Properties

Label 6561.2.a.c.1.30
Level $6561$
Weight $2$
Character 6561.1
Self dual yes
Analytic conductor $52.390$
Analytic rank $1$
Dimension $72$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6561,2,Mod(1,6561)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6561.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6561, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6561 = 3^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6561.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3898487662\)
Analytic rank: \(1\)
Dimension: \(72\)
Twist minimal: no (minimal twist has level 81)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.30
Character \(\chi\) \(=\) 6561.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.781548 q^{2} -1.38918 q^{4} -1.48073 q^{5} -3.80126 q^{7} +2.64881 q^{8} +1.15726 q^{10} +5.05444 q^{11} -4.49226 q^{13} +2.97087 q^{14} +0.708195 q^{16} +4.58215 q^{17} -4.46448 q^{19} +2.05700 q^{20} -3.95028 q^{22} -3.45493 q^{23} -2.80745 q^{25} +3.51091 q^{26} +5.28065 q^{28} +0.652939 q^{29} +0.658151 q^{31} -5.85111 q^{32} -3.58117 q^{34} +5.62863 q^{35} +1.00016 q^{37} +3.48921 q^{38} -3.92216 q^{40} -0.682813 q^{41} +8.39308 q^{43} -7.02154 q^{44} +2.70019 q^{46} +7.93477 q^{47} +7.44960 q^{49} +2.19416 q^{50} +6.24057 q^{52} +4.14938 q^{53} -7.48424 q^{55} -10.0688 q^{56} -0.510303 q^{58} +5.26997 q^{59} -6.79097 q^{61} -0.514376 q^{62} +3.15653 q^{64} +6.65180 q^{65} +5.30120 q^{67} -6.36545 q^{68} -4.39904 q^{70} -6.13308 q^{71} -4.40156 q^{73} -0.781671 q^{74} +6.20199 q^{76} -19.2132 q^{77} +11.2425 q^{79} -1.04864 q^{80} +0.533651 q^{82} +1.62164 q^{83} -6.78492 q^{85} -6.55959 q^{86} +13.3882 q^{88} -1.04284 q^{89} +17.0762 q^{91} +4.79953 q^{92} -6.20140 q^{94} +6.61068 q^{95} +4.98814 q^{97} -5.82222 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 9 q^{2} + 63 q^{4} - 18 q^{5} - 27 q^{8} - 36 q^{11} - 36 q^{14} + 45 q^{16} - 36 q^{17} - 54 q^{20} - 54 q^{23} + 36 q^{25} - 45 q^{26} + 9 q^{28} - 54 q^{29} - 63 q^{32} - 72 q^{35} - 54 q^{38}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.781548 −0.552638 −0.276319 0.961066i \(-0.589115\pi\)
−0.276319 + 0.961066i \(0.589115\pi\)
\(3\) 0 0
\(4\) −1.38918 −0.694591
\(5\) −1.48073 −0.662201 −0.331100 0.943596i \(-0.607420\pi\)
−0.331100 + 0.943596i \(0.607420\pi\)
\(6\) 0 0
\(7\) −3.80126 −1.43674 −0.718371 0.695660i \(-0.755112\pi\)
−0.718371 + 0.695660i \(0.755112\pi\)
\(8\) 2.64881 0.936495
\(9\) 0 0
\(10\) 1.15726 0.365957
\(11\) 5.05444 1.52397 0.761985 0.647595i \(-0.224225\pi\)
0.761985 + 0.647595i \(0.224225\pi\)
\(12\) 0 0
\(13\) −4.49226 −1.24593 −0.622964 0.782251i \(-0.714072\pi\)
−0.622964 + 0.782251i \(0.714072\pi\)
