Properties

Label 6561.2.a.c.1.32
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.32
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.567608 q^{2} -1.67782 q^{4} +2.90373 q^{5} +3.12982 q^{7} +2.08756 q^{8} -1.64818 q^{10} -3.43215 q^{11} -3.98780 q^{13} -1.77651 q^{14} +2.17072 q^{16} -0.934819 q^{17} +4.85100 q^{19} -4.87193 q^{20} +1.94811 q^{22} -6.15225 q^{23} +3.43163 q^{25} +2.26351 q^{26} -5.25127 q^{28} +1.79970 q^{29} +0.675872 q^{31} -5.40724 q^{32} +0.530611 q^{34} +9.08813 q^{35} -11.3972 q^{37} -2.75347 q^{38} +6.06171 q^{40} +6.65264 q^{41} -2.23641 q^{43} +5.75853 q^{44} +3.49207 q^{46} -3.16965 q^{47} +2.79575 q^{49} -1.94782 q^{50} +6.69082 q^{52} +8.37927 q^{53} -9.96601 q^{55} +6.53368 q^{56} -1.02153 q^{58} -5.03087 q^{59} -0.570638 q^{61} -0.383631 q^{62} -1.27225 q^{64} -11.5795 q^{65} -13.6689 q^{67} +1.56846 q^{68} -5.15850 q^{70} -13.3479 q^{71} -6.74596 q^{73} +6.46916 q^{74} -8.13910 q^{76} -10.7420 q^{77} +0.745336 q^{79} +6.30319 q^{80} -3.77609 q^{82} -3.63944 q^{83} -2.71446 q^{85} +1.26941 q^{86} -7.16481 q^{88} -13.1174 q^{89} -12.4811 q^{91} +10.3224 q^{92} +1.79912 q^{94} +14.0860 q^{95} +12.5053 q^{97} -1.58689 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.567608 −0.401360 −0.200680 0.979657i \(-0.564315\pi\)
−0.200680 + 0.979657i \(0.564315\pi\)
\(3\) 0 0
\(4\) −1.67782 −0.838910
\(5\) 2.90373 1.29859 0.649293 0.760538i \(-0.275065\pi\)
0.649293 + 0.760538i \(0.275065\pi\)
\(6\) 0 0
\(7\) 3.12982 1.18296 0.591480 0.806320i \(-0.298544\pi\)
0.591480 + 0.806320i \(0.298544\pi\)
\(8\) 2.08756 0.738064
\(9\) 0 0
\(10\) −1.64818 −0.521200
\(11\) −3.43215 −1.03483 −0.517415 0.855734i \(-0.673106\pi\)
−0.517415 + 0.855734i \(0.673106\pi\)
\(12\) 0 0
\(13\) −3.98780 −1.10602 −0.553009 0.833175i \(-0.686520\pi\)
−0.553009 + 0.833175i \(0.686520\pi\)
\(14\) −1.77651 −0.474792
\(15\) 0 0
\(16\) 2.17072 0.542681
\(17\) −0.934819 −0.226727 −0.113363 0.993554i \(-0.536162\pi\)
−0.113363 + 0.993554i \(0.536162\pi\)
\(18\) 0 0
\(19\) 4.85100 1.11290 0.556448 0.830883i \(-0.312164\pi\)
0.556448 + 0.830883i \(0.312164\pi\)
\(20\) −4.87193 −1.08940
\(21\) 0 0
\(22\) 1.94811 0.415339
\(23\) −6.15225 −1.28283 −0.641416 0.767193i \(-0.721653\pi\)
−0.641416 + 0.767193i \(0.721653\pi\)
\(24\) 0 0
\(25\) 3.43163 0.686327
\(26\) 2.26351 0.443911
\(27\) 0 0
\(28\) −5.25127 −0.992397
\(29\) 1.79970 0.334197 0.167098 0.985940i \(-0.446560\pi\)
0.167098 + 0.985940i \(0.446560\pi\)
\(30\) 0 0
\(31\) 0.675872 0.121390 0.0606951 0.998156i \(-0.480668\pi\)
0.0606951 + 0.998156i \(0.480668\pi\)
\(32\) −5.40724 −0.955875
\(33\) 0 0
\(34\) 0.530611 0.0909990
\(35\) 9.08813 1.53617
\(36\) 0 0
\(37\) −11.3972 −1.87369 −0.936847 0.349740i \(-0.886270\pi\)
−0.936847 + 0.349740i \(0.886270\pi\)
\(38\) −2.75347 −0.446671
\(39\) 0 0
\(40\) 6.06171 0.958440
\(41\) 6.65264 1.03897 0.519484 0.854480i \(-0.326124\pi\)
0.519484 + 0.854480i \(0.326124\pi\)
\(42\) 0 0
\(43\) −2.23641 −0.341050 −0.170525 0.985353i \(-0.554546\pi\)
−0.170525 + 0.985353i \(0.554546\pi\)
\(44\) 5.75853 0.868130
\(45\) 0 0
\(46\) 3.49207 0.514877
\(47\) −3.16965 −0.462341 −0.231170 0.972913i \(-0.574255\pi\)
−0.231170 + 0.972913i \(0.574255\pi\)
\(48\) 0 0
\(49\) 2.79575 0.399392
\(50\) −1.94782 −0.275464
\(51\) 0 0
\(52\) 6.69082 0.927850
\(53\) 8.37927 1.15098 0.575490 0.817808i \(-0.304811\pi\)
0.575490 + 0.817808i \(0.304811\pi\)
\(54\) 0 0
\(55\) −9.96601 −1.34382
\(56\) 6.53368 0.873100
\(57\) 0 0
\(58\) −1.02153 −0.134133
\(59\) −5.03087 −0.654963 −0.327482 0.944858i \(-0.606200\pi\)
−0.327482 + 0.944858i \(0.606200\pi\)
\(60\) 0 0
\(61\) −0.570638 −0.0730627 −0.0365314 0.999333i \(-0.511631\pi\)
−0.0365314 + 0.999333i \(0.511631\pi\)
\(62\) −0.383631 −0.0487211
\(63\) 0 0
\(64\) −1.27225 −0.159032
\(65\) −11.5795 −1.43626
\(66\) 0 0
\(67\) −13.6689 −1.66993 −0.834963 0.550306i \(-0.814511\pi\)
−0.834963 + 0.550306i \(0.814511\pi\)
\(68\) 1.56846 0.190204
\(69\) 0 0
\(70\) −5.15850 −0.616558
\(71\) −13.3479 −1.58411 −0.792054 0.610451i \(-0.790988\pi\)
−0.792054 + 0.610451i \(0.790988\pi\)
\(72\) 0 0
\(73\) −6.74596 −0.789555 −0.394777 0.918777i \(-0.629178\pi\)
−0.394777 + 0.918777i \(0.629178\pi\)
\(74\) 6.46916 0.752025
\(75\) 0 0
\(76\) −8.13910 −0.933619
\(77\) −10.7420 −1.22416
\(78\) 0 0
\(79\) 0.745336 0.0838569 0.0419284 0.999121i \(-0.486650\pi\)
0.0419284 + 0.999121i \(0.486650\pi\)
\(80\) 6.30319 0.704718
\(81\) 0 0
\(82\) −3.77609 −0.417000
\(83\) −3.63944 −0.399481 −0.199740 0.979849i \(-0.564010\pi\)
