995494i \(0.469772\pi\)
\(758\) 1.67994 0.0610183
\(759\) 0 0
\(760\) 12.2386 0.443940
\(761\) −0.698407 −0.0253172 −0.0126586 0.999920i \(-0.504029\pi\)
−0.0126586 + 0.999920i \(0.504029\pi\)
\(762\) 0 0
\(763\) 4.17207 0.151039
\(764\) −39.4283 −1.42646
\(765\) 0 0
\(766\) −8.54141 −0.308614
\(767\) −33.3751 −1.20511
\(768\) 0 0
\(769\) 11.1266 0.401235 0.200617 0.979670i \(-0.435705\pi\)
0.200617 + 0.979670i \(0.435705\pi\)
\(770\) 2.33625 0.0841926
\(771\) 0 0
\(772\) 5.18872 0.186746
\(773\) 15.4895 0.557120 0.278560 0.960419i \(-0.410143\pi\)
0.278560 + 0.960419i \(0.410143\pi\)
\(774\) 0 0
\(775\) −25.3782 −0.911611
\(776\) −5.99129 −0.215075
\(777\) 0 0
\(778\) −6.21855 −0.222946
\(779\) 17.3209 0.620585
\(780\) 0 0
\(781\) −9.45713 −0.338403
\(782\) 1.24263 0.0444365
\(783\) 0 0
\(784\) −20.7205 −0.740018
\(785\) 38.7506 1.38307
\(786\) 0 0
\(787\) −35.2358 −1.25602 −0.628011 0.778204i \(-0.716131\pi\)
−0.628011 + 0.778204i \(0.716131\pi\)
\(788\) −32.4661 −1.15656
\(789\) 0 0
\(790\) −12.9420 −0.460457
\(791\) 10.9398 0.388976
\(792\) 0 0
\(793\) 42.2422 1.50006
\(794\) 4.49601 0.159558
\(795\) 0 0
\(796\) −3.79786 −0.134612
\(797\) −26.5128 −0.939131 −0.469565 0.882898i \(-0.655589\pi\)
−0.469565 + 0.882898i \(0.655589\pi\)
\(798\) 0 0
\(799\) 1.83987 0.0650899
\(800\) 36.3786 1.28618
\(801\) 0 0
\(802\) −1.11776 −0.0394694
\(803\) 14.2337 0.502295
\(804\) 0 0
\(805\) −5.97075 −0.210441
\(806\) 1.88366 0.0663491
\(807\) 0 0
\(808\) 3.85696 0.135687
\(809\) −4.72350 −0.166070 −0.0830348 0.996547i \(-0.526461\pi\)
−0.0830348 + 0.996547i \(0.526461\pi\)
\(810\) 0 0
\(811\) −14.2884 −0.501733 −0.250866 0.968022i \(-0.580716\pi\)
−0.250866 + 0.968022i \(0.580716\pi\)
\(812\) −1.33514 −0.0468542
\(813\) 0 0
\(814\) 2.51620 0.0881928
\(815\) −33.7352 −1.18169
\(816\) 0 0
\(817\) 22.0694 0.772109
\(818\) −2.64445 −0.0924612
\(819\) 0 0
\(820\) 47.2463 1.64991
\(821\) −21.8703 −0.763279 −0.381639 0.924311i \(-0.624640\pi\)
−0.381639 + 0.924311i \(0.624640\pi\)
\(822\) 0 0
\(823\) 23.5079 0.819434 0.409717 0.912213i \(-0.365628\pi\)
0.409717 + 0.912213i \(0.365628\pi\)
\(824\) −7.89418 −0.275007
\(825\) 0 0
\(826\) −2.32096 −0.0807565
\(827\) 17.8136 0.619441 0.309720 0.950828i \(-0.399765\pi\)
0.309720 + 0.950828i \(0.399765\pi\)
\(828\) 0 0
\(829\) −53.8459 −1.87014 −0.935072 0.354458i \(-0.884665\pi\)
−0.935072 + 0.354458i \(0.884665\pi\)
\(830\) 11.8878 0.412633
\(831\) 0 0
\(832\) 26.5599 0.920798
\(833\) 23.9012 0.828129
\(834\) 0 0
\(835\) 18.8817 0.653428
\(836\) −11.5919 −0.400916
\(837\) 0 0
\(838\) −8.10841 −0.280100
\(839\) −52.0831 −1.79811 −0.899055 0.437837i \(-0.855745\pi\)
−0.899055 + 0.437837i \(0.855745\pi\)
\(840\) 0 0
\(841\) −28.6438 −0.987716
\(842\) 0.400969 0.0138183
\(843\) 0 0
\(844\) −20.1229 −0.692660
\(845\) −12.9200 −0.444460
\(846\) 0 0
\(847\) 8.18145 0.281118
\(848\) 16.3421 0.561190
\(849\) 0 0
\(850\) −13.2873 −0.455751