−0.199740 + 0.979849i \(0.564010\pi\)
\(84\) 0 0
\(85\) −2.71446 −0.294424
\(86\) 1.26941 0.136884
\(87\) 0 0
\(88\) −7.16481 −0.763772
\(89\) −13.1174 −1.39044 −0.695219 0.718798i \(-0.744693\pi\)
−0.695219 + 0.718798i \(0.744693\pi\)
\(90\) 0 0
\(91\) −12.4811 −1.30837
\(92\) 10.3224 1.07618
\(93\) 0 0
\(94\) 1.79912 0.185565
\(95\) 14.0860 1.44519
\(96\) 0 0
\(97\) 12.5053 1.26972 0.634860 0.772627i \(-0.281058\pi\)
0.634860 + 0.772627i \(0.281058\pi\)
\(98\) −1.58689 −0.160300
\(99\) 0 0
\(100\) −5.75767 −0.575767
\(101\) −5.98380 −0.595410 −0.297705 0.954658i \(-0.596221\pi\)
−0.297705 + 0.954658i \(0.596221\pi\)
\(102\) 0 0
\(103\) 1.76860 0.174265 0.0871326 0.996197i \(-0.472230\pi\)
0.0871326 + 0.996197i \(0.472230\pi\)
\(104\) −8.32478 −0.816312
\(105\) 0 0
\(106\) −4.75614 −0.461957
\(107\) 7.15256 0.691464 0.345732 0.938333i \(-0.387631\pi\)
0.345732 + 0.938333i \(0.387631\pi\)
\(108\) 0 0
\(109\) 11.3723 1.08927 0.544633 0.838675i \(-0.316669\pi\)
0.544633 + 0.838675i \(0.316669\pi\)
\(110\) 5.65679 0.539354
\(111\) 0 0
\(112\) 6.79397 0.641970
\(113\) −5.82409 −0.547885 −0.273942 0.961746i \(-0.588328\pi\)
−0.273942 + 0.961746i \(0.588328\pi\)
\(114\) 0 0
\(115\) −17.8645 −1.66587
\(116\) −3.01958 −0.280361
\(117\) 0 0
\(118\) 2.85556 0.262876
\(119\) −2.92581 −0.268209
\(120\) 0 0
\(121\) 0.779623 0.0708748
\(122\) 0.323899 0.0293244
\(123\) 0 0
\(124\) −1.13399 −0.101836
\(125\) −4.55411 −0.407332
\(126\) 0 0
\(127\) 10.7409 0.953103 0.476551 0.879147i \(-0.341887\pi\)
0.476551 + 0.879147i \(0.341887\pi\)
\(128\) 11.5366 1.01970
\(129\) 0 0
\(130\) 6.57261 0.576456
\(131\) −7.16262 −0.625801 −0.312900 0.949786i \(-0.601301\pi\)
−0.312900 + 0.949786i \(0.601301\pi\)
\(132\) 0 0
\(133\) 15.1827 1.31651
\(134\) 7.75860 0.670241
\(135\) 0 0
\(136\) −1.95149 −0.167339
\(137\) −8.62912 −0.737235 −0.368618 0.929581i \(-0.620169\pi\)
−0.368618 + 0.929581i \(0.620169\pi\)
\(138\) 0 0
\(139\) −5.89915 −0.500359 −0.250180 0.968199i \(-0.580490\pi\)
−0.250180 + 0.968199i \(0.580490\pi\)
\(140\) −15.2483 −1.28871
\(141\) 0 0
\(142\) 7.57640 0.635797
\(143\) 13.6867 1.14454
\(144\) 0 0
\(145\) 5.22585 0.433983
\(146\) 3.82906 0.316895
\(147\) 0 0
\(148\) 19.1225 1.57186
\(149\) −13.7946 −1.13010 −0.565049 0.825057i \(-0.691143\pi\)
−0.565049 + 0.825057i \(0.691143\pi\)
\(150\) 0 0
\(151\) 6.27700 0.510815 0.255408 0.966833i \(-0.417790\pi\)
0.255408 + 0.966833i \(0.417790\pi\)
\(152\) 10.1268 0.821388
\(153\) 0 0
\(154\) 6.09724 0.491329
\(155\) 1.96255 0.157636
\(156\) 0 0
\(157\) −0.166094 −0.0132557 −0.00662787 0.999978i \(-0.502110\pi\)
−0.00662787 + 0.999978i \(0.502110\pi\)
\(158\) −0.423059 −0.0336568
\(159\) 0 0
\(160\) −15.7012 −1.24129
\(161\) −19.2554 −1.51754
\(162\) 0 0
\(163\) 16.2014 1.26899 0.634495 0.772927i \(-0.281208\pi\)
0.634495 + 0.772927i \(0.281208\pi\)
\(164\) −11.1619 −0.871601
\(165\) 0 0
\(166\) 2.06578 0.160335
\(167\) −18.2760 −1.41424 −0.707122 0.707092i \(-0.750007\pi\)
−0.707122 + 0.707092i \(0.750007\pi\)
\(168\) 0 0
\(169\) 2.90257 0.223274
\(170\) 1.54075 0.118170
\(171\) 0 0
\(172\) 3.75230 0.286110
\(173\) 18.8538 1.43343 0.716715 0.697366i \(-0.245645\pi\)
0.716715 + 0.697366i \(0.245645\pi\)
\(174\) 0 0
\(175\) 10.7404 0.811896
\(176\) −7.45024 −0.561583
\(177\) 0 0
\(178\) 7.44553 0.558066
\(179\) −10.2961 −0.769570 −0.384785 0.923006i \(-0.625724\pi\)
−0.384785 + 0.923006i \(0.625724\pi\)
\(180\) 0 0
\(181\) −0.819628 −0.0609224 −0.0304612 0.999536i \(-0.509698\pi\)
−0.0304612 + 0.999536i \(0.509698\pi\)
\(182\) 7.08437 0.525128
\(183\) 0 0
\(184\) −12.8432 −0.946813
\(185\) −33.0945 −2.43315
\(186\) 0 0
\(187\) 3.20843 0.234624
\(188\) 5.31810 0.387862
\(189\) 0 0
\(190\) −7.99531 −0.580041
\(191\) −0.765051 −0.0553572 −0.0276786 0.999617i \(-0.508811\pi\)
−0.0276786 + 0.999617i \(0.508811\pi\)
\(192\) 0 0
\(193\) 9.35469 0.673365 0.336683 0.941618i \(-0.390695\pi\)
0.336683 + 0.941618i \(0.390695\pi\)
\(194\) −7.09811 −0.509614
\(195\) 0 0
\(196\) −4.69076 −0.335054
\(197\) 1.11982 0.0797839 0.0398920 0.999204i \(-0.487299\pi\)
0.0398920 + 0.999204i \(0.487299\pi\)
\(198\) 0 0
\(199\) 7.68060 0.544463 0.272232 0.962232i \(-0.412238\pi\)
0.272232 + 0.962232i \(0.412238\pi\)
\(200\) 7.16374 0.506553
\(201\) 0 0
\(202\) 3.39645 0.238974
\(203\) 5.63274 0.395341
\(204\) 0 0
\(205\) 19.3174 1.34919
\(206\) −1.00387 −0.0699430
\(207\) 0 0
\(208\) −8.65642 −0.600215
\(209\) −16.6493 −1.15166
\(210\) 0 0