\(851\) −6.43065 −0.220440
\(852\) 0 0
\(853\) 48.5628 1.66276 0.831379 0.555706i \(-0.187552\pi\)
0.831379 + 0.555706i \(0.187552\pi\)
\(854\) 2.93759 0.100522
\(855\) 0 0
\(856\) 15.1574 0.518068
\(857\) 43.5996 1.48933 0.744667 0.667436i \(-0.232608\pi\)
0.744667 + 0.667436i \(0.232608\pi\)
\(858\) 0 0
\(859\) 16.3040 0.556285 0.278143 0.960540i \(-0.410281\pi\)
0.278143 + 0.960540i \(0.410281\pi\)
\(860\) 60.1987 2.05276
\(861\) 0 0
\(862\) −3.65240 −0.124401
\(863\) 50.1840 1.70828 0.854142 0.520039i \(-0.174083\pi\)
0.854142 + 0.520039i \(0.174083\pi\)
\(864\) 0 0
\(865\) −13.2470 −0.450413
\(866\) 1.19255 0.0405245
\(867\) 0 0
\(868\) −4.35195 −0.147715
\(869\) 24.8855 0.844182
\(870\) 0 0
\(871\) −29.3410 −0.994183
\(872\) 3.45038 0.116845
\(873\) 0 0
\(874\) −0.891722 −0.0301630
\(875\) 39.3732 1.33106
\(876\) 0 0
\(877\) −44.8657 −1.51501 −0.757503 0.652831i \(-0.773581\pi\)
−0.757503 + 0.652831i \(0.773581\pi\)
\(878\) −4.87856 −0.164643
\(879\) 0 0
\(880\) −30.6390 −1.03284
\(881\) 18.2315 0.614235 0.307117 0.951672i \(-0.400636\pi\)
0.307117 + 0.951672i \(0.400636\pi\)
\(882\) 0 0
\(883\) −17.5838 −0.591741 −0.295871 0.955228i \(-0.595610\pi\)
−0.295871 + 0.955228i \(0.595610\pi\)
\(884\) −32.7654 −1.10202
\(885\) 0 0
\(886\) 6.81390 0.228917
\(887\) −32.9670 −1.10692 −0.553461 0.832875i \(-0.686693\pi\)
−0.553461 + 0.832875i \(0.686693\pi\)
\(888\) 0 0
\(889\) −12.8437 −0.430764
\(890\) −11.3064 −0.378990
\(891\) 0 0
\(892\) −14.2279 −0.476386
\(893\) −1.32030 −0.0441823
\(894\) 0 0
\(895\) 60.4721 2.02136
\(896\) 8.27313 0.276386
\(897\) 0 0
\(898\) 0.104946 0.00350208
\(899\) 1.16115 0.0387266
\(900\) 0 0
\(901\) −18.8507 −0.628009
\(902\) 2.73448 0.0910481
\(903\) 0 0
\(904\) 9.04744 0.300914
\(905\) −67.5091 −2.24408
\(906\) 0 0
\(907\) −39.2560 −1.30347 −0.651737 0.758445i \(-0.725959\pi\)
−0.651737 + 0.758445i \(0.725959\pi\)
\(908\) 45.1951 1.49985
\(909\) 0 0
\(910\) −4.73877 −0.157089
\(911\) 15.2296 0.504581 0.252290 0.967652i \(-0.418816\pi\)
0.252290 + 0.967652i \(0.418816\pi\)
\(912\) 0 0
\(913\) −22.8584 −0.756503
\(914\) 6.55175 0.216713
\(915\) 0 0
\(916\) 0.0969119 0.00320206
\(917\) −13.9771 −0.461564
\(918\) 0 0
\(919\) 14.7991 0.488176 0.244088 0.969753i \(-0.421511\pi\)
0.244088 + 0.969753i \(0.421511\pi\)
\(920\) −4.93792 −0.162798
\(921\) 0 0
\(922\) −10.3288 −0.340162
\(923\) 19.1825 0.631400
\(924\) 0 0
\(925\) 68.7621 2.26088
\(926\) −7.33493 −0.241041
\(927\) 0 0
\(928\) −1.66446 −0.0546387
\(929\) 30.6071 1.00419 0.502093 0.864814i \(-0.332564\pi\)
0.502093 + 0.864814i \(0.332564\pi\)
\(930\) 0 0
\(931\) −17.1517 −0.562124
\(932\) 43.5088 1.42518
\(933\) 0 0
\(934\) 3.25293 0.106439
\(935\) 35.3423 1.15582
\(936\) 0 0
\(937\) −3.43602 −0.112250 −0.0561249 0.998424i \(-0.517875\pi\)
−0.0561249 + 0.998424i \(0.517875\pi\)
\(938\) −2.04042 −0.0666222
\(939\) 0 0
\(940\) −3.60140 −0.117465