\(211\) −10.2373 −0.704764 −0.352382 0.935856i \(-0.614628\pi\)
−0.352382 + 0.935856i \(0.614628\pi\)
\(212\) −14.0589 −0.965570
\(213\) 0 0
\(214\) −4.05985 −0.277526
\(215\) −6.49393 −0.442882
\(216\) 0 0
\(217\) 2.11536 0.143600
\(218\) −6.45499 −0.437187
\(219\) 0 0
\(220\) 16.7212 1.12734
\(221\) 3.72787 0.250764
\(222\) 0 0
\(223\) −4.65168 −0.311499 −0.155750 0.987797i \(-0.549779\pi\)
−0.155750 + 0.987797i \(0.549779\pi\)
\(224\) −16.9237 −1.13076
\(225\) 0 0
\(226\) 3.30580 0.219899
\(227\) 14.1196 0.937149 0.468575 0.883424i \(-0.344768\pi\)
0.468575 + 0.883424i \(0.344768\pi\)
\(228\) 0 0
\(229\) −5.18532 −0.342656 −0.171328 0.985214i \(-0.554806\pi\)
−0.171328 + 0.985214i \(0.554806\pi\)
\(230\) 10.1400 0.668613
\(231\) 0 0
\(232\) 3.75699 0.246659
\(233\) 4.45346 0.291756 0.145878 0.989303i \(-0.453399\pi\)
0.145878 + 0.989303i \(0.453399\pi\)
\(234\) 0 0
\(235\) −9.20379 −0.600389
\(236\) 8.44090 0.549456
\(237\) 0 0
\(238\) 1.66071 0.107648
\(239\) −29.0614 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(240\) 0 0
\(241\) 24.9840 1.60936 0.804682 0.593706i \(-0.202336\pi\)
0.804682 + 0.593706i \(0.202336\pi\)
\(242\) −0.442520 −0.0284463
\(243\) 0 0
\(244\) 0.957429 0.0612931
\(245\) 8.11809 0.518646
\(246\) 0 0
\(247\) −19.3448 −1.23088
\(248\) 1.41093 0.0895938
\(249\) 0 0
\(250\) 2.58495 0.163487
\(251\) 14.1718 0.894515 0.447258 0.894405i \(-0.352401\pi\)
0.447258 + 0.894405i \(0.352401\pi\)
\(252\) 0 0
\(253\) 21.1154 1.32751
\(254\) −6.09663 −0.382537
\(255\) 0 0
\(256\) −4.00378 −0.250236
\(257\) 14.6989 0.916895 0.458448 0.888721i \(-0.348406\pi\)
0.458448 + 0.888721i \(0.348406\pi\)
\(258\) 0 0
\(259\) −35.6712 −2.21650
\(260\) 19.4283 1.20489
\(261\) 0 0
\(262\) 4.06556 0.251171
\(263\) 16.3890 1.01059 0.505294 0.862947i \(-0.331384\pi\)
0.505294 + 0.862947i \(0.331384\pi\)
\(264\) 0 0
\(265\) 24.3311 1.49465
\(266\) −8.61784 −0.528394
\(267\) 0 0
\(268\) 22.9340 1.40092
\(269\) −11.3626 −0.692791 −0.346396 0.938088i \(-0.612595\pi\)
−0.346396 + 0.938088i \(0.612595\pi\)
\(270\) 0 0
\(271\) 2.76531 0.167981 0.0839903 0.996467i \(-0.473234\pi\)
0.0839903 + 0.996467i \(0.473234\pi\)
\(272\) −2.02923 −0.123040
\(273\) 0 0
\(274\) 4.89796 0.295896
\(275\) −11.7779 −0.710232
\(276\) 0 0
\(277\) 18.3961 1.10531 0.552657 0.833409i \(-0.313614\pi\)
0.552657 + 0.833409i \(0.313614\pi\)
\(278\) 3.34841 0.200824
\(279\) 0 0
\(280\) 18.9720 1.13380
\(281\) 10.7332 0.640287 0.320144 0.947369i \(-0.396269\pi\)
0.320144 + 0.947369i \(0.396269\pi\)
\(282\) 0 0
\(283\) −14.2919 −0.849568 −0.424784 0.905295i \(-0.639650\pi\)
−0.424784 + 0.905295i \(0.639650\pi\)
\(284\) 22.3954 1.32893
\(285\) 0 0
\(286\) −7.76869 −0.459372
\(287\) 20.8215 1.22906
\(288\) 0 0
\(289\) −16.1261 −0.948595
\(290\) −2.96624 −0.174183
\(291\) 0 0
\(292\) 11.3185 0.662366
\(293\) −21.8459 −1.27625 −0.638126 0.769932i \(-0.720290\pi\)
−0.638126 + 0.769932i \(0.720290\pi\)
\(294\) 0 0
\(295\) −14.6083 −0.850527
\(296\) −23.7924 −1.38291
\(297\) 0 0
\(298\) 7.82994 0.453576
\(299\) 24.5340 1.41884
\(300\) 0 0
\(301\) −6.99956 −0.403448
\(302\) −3.56288 −0.205021
\(303\) 0 0
\(304\) 10.5302 0.603947
\(305\) −1.65698 −0.0948783
\(306\) 0 0
\(307\) 30.4747 1.73928 0.869640 0.493686i \(-0.164351\pi\)
0.869640 + 0.493686i \(0.164351\pi\)
\(308\) 18.0231 1.02696
\(309\) 0 0
\(310\) −1.11396 −0.0632686
\(311\) 27.1122 1.53739 0.768697 0.639613i \(-0.220906\pi\)
0.768697 + 0.639613i \(0.220906\pi\)
\(312\) 0 0
\(313\) −8.10638 −0.458200 −0.229100 0.973403i \(-0.573578\pi\)
−0.229100 + 0.973403i \(0.573578\pi\)
\(314\) 0.0942762 0.00532032
\(315\) 0 0
\(316\) −1.25054 −0.0703484
\(317\) −19.4191 −1.09069 −0.545343 0.838213i \(-0.683600\pi\)
−0.545343 + 0.838213i \(0.683600\pi\)
\(318\) 0 0
\(319\) −6.17685 −0.345837
\(320\) −3.69428 −0.206516
\(321\) 0 0
\(322\) 10.9295 0.609079
\(323\) −4.53480 −0.252323
\(324\) 0 0
\(325\) −13.6847 −0.759089
\(326\) −9.19603 −0.509321
\(327\) 0 0
\(328\) 13.8878 0.766825
\(329\) −9.92041 −0.546930
\(330\) 0 0
\(331\) 1.98671 0.109200 0.0545998 0.998508i \(-0.482612\pi\)
0.0545998 + 0.998508i \(0.482612\pi\)
\(332\) 6.10633 0.335129
\(333\) 0 0
\(334\) 10.3736 0.567620
\(335\) −39.6909 −2.16854
\(336\) 0 0
\(337\) −18.3556 −0.999891 −0.499946 0.866057i \(-0.666647\pi\)
−0.499946 + 0.866057i \(0.666647\pi\)
\(338\) −1.64752 −0.0896134
\(339\) 0 0
\(340\) 4.55438 0.246996
\(341\) −2.31969 −0.125618
\(342\) 0 0
\(343\) −13.1585 −0.710494
\(344\) −4.66865 −0.251717
\(345\) 0 0
\(346\) −10.7016 −0.575321
\(347\) 26.7840 1.43784 0.718920 0.695093i \(-0.244637\pi\)
0.718920 + 0.695093i \(0.244637\pi\)
\(348\) 0 0
\(349\) −13.1094 −0.701732 −0.350866 0.936426i \(-0.614113\pi\)
−0.350866 + 0.936426i \(0.614113\pi\)
\(350\) −6.09633 −0.325862
\(351\) 0 0
\(352\) 18.5584 0.989169
\(353\) −19.4348 −1.03441 −0.517205 0.855862i \(-0.673028\pi\)
−0.517205 + 0.855862i \(0.673028\pi\)
\(354\) 0 0
\(355\) −38.7588 −2.05710
\(356\) 22.0086 1.16645
\(357\) 0 0
\(358\) 5.84418 0.308874
\(359\) −14.6764 −0.774593 −0.387297 0.921955i \(-0.626591\pi\)
−0.387297 + 0.921955i \(0.626591\pi\)
\(360\) 0 0
\(361\) 4.53218 0.238536
\(362\) 0.465227 0.0244518
\(363\) 0 0
\(364\) 20.9410 1.09761
\(365\) −19.5884 −1.02531
\(366\) 0 0
\(367\) −10.9940 −0.573884 −0.286942 0.957948i \(-0.592639\pi\)
−0.286942 + 0.957948i \(0.592639\pi\)
\(368\) −13.3548 −0.696169
\(369\) 0 0
\(370\) 18.7847 0.976569
\(371\) 26.2256 1.36156
\(372\) 0 0
\(373\) −20.4182 −1.05721 −0.528607 0.848867i \(-0.677286\pi\)
−0.528607 + 0.848867i \(0.677286\pi\)
\(374\) −1.82113 −0.0941686
\(375\) 0 0
\(376\) −6.61683 −0.341237
\(377\) −7.17687 −0.369627
\(378\) 0 0
\(379\) 26.0308 1.33711 0.668556 0.743662i \(-0.266913\pi\)
0.668556 + 0.743662i \(0.266913\pi\)
\(380\) −23.6337 −1.21239
\(381\) 0 0
\(382\) 0.434249 0.0222181
\(383\) −23.5306 −1.20236 −0.601180 0.799114i \(-0.705302\pi\)
−0.601180 + 0.799114i \(0.705302\pi\)
\(384\) 0 0
\(385\) −31.1918 −1.58968
\(386\) −5.30980 −0.270262
\(387\) 0 0
\(388\) −20.9816 −1.06518
\(389\) −33.0703 −1.67673 −0.838366 0.545107i \(-0.816489\pi\)
−0.838366 + 0.545107i \(0.816489\pi\)
\(390\) 0 0
\(391\) 5.75124 0.290853
\(392\) 5.83629 0.294777
\(393\) 0 0
\(394\) −0.635619 −0.0320220
\(395\) 2.16425 0.108895
\(396\) 0 0
\(397\) −0.0552892 −0.00277489 −0.00138744 0.999999i \(-0.500442\pi\)
−0.00138744 + 0.999999i \(0.500442\pi\)
\(398\) −4.35957 −0.218526
\(399\) 0 0
\(400\) 7.44913 0.372457
\(401\) −28.6437 −1.43040 −0.715198 0.698922i \(-0.753664\pi\)
−0.715198 + 0.698922i \(0.753664\pi\)
\(402\) 0 0
\(403\) −2.69525 −0.134260
\(404\) 10.0397 0.499496
\(405\) 0 0
\(406\) −3.19719 −0.158674
\(407\) 39.1170 1.93896
\(408\) 0 0
\(409\) 31.4369 1.55445 0.777227 0.629220i \(-0.216626\pi\)
0.777227 + 0.629220i \(0.216626\pi\)
\(410\) −10.9647 −0.541510
\(411\) 0 0
\(412\) −2.96739 −0.146193
\(413\) −15.7457 −0.774795
\(414\) 0 0
\(415\) −10.5680 −0.518760
\(416\) 21.5630 1.05721
\(417\) 0 0
\(418\) 9.45030 0.462229
\(419\) −3.37426 −0.164843 −0.0824217 0.996598i \(-0.526265\pi\)
−0.0824217 + 0.996598i \(0.526265\pi\)
\(420\) 0 0
\(421\) 25.2636 1.23127 0.615636 0.788031i \(-0.288899\pi\)
0.615636 + 0.788031i \(0.288899\pi\)
\(422\) 5.81077 0.282864
\(423\) 0 0
\(424\) 17.4922 0.849498
\(425\) −3.20796 −0.155609
\(426\) 0 0
\(427\) −1.78599 −0.0864302
\(428\) −12.0007 −0.580076
\(429\) 0 0
\(430\) 3.68601 0.177755
\(431\) −32.8136 −1.58058 −0.790288 0.612736i \(-0.790069\pi\)
−0.790288 + 0.612736i \(0.790069\pi\)
\(432\) 0 0
\(433\) −12.9224 −0.621013 −0.310507 0.950571i \(-0.600499\pi\)
−0.310507 + 0.950571i \(0.600499\pi\)
\(434\) −1.20069 −0.0576351
\(435\) 0 0
\(436\) −19.0806 −0.913797
\(437\) −29.8446 −1.42766
\(438\) 0 0
\(439\) 36.8773 1.76006 0.880030 0.474918i \(-0.157522\pi\)
0.880030 + 0.474918i \(0.157522\pi\)
\(440\) −20.8047 −0.991824
\(441\) 0 0
\(442\) −2.11597 −0.100647
\(443\) −34.3635 −1.63266 −0.816330 0.577586i \(-0.803995\pi\)
−0.816330 + 0.577586i \(0.803995\pi\)
\(444\) 0 0
\(445\) −38.0893 −1.80560
\(446\) 2.64033 0.125023
\(447\) 0 0
\(448\) −3.98192 −0.188128
\(449\) −17.5603 −0.828723 −0.414361 0.910112i \(-0.635995\pi\)
−0.414361 + 0.910112i \(0.635995\pi\)
\(450\) 0 0
\(451\) −22.8328 −1.07516
\(452\) 9.77179 0.459626
\(453\) 0 0
\(454\) −8.01439 −0.376134
\(455\) −36.2417 −1.69904
\(456\) 0 0
\(457\) −8.34889 −0.390544 −0.195272 0.980749i \(-0.562559\pi\)
−0.195272 + 0.980749i \(0.562559\pi\)
\(458\) 2.94323 0.137528
\(459\) 0 0
\(460\) 29.9734 1.39752
\(461\) 20.3398 0.947320 0.473660 0.880708i \(-0.342933\pi\)
0.473660 + 0.880708i \(0.342933\pi\)
\(462\) 0 0
\(463\) −2.58935 −0.120337 −0.0601686 0.998188i \(-0.519164\pi\)
−0.0601686 + 0.998188i \(0.519164\pi\)
\(464\) 3.90666 0.181362
\(465\) 0 0
\(466\) −2.52782 −0.117099
\(467\) −12.2401 −0.566403 −0.283201 0.959060i \(-0.591396\pi\)
−0.283201 + 0.959060i \(0.591396\pi\)
\(468\) 0 0
\(469\) −42.7812 −1.97545
\(470\) 5.22415 0.240972
\(471\) 0 0
\(472\) −10.5023 −0.483405
\(473\) 7.67569 0.352929