\(941\) −19.3715 −0.631492 −0.315746 0.948844i \(-0.602255\pi\)
−0.315746 + 0.948844i \(0.602255\pi\)
\(942\) 0 0
\(943\) −6.98850 −0.227577
\(944\) 30.4385 0.990688
\(945\) 0 0
\(946\) 3.48412 0.113279
\(947\) 13.7891 0.448084 0.224042 0.974579i \(-0.428075\pi\)
0.224042 + 0.974579i \(0.428075\pi\)
\(948\) 0 0
\(949\) −28.8711 −0.937195
\(950\) 9.53507 0.309359
\(951\) 0 0
\(952\) −4.62570 −0.149920
\(953\) −37.5436 −1.21616 −0.608078 0.793878i \(-0.708059\pi\)
−0.608078 + 0.793878i \(0.708059\pi\)
\(954\) 0 0
\(955\) −86.2647 −2.79146
\(956\) 39.8662 1.28936
\(957\) 0 0
\(958\) −6.27968 −0.202887
\(959\) 0.344744 0.0111324
\(960\) 0 0
\(961\) −27.2152 −0.877909
\(962\) −5.10377 −0.164552
\(963\) 0 0
\(964\) 55.8915 1.80015
\(965\) 11.3523 0.365445
\(966\) 0 0
\(967\) 24.5820 0.790505 0.395252 0.918573i \(-0.370657\pi\)
0.395252 + 0.918573i \(0.370657\pi\)
\(968\) 6.76621 0.217474
\(969\) 0 0
\(970\) −6.45696 −0.207321
\(971\) 13.0415 0.418522 0.209261 0.977860i \(-0.432894\pi\)
0.209261 + 0.977860i \(0.432894\pi\)
\(972\) 0 0
\(973\) 6.46310 0.207197
\(974\) 0.654109 0.0209590
\(975\) 0 0
\(976\) −38.5254 −1.23317
\(977\) 48.4395 1.54972 0.774859 0.632134i \(-0.217821\pi\)
0.774859 + 0.632134i \(0.217821\pi\)
\(978\) 0 0
\(979\) 21.7403 0.694824
\(980\) −46.7848 −1.49448
\(981\) 0 0
\(982\) 9.62328 0.307091
\(983\) −33.1022 −1.05580 −0.527898 0.849308i \(-0.677020\pi\)
−0.527898 + 0.849308i \(0.677020\pi\)
\(984\) 0 0
\(985\) −71.0323 −2.26328
\(986\) 0.607947 0.0193610
\(987\) 0 0
\(988\) 23.5127 0.748038
\(989\) −8.90437 −0.283143
\(990\) 0 0
\(991\) −17.3919 −0.552471 −0.276235 0.961090i \(-0.589087\pi\)
−0.276235 + 0.961090i \(0.589087\pi\)
\(992\) −5.42540 −0.172256
\(993\) 0 0
\(994\) 1.33398 0.0423114
\(995\) −8.30930 −0.263422
\(996\) 0 0
\(997\) −17.2834 −0.547370 −0.273685 0.961819i \(-0.588243\pi\)
−0.273685 + 0.961819i \(0.588243\pi\)
\(998\) 0.600826 0.0190188
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.41 72
3.2 odd 2 6561.2.a.d.1.32 72
81.4 even 27 729.2.g.c.136.5 144
81.7 even 27 729.2.g.d.352.4 144
81.20 odd 54 729.2.g.b.595.4 144
81.23 odd 54 729.2.g.a.379.5 144
81.31 even 27 81.2.g.a.70.4 yes 144
81.34 even 27 81.2.g.a.22.4 144
81.47 odd 54 243.2.g.a.199.5 144
81.50 odd 54 243.2.g.a.127.5 144
81.58 even 27 729.2.g.d.379.4 144
81.61 even 27 729.2.g.c.595.5 144
81.74 odd 54 729.2.g.a.352.5 144
81.77 odd 54 729.2.g.b.136.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.22.4 144 81.34 even 27
81.2.g.a.70.4 yes 144 81.31 even 27
243.2.g.a.127.5 144 81.50 odd 54
243.2.g.a.199.5 144 81.47 odd 54
729.2.g.a.352.5 144 81.74 odd 54
729.2.g.a.379.5 144 81.23 odd 54
729.2.g.b.136.4 144 81.77 odd 54
729.2.g.b.595.4 144 81.20 odd 54
729.2.g.c.136.5 144 81.4 even 27
729.2.g.c.595.5 144 81.61 even 27
729.2.g.d.352.4 144 81.7 even 27
729.2.g.d.379.4 144 81.58 even 27
6561.2.a.c.1.41 72 1.1 even 1 trivial
6561.2.a.d.1.32 72 3.2 odd 2