\(474\) 0 0
\(475\) 16.6468 0.763809
\(476\) 4.90899 0.225003
\(477\) 0 0
\(478\) 16.4955 0.754486
\(479\) −27.4270 −1.25317 −0.626587 0.779352i \(-0.715549\pi\)
−0.626587 + 0.779352i \(0.715549\pi\)
\(480\) 0 0
\(481\) 45.4499 2.07234
\(482\) −14.1812 −0.645934
\(483\) 0 0
\(484\) −1.30807 −0.0594576
\(485\) 36.3120 1.64884
\(486\) 0 0
\(487\) −6.02417 −0.272981 −0.136491 0.990641i \(-0.543582\pi\)
−0.136491 + 0.990641i \(0.543582\pi\)
\(488\) −1.19124 −0.0539250
\(489\) 0 0
\(490\) −4.60789 −0.208163
\(491\) −0.487291 −0.0219911 −0.0109956 0.999940i \(-0.503500\pi\)
−0.0109956 + 0.999940i \(0.503500\pi\)
\(492\) 0 0
\(493\) −1.68240 −0.0757714
\(494\) 10.9803 0.494026
\(495\) 0 0
\(496\) 1.46713 0.0658762
\(497\) −41.7766 −1.87394
\(498\) 0 0
\(499\) 5.48473 0.245530 0.122765 0.992436i \(-0.460824\pi\)
0.122765 + 0.992436i \(0.460824\pi\)
\(500\) 7.64098 0.341715
\(501\) 0 0
\(502\) −8.04402 −0.359022
\(503\) −10.5682 −0.471215 −0.235607 0.971848i \(-0.575708\pi\)
−0.235607 + 0.971848i \(0.575708\pi\)
\(504\) 0 0
\(505\) −17.3753 −0.773191
\(506\) −11.9853 −0.532811
\(507\) 0 0
\(508\) −18.0213 −0.799568
\(509\) −12.4066 −0.549915 −0.274957 0.961456i \(-0.588664\pi\)
−0.274957 + 0.961456i \(0.588664\pi\)
\(510\) 0 0
\(511\) −21.1136 −0.934011
\(512\) −20.8007 −0.919269
\(513\) 0 0
\(514\) −8.34324 −0.368005
\(515\) 5.13553 0.226298
\(516\) 0 0
\(517\) 10.8787 0.478444
\(518\) 20.2473 0.889615
\(519\) 0 0
\(520\) −24.1729 −1.06005
\(521\) −17.7888 −0.779342 −0.389671 0.920954i \(-0.627411\pi\)
−0.389671 + 0.920954i \(0.627411\pi\)
\(522\) 0 0
\(523\) −13.5765 −0.593658 −0.296829 0.954931i \(-0.595929\pi\)
−0.296829 + 0.954931i \(0.595929\pi\)
\(524\) 12.0176 0.524991
\(525\) 0 0
\(526\) −9.30253 −0.405610
\(527\) −0.631818 −0.0275224
\(528\) 0 0
\(529\) 14.8502 0.645660
\(530\) −13.8105 −0.599891
\(531\) 0 0
\(532\) −25.4739 −1.10443
\(533\) −26.5294 −1.14912
\(534\) 0 0
\(535\) 20.7691 0.897925
\(536\) −28.5347 −1.23251
\(537\) 0 0
\(538\) 6.44952 0.278059
\(539\) −9.59541 −0.413304
\(540\) 0 0
\(541\) −27.3077 −1.17405 −0.587025 0.809569i \(-0.699701\pi\)
−0.587025 + 0.809569i \(0.699701\pi\)
\(542\) −1.56961 −0.0674207
\(543\) 0 0
\(544\) 5.05479 0.216723
\(545\) 33.0220 1.41451
\(546\) 0 0
\(547\) 12.6976 0.542910 0.271455 0.962451i \(-0.412495\pi\)
0.271455 + 0.962451i \(0.412495\pi\)
\(548\) 14.4781 0.618474
\(549\) 0 0
\(550\) 6.68521 0.285058
\(551\) 8.73036 0.371926
\(552\) 0 0
\(553\) 2.33277 0.0991993
\(554\) −10.4418 −0.443628
\(555\) 0 0
\(556\) 9.89771 0.419757
\(557\) 15.1085 0.640166 0.320083 0.947389i \(-0.396289\pi\)
0.320083 + 0.947389i \(0.396289\pi\)
\(558\) 0 0
\(559\) 8.91837 0.377207
\(560\) 19.7278 0.833653
\(561\) 0 0
\(562\) −6.09224 −0.256985
\(563\) 6.13230 0.258445 0.129223 0.991616i \(-0.458752\pi\)
0.129223 + 0.991616i \(0.458752\pi\)
\(564\) 0 0
\(565\) −16.9116 −0.711476
\(566\) 8.11223 0.340982
\(567\) 0 0
\(568\) −27.8646 −1.16917
\(569\) 1.47937 0.0620185 0.0310092 0.999519i \(-0.490128\pi\)
0.0310092 + 0.999519i \(0.490128\pi\)
\(570\) 0 0
\(571\) 8.81608 0.368941 0.184471 0.982838i \(-0.440943\pi\)
0.184471 + 0.982838i \(0.440943\pi\)
\(572\) −22.9639 −0.960167
\(573\) 0 0
\(574\) −11.8185 −0.493294
\(575\) −21.1123 −0.880442
\(576\) 0 0
\(577\) 14.3168 0.596015 0.298008 0.954563i \(-0.403678\pi\)
0.298008 + 0.954563i \(0.403678\pi\)
\(578\) 9.15331 0.380728
\(579\) 0 0
\(580\) −8.76804 −0.364073
\(581\) −11.3908 −0.472570
\(582\) 0 0
\(583\) −28.7589 −1.19107
\(584\) −14.0826 −0.582742
\(585\) 0 0
\(586\) 12.3999 0.512236
\(587\) −8.53860 −0.352426 −0.176213 0.984352i \(-0.556385\pi\)
−0.176213 + 0.984352i \(0.556385\pi\)
\(588\) 0 0
\(589\) 3.27865 0.135095
\(590\) 8.29178 0.341367
\(591\) 0 0
\(592\) −24.7403 −1.01682
\(593\) 39.7479 1.63225 0.816125 0.577875i \(-0.196118\pi\)
0.816125 + 0.577875i \(0.196118\pi\)
\(594\) 0 0
\(595\) −8.49576 −0.348292
\(596\) 23.1449 0.948052
\(597\) 0 0
\(598\) −13.9257 −0.569463
\(599\) −20.3776 −0.832607 −0.416304 0.909226i \(-0.636675\pi\)
−0.416304 + 0.909226i \(0.636675\pi\)
\(600\) 0 0
\(601\) −13.6888 −0.558379 −0.279190 0.960236i \(-0.590066\pi\)
−0.279190 + 0.960236i \(0.590066\pi\)
\(602\) 3.97301 0.161928
\(603\) 0 0
\(604\) −10.5317 −0.428528
\(605\) 2.26381 0.0920370
\(606\) 0 0
\(607\) −4.50009 −0.182653 −0.0913265 0.995821i \(-0.529111\pi\)
−0.0913265 + 0.995821i \(0.529111\pi\)
\(608\) −26.2305 −1.06379
\(609\) 0 0
\(610\) 0.940514 0.0380803
\(611\) 12.6399 0.511357
\(612\) 0 0
\(613\) 35.7734 1.44487 0.722436 0.691437i \(-0.243022\pi\)
0.722436 + 0.691437i \(0.243022\pi\)
\(614\) −17.2977 −0.698077
\(615\) 0 0
\(616\) −22.4245 −0.903511
\(617\) 27.5829 1.11044 0.555222 0.831702i \(-0.312633\pi\)
0.555222 + 0.831702i \(0.312633\pi\)
\(618\) 0 0
\(619\) −33.4281 −1.34359 −0.671794 0.740738i \(-0.734476\pi\)
−0.671794 + 0.740738i \(0.734476\pi\)
\(620\) −3.29281 −0.132242
\(621\) 0 0
\(622\) −15.3891 −0.617048
\(623\) −41.0549 −1.64483
\(624\) 0 0
\(625\) −30.3821 −1.21528
\(626\) 4.60125 0.183903
\(627\) 0 0
\(628\) 0.278676 0.0111204
\(629\) 10.6544 0.424817
\(630\) 0 0
\(631\) −10.9325 −0.435217 −0.217608 0.976036i \(-0.569826\pi\)
−0.217608 + 0.976036i \(0.569826\pi\)
\(632\) 1.55594 0.0618918
\(633\) 0 0
\(634\) 11.0224 0.437757
\(635\) 31.1887 1.23769
\(636\) 0 0
\(637\) −11.1489 −0.441735
\(638\) 3.50603 0.138805
\(639\) 0 0
\(640\) 33.4992 1.32417
\(641\) −9.31534 −0.367934 −0.183967 0.982932i \(-0.558894\pi\)
−0.183967 + 0.982932i \(0.558894\pi\)
\(642\) 0 0
\(643\) 1.28750 0.0507741 0.0253871 0.999678i \(-0.491918\pi\)
0.0253871 + 0.999678i \(0.491918\pi\)
\(644\) 32.3071 1.27308
\(645\) 0 0
\(646\) 2.57399 0.101272
\(647\) −25.7409 −1.01198 −0.505989 0.862540i \(-0.668872\pi\)
−0.505989 + 0.862540i \(0.668872\pi\)
\(648\) 0 0
\(649\) 17.2667 0.677776
\(650\) 7.76753 0.304668
\(651\) 0 0
\(652\) −27.1830 −1.06457
\(653\) −38.9594 −1.52460 −0.762299 0.647225i \(-0.775929\pi\)
−0.762299 + 0.647225i \(0.775929\pi\)
\(654\) 0 0
\(655\) −20.7983 −0.812657
\(656\) 14.4410 0.563828
\(657\) 0 0
\(658\) 5.63091 0.219516
\(659\) −33.5828 −1.30820 −0.654100 0.756408i \(-0.726953\pi\)
−0.654100 + 0.756408i \(0.726953\pi\)
\(660\) 0 0
\(661\) 35.4338 1.37822 0.689108 0.724659i \(-0.258003\pi\)
0.689108 + 0.724659i \(0.258003\pi\)
\(662\) −1.12768 −0.0438283
\(663\) 0 0
\(664\) −7.59756 −0.294843
\(665\) 44.0865 1.70960
\(666\) 0 0
\(667\) −11.0722 −0.428719
\(668\) 30.6639 1.18642
\(669\) 0 0
\(670\) 22.5289 0.870366
\(671\) 1.95851 0.0756076
\(672\) 0 0
\(673\) 27.4725 1.05899 0.529494 0.848314i \(-0.322382\pi\)
0.529494 + 0.848314i \(0.322382\pi\)
\(674\) 10.4188 0.401316
\(675\) 0 0
\(676\) −4.86999 −0.187307
\(677\) −9.55320 −0.367159 −0.183580 0.983005i \(-0.558769\pi\)
−0.183580 + 0.983005i \(0.558769\pi\)
\(678\) 0 0
\(679\) 39.1393 1.50203
\(680\) −5.66660 −0.217304
\(681\) 0 0
\(682\) 1.31668 0.0504181
\(683\) 33.2321 1.27159 0.635795 0.771858i \(-0.280672\pi\)
0.635795 + 0.771858i \(0.280672\pi\)
\(684\) 0 0
\(685\) −25.0566 −0.957364
\(686\) 7.46889 0.285164
\(687\) 0 0
\(688\) −4.85464 −0.185081
\(689\) −33.4149 −1.27300
\(690\) 0 0
\(691\) −5.42964 −0.206553 −0.103277 0.994653i \(-0.532933\pi\)
−0.103277 + 0.994653i \(0.532933\pi\)
\(692\) −31.6333 −1.20252
\(693\) 0 0
\(694\) −15.2028 −0.577091
\(695\) −17.1295 −0.649760
\(696\) 0 0
\(697\) −6.21901 −0.235562
\(698\) 7.44103 0.281647
\(699\) 0 0
\(700\) −18.0204 −0.681108
\(701\) 33.7389 1.27430 0.637150 0.770740i \(-0.280113\pi\)
0.637150 + 0.770740i \(0.280113\pi\)
\(702\) 0 0
\(703\) −55.2880 −2.08522
\(704\) 4.36656 0.164571
\(705\) 0 0
\(706\) 11.0314 0.415170
\(707\) −18.7282 −0.704346
\(708\) 0 0
\(709\) −19.3855 −0.728037 −0.364018 0.931392i \(-0.618595\pi\)
−0.364018 + 0.931392i \(0.618595\pi\)
\(710\) 21.9998 0.825638
\(711\) 0 0
\(712\) −27.3833 −1.02623
\(713\) −4.15814 −0.155723
\(714\) 0 0
\(715\) 39.7425 1.48629
\(716\) 17.2751 0.645600
\(717\) 0 0
\(718\) 8.33047 0.310890
\(719\) −4.78753 −0.178545 −0.0892724 0.996007i \(-0.528454\pi\)
−0.0892724 + 0.996007i \(0.528454\pi\)
\(720\) 0 0
\(721\) 5.53539 0.206149
\(722\) −2.57250 −0.0957386
\(723\) 0 0
\(724\) 1.37519 0.0511085
\(725\) 6.17593 0.229368
\(726\) 0 0
\(727\) −7.56024 −0.280394 −0.140197 0.990124i \(-0.544774\pi\)
−0.140197 + 0.990124i \(0.544774\pi\)
\(728\) −26.0550 −0.965664
\(729\) 0 0
\(730\) 11.1186 0.411516
\(731\) 2.09064 0.0773251
\(732\) 0 0
\(733\) 38.6412 1.42725 0.713623 0.700530i \(-0.247053\pi\)
0.713623 + 0.700530i \(0.247053\pi\)
\(734\) 6.24030 0.230334
\(735\) 0 0
\(736\) 33.2667 1.22623
\(737\) 46.9138 1.72809
\(738\) 0 0
\(739\) −50.6296 −1.86244 −0.931219 0.364459i \(-0.881254\pi\)
−0.931219 + 0.364459i \(0.881254\pi\)
\(740\) 55.5266 2.04120
\(741\) 0 0
\(742\) −14.8858 −0.546477
\(743\) 15.3539 0.563280 0.281640 0.959520i \(-0.409122\pi\)
0.281640 + 0.959520i \(0.409122\pi\)
\(744\) 0 0
\(745\) −40.0558 −1.46753
\(746\) 11.5895 0.424323
\(747\) 0 0
\(748\) −5.38318 −0.196829
\(749\) 22.3862 0.817973
\(750\) 0 0
\(751\) −46.6556 −1.70249 −0.851244 0.524770i \(-0.824151\pi\)
−0.851244 + 0.524770i \(0.824151\pi\)
\(752\) −6.88043 −0.250904
\(753\) 0 0
\(754\) 4.07365 0.148354
\(755\) 18.2267 0.663338
\(756\) 0 0
\(757\) −11.7045 −0.425407 −0.212703 0.977117i \(-0.568227\pi\)
−0.212703 + 0.977117i \(0.568227\pi\)
\(758\) −14.7753 −0.536662
\(759\) 0 0
\(760\) 29.4053 1.06664
\(761\) 26.1789 0.948983 0.474492 0.880260i \(-0.342632\pi\)
0.474492 + 0.880260i \(0.342632\pi\)
\(762\) 0 0
\(763\) 35.5931 1.28856
\(764\) 1.28362 0.0464397
\(765\) 0 0
\(766\) 13.3562 0.482578
\(767\) 20.0621 0.724401
\(768\) 0 0
\(769\) 45.5433 1.64233 0.821166 0.570689i \(-0.193324\pi\)
0.821166 + 0.570689i \(0.193324\pi\)
\(770\) 17.7047 0.638034
\(771\) 0 0
\(772\) −15.6955 −0.564893
\(773\) 13.9880 0.503113 0.251556 0.967843i \(-0.419058\pi\)
0.251556 + 0.967843i \(0.419058\pi\)
\(774\) 0 0
\(775\) 2.31935 0.0833134
\(776\) 26.1056 0.937135
\(777\) 0 0
\(778\) 18.7710 0.672973
\(779\) 32.2719 1.15626
\(780\) 0 0
\(781\) 45.8121 1.63928
\(782\) −3.26445 −0.116737
\(783\) 0 0
\(784\) 6.06880 0.216743
\(785\) −0.482291 −0.0172137
\(786\) 0 0
\(787\) 14.2028 0.506274 0.253137 0.967431i \(-0.418538\pi\)
0.253137 + 0.967431i \(0.418538\pi\)
\(788\) −1.87886 −0.0669316
\(789\) 0 0
\(790\) −1.22845 −0.0437062
\(791\) −18.2283 −0.648125
\(792\) 0 0
\(793\) 2.27559 0.0808086
\(794\) 0.0313826 0.00111373
\(795\) 0 0
\(796\) −12.8867 −0.456756
\(797\) −41.3022 −1.46300 −0.731499 0.681842i \(-0.761179\pi\)
−0.731499 + 0.681842i \(0.761179\pi\)
\(798\) 0 0
\(799\) 2.96305 0.104825
\(800\) −18.5557 −0.656042
\(801\) 0 0
\(802\) 16.2584 0.574103
\(803\) 23.1531 0.817056
\(804\) 0 0
\(805\) −55.9125 −1.97066
\(806\) 1.52984 0.0538864
\(807\) 0 0
\(808\) −12.4915 −0.439451
\(809\) 23.8379 0.838097 0.419048 0.907964i \(-0.362364\pi\)
0.419048 + 0.907964i \(0.362364\pi\)
\(810\) 0 0
\(811\) −3.33188 −0.116998 −0.0584991 0.998287i \(-0.518631\pi\)
−0.0584991 + 0.998287i \(0.518631\pi\)
\(812\) −9.45074 −0.331656
\(813\) 0 0
\(814\) −22.2031 −0.778219
\(815\) 47.0444 1.64789
\(816\) 0 0
\(817\) −10.8488 −0.379553
\(818\) −17.8438 −0.623895
\(819\) 0 0
\(820\) −32.4112 −1.13185
\(821\) 8.97665 0.313287 0.156644 0.987655i \(-0.449933\pi\)
0.156644 + 0.987655i \(0.449933\pi\)
\(822\) 0 0
\(823\) −1.29814 −0.0452502 −0.0226251 0.999744i \(-0.507202\pi\)
−0.0226251 + 0.999744i \(0.507202\pi\)
\(824\) 3.69206 0.128619
\(825\) 0 0
\(826\) 8.93739 0.310971
\(827\) −31.5324 −1.09649 −0.548245 0.836318i \(-0.684704\pi\)
−0.548245 + 0.836318i \(0.684704\pi\)
\(828\) 0 0
\(829\) 26.7574 0.929322 0.464661 0.885489i \(-0.346176\pi\)
0.464661 + 0.885489i \(0.346176\pi\)
\(830\) 5.99846 0.208209
\(831\) 0 0
\(832\) 5.07349 0.175892
\(833\) −2.61352 −0.0905530
\(834\) 0 0
\(835\) −53.0687 −1.83652
\(836\) 27.9346 0.966138
\(837\) 0 0
\(838\) 1.91526 0.0661615
\(839\) 3.87938 0.133931 0.0669656 0.997755i \(-0.478668\pi\)
0.0669656 + 0.997755i \(0.478668\pi\)
\(840\) 0 0
\(841\) −25.7611 −0.888312
\(842\) −14.3398 −0.494183
\(843\) 0 0
\(844\) 17.1763 0.591234
\(845\) 8.42827 0.289941
\(846\) 0 0
\(847\) 2.44008 0.0838420
\(848\) 18.1891 0.624616
\(849\) 0 0
\(850\) 1.82086 0.0624551
\(851\) 70.1186 2.40364
\(852\) 0 0
\(853\) −3.43923 −0.117757 −0.0588784 0.998265i \(-0.518752\pi\)
−0.0588784 + 0.998265i \(0.518752\pi\)
\(854\) 1.01374 0.0346896
\(855\) 0 0
\(856\) 14.9314 0.510345
\(857\) 14.6592 0.500748 0.250374 0.968149i \(-0.419446\pi\)
0.250374 + 0.968149i \(0.419446\pi\)
\(858\) 0 0
\(859\) 9.53506 0.325332 0.162666 0.986681i \(-0.447991\pi\)
0.162666 + 0.986681i \(0.447991\pi\)
\(860\) 10.8957 0.371539
\(861\) 0 0
\(862\) 18.6253 0.634379
\(863\) 16.0175 0.545243 0.272621 0.962121i \(-0.412109\pi\)
0.272621 + 0.962121i \(0.412109\pi\)
\(864\) 0 0
\(865\) 54.7464 1.86143
\(866\) 7.33489 0.249250
\(867\) 0 0
\(868\) −3.54919 −0.120467
\(869\) −2.55810 −0.0867777
\(870\) 0 0
\(871\) 54.5090 1.84697
\(872\) 23.7403 0.803948
\(873\) 0 0
\(874\) 16.9400 0.573004
\(875\) −14.2535 −0.481857
\(876\) 0 0
\(877\) −33.1203 −1.11839 −0.559196 0.829035i \(-0.688890\pi\)
−0.559196 + 0.829035i \(0.688890\pi\)
\(878\) −20.9319 −0.706417
\(879\) 0 0
\(880\) −21.6335 −0.729264
\(881\) 11.5610 0.389500 0.194750 0.980853i \(-0.437610\pi\)
0.194750 + 0.980853i \(0.437610\pi\)
\(882\) 0 0
\(883\) −41.7333 −1.40444 −0.702219 0.711961i \(-0.747807\pi\)
−0.702219 + 0.711961i \(0.747807\pi\)
\(884\) −6.25470 −0.210368
\(885\) 0 0
\(886\) 19.5050 0.655283
\(887\) 24.1020 0.809265 0.404632 0.914479i \(-0.367399\pi\)
0.404632 + 0.914479i \(0.367399\pi\)
\(888\) 0 0
\(889\) 33.6171 1.12748
\(890\) 21.6198 0.724697
\(891\) 0 0
\(892\) 7.80468 0.261320
\(893\) −15.3760 −0.514537
\(894\) 0 0
\(895\) −29.8972 −0.999353
\(896\) 36.1075 1.20627
\(897\) 0 0
\(898\) 9.96738 0.332616
\(899\) 1.21637 0.0405682
\(900\) 0 0
\(901\) −7.83310 −0.260958
\(902\) 12.9601 0.431524
\(903\) 0 0
\(904\) −12.1582 −0.404374
\(905\) −2.37998 −0.0791131
\(906\) 0 0
\(907\) 23.0915 0.766740 0.383370 0.923595i \(-0.374763\pi\)
0.383370 + 0.923595i \(0.374763\pi\)
\(908\) −23.6901 −0.786184
\(909\) 0 0
\(910\) 20.5711 0.681924
\(911\) −22.8992 −0.758685 −0.379342 0.925256i \(-0.623850\pi\)
−0.379342 + 0.925256i \(0.623850\pi\)
\(912\) 0 0
\(913\) 12.4911 0.413395
\(914\) 4.73890 0.156749
\(915\) 0 0
\(916\) 8.70005 0.287458
\(917\) −22.4177 −0.740297
\(918\) 0 0
\(919\) 19.6827 0.649273 0.324636 0.945839i \(-0.394758\pi\)
0.324636 + 0.945839i \(0.394758\pi\)
\(920\) −37.2932 −1.22952
\(921\) 0 0
\(922\) −11.5451 −0.380216
\(923\) 53.2289 1.75205
\(924\) 0 0
\(925\) −39.1111 −1.28597
\(926\) 1.46974 0.0482985
\(927\) 0 0
\(928\) −9.73144 −0.319450
\(929\) −28.9175 −0.948753 −0.474376 0.880322i \(-0.657326\pi\)
−0.474376 + 0.880322i \(0.657326\pi\)
\(930\) 0 0
\(931\) 13.5622 0.444482
\(932\) −7.47212 −0.244757
\(933\) 0 0
\(934\) 6.94756 0.227331
\(935\) 9.31642 0.304680
\(936\) 0 0
\(937\) 19.5798 0.639643 0.319822 0.947478i \(-0.396377\pi\)
0.319822 + 0.947478i \(0.396377\pi\)
\(938\) 24.2830 0.792867
\(939\) 0 0
\(940\) 15.4423 0.503673
\(941\) −10.0961 −0.329124 −0.164562 0.986367i \(-0.552621\pi\)
−0.164562 + 0.986367i \(0.552621\pi\)
\(942\) 0 0
\(943\) −40.9287 −1.33282
\(944\) −10.9206 −0.355436
\(945\) 0 0
\(946\) −4.35679 −0.141651
\(947\) 21.0071 0.682637 0.341319 0.939948i \(-0.389126\pi\)
0.341319 + 0.939948i \(0.389126\pi\)
\(948\) 0 0
\(949\) 26.9016 0.873262
\(950\) −9.44888 −0.306562
\(951\) 0 0
\(952\) −6.10781 −0.197955
\(953\) −6.75297 −0.218750 −0.109375 0.994001i \(-0.534885\pi\)
−0.109375 + 0.994001i \(0.534885\pi\)
\(954\) 0 0
\(955\) −2.22150 −0.0718860
\(956\) 48.7598 1.57701
\(957\) 0 0
\(958\) 15.5678 0.502973
\(959\) −27.0075 −0.872119
\(960\) 0 0
\(961\) −30.5432 −0.985264
\(962\) −25.7977 −0.831753
\(963\) 0 0
\(964\) −41.9188 −1.35011
\(965\) 27.1635 0.874423
\(966\) 0 0
\(967\) 11.7933 0.379248 0.189624 0.981857i \(-0.439273\pi\)
0.189624 + 0.981857i \(0.439273\pi\)
\(968\) 1.62751 0.0523102
\(969\) 0 0
\(970\) −20.6110 −0.661778
\(971\) 24.4687 0.785239 0.392620 0.919701i \(-0.371569\pi\)
0.392620 + 0.919701i \(0.371569\pi\)
\(972\) 0 0
\(973\) −18.4632 −0.591905
\(974\) 3.41937 0.109564
\(975\) 0 0
\(976\) −1.23870 −0.0396498
\(977\) 38.9169 1.24506 0.622531 0.782595i \(-0.286104\pi\)
0.622531 + 0.782595i \(0.286104\pi\)
\(978\) 0 0
\(979\) 45.0207 1.43887
\(980\) −13.6207 −0.435097
\(981\) 0 0
\(982\) 0.276590 0.00882635
\(983\) 18.7169 0.596976 0.298488 0.954413i \(-0.403518\pi\)
0.298488 + 0.954413i \(0.403518\pi\)
\(984\) 0 0
\(985\) 3.25165 0.103606
\(986\) 0.954943 0.0304116
\(987\) 0 0
\(988\) 32.4571 1.03260
\(989\) 13.7590 0.437510
\(990\) 0 0
\(991\) 2.29173 0.0727993 0.0363997 0.999337i \(-0.488411\pi\)
0.0363997 + 0.999337i \(0.488411\pi\)
\(992\) −3.65461 −0.116034
\(993\) 0 0
\(994\) 23.7127 0.752122
\(995\) 22.3024 0.707033
\(996\) 0 0
\(997\) 31.2797 0.990639 0.495319 0.868711i \(-0.335051\pi\)
0.495319 + 0.868711i \(0.335051\pi\)
\(998\) −3.11318 −0.0985458
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.32 72
3.2 odd 2 6561.2.a.d.1.41 72
81.5 odd 54 243.2.g.a.73.4 144
81.11 odd 54 729.2.g.a.514.5 144
81.16 even 27 81.2.g.a.13.5 144
81.22 even 27 729.2.g.d.217.4 144
81.32 odd 54 729.2.g.b.703.5 144
81.38 odd 54 729.2.g.b.28.5 144
81.43 even 27 729.2.g.c.28.4 144
81.49 even 27 729.2.g.c.703.4 144
81.59 odd 54 729.2.g.a.217.5 144
81.65 odd 54 243.2.g.a.10.4 144
81.70 even 27 729.2.g.d.514.4 144
81.76 even 27 81.2.g.a.25.5 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.5 144 81.16 even 27
81.2.g.a.25.5 yes 144 81.76 even 27
243.2.g.a.10.4 144 81.65 odd 54
243.2.g.a.73.4 144 81.5 odd 54
729.2.g.a.217.5 144 81.59 odd 54
729.2.g.a.514.5 144 81.11 odd 54
729.2.g.b.28.5 144 81.38 odd 54
729.2.g.b.703.5 144 81.32 odd 54
729.2.g.c.28.4 144 81.43 even 27
729.2.g.c.703.4 144 81.49 even 27
729.2.g.d.217.4 144 81.22 even 27
729.2.g.d.514.4 144 81.70 even 27
6561.2.a.c.1.32 72 1.1 even 1 trivial
6561.2.a.d.1.41 72 3.2 odd 2