\(14\) 2.97087 0.793998
\(15\) 0 0
\(16\) 0.708195 0.177049
\(17\) 4.58215 1.11134 0.555668 0.831404i \(-0.312463\pi\)
0.555668 + 0.831404i \(0.312463\pi\)
\(18\) 0 0
\(19\) −4.46448 −1.02422 −0.512112 0.858919i \(-0.671137\pi\)
−0.512112 + 0.858919i \(0.671137\pi\)
\(20\) 2.05700 0.459959
\(21\) 0 0
\(22\) −3.95028 −0.842203
\(23\) −3.45493 −0.720403 −0.360201 0.932875i \(-0.617292\pi\)
−0.360201 + 0.932875i \(0.617292\pi\)
\(24\) 0 0
\(25\) −2.80745 −0.561490
\(26\) 3.51091 0.688547
\(27\) 0 0
\(28\) 5.28065 0.997949
\(29\) 0.652939 0.121248 0.0606239 0.998161i \(-0.480691\pi\)
0.0606239 + 0.998161i \(0.480691\pi\)
\(30\) 0 0
\(31\) 0.658151 0.118207 0.0591037 0.998252i \(-0.481176\pi\)
0.0591037 + 0.998252i \(0.481176\pi\)
\(32\) −5.85111 −1.03434
\(33\) 0 0
\(34\) −3.58117 −0.614166
\(35\) 5.62863 0.951412
\(36\) 0 0
\(37\) 1.00016 0.164425 0.0822124 0.996615i \(-0.473801\pi\)
0.0822124 + 0.996615i \(0.473801\pi\)
\(38\) 3.48921 0.566024
\(39\) 0 0
\(40\) −3.92216 −0.620148
\(41\) −0.682813 −0.106637 −0.0533187 0.998578i \(-0.516980\pi\)
−0.0533187 + 0.998578i \(0.516980\pi\)
\(42\) 0 0
\(43\) 8.39308 1.27993 0.639966 0.768403i \(-0.278948\pi\)
0.639966 + 0.768403i \(0.278948\pi\)
\(44\) −7.02154 −1.05854
\(45\) 0 0
\(46\) 2.70019 0.398122
\(47\) 7.93477 1.15741 0.578703 0.815539i \(-0.303559\pi\)
0.578703 + 0.815539i \(0.303559\pi\)
\(48\) 0 0
\(49\) 7.44960 1.06423
\(50\) 2.19416 0.310301
\(51\) 0 0
\(52\) 6.24057 0.865411
\(53\) 4.14938 0.569962 0.284981 0.958533i \(-0.408013\pi\)
0.284981 + 0.958533i \(0.408013\pi\)
\(54\) 0 0
\(55\) −7.48424 −1.00917
\(56\) −10.0688 −1.34550
\(57\) 0 0
\(58\) −0.510303 −0.0670061
\(59\) 5.26997 0.686092 0.343046 0.939319i \(-0.388541\pi\)
0.343046 + 0.939319i \(0.388541\pi\)
\(60\) 0 0
\(61\) −6.79097 −0.869495 −0.434747 0.900553i \(-0.643162\pi\)
−0.434747 + 0.900553i \(0.643162\pi\)
\(62\) −0.514376 −0.0653259
\(63\) 0 0
\(64\) 3.15653 0.394566
\(65\) 6.65180 0.825055
\(66\) 0 0
\(67\) 5.30120 0.647645 0.323822 0.946118i \(-0.395032\pi\)
0.323822 + 0.946118i \(0.395032\pi\)
\(68\) −6.36545 −0.771924
\(69\) 0 0
\(70\) −4.39904 −0.525786
\(71\) −6.13308 −0.727863 −0.363932 0.931426i \(-0.618566\pi\)
−0.363932 + 0.931426i \(0.618566\pi\)
\(72\) 0 0
\(73\) −4.40156 −0.515163 −0.257582 0.966257i \(-0.582926\pi\)
−0.257582 + 0.966257i \(0.582926\pi\)
\(74\) −0.781671 −0.0908674
\(75\) 0 0
\(76\) 6.20199 0.711417
\(77\) −19.2132 −2.18955
\(78\) 0 0
\(79\) 11.2425 1.26488 0.632442 0.774608i \(-0.282053\pi\)
0.632442 + 0.774608i \(0.282053\pi\)
\(80\) −1.04864 −0.117242
\(81\) 0 0
\(82\) 0.533651 0.0589319
\(83\) 1.62164 0.177999 0.0889993 0.996032i \(-0.471633\pi\)
0.0889993 + 0.996032i \(0.471633\pi\)
\(84\) 0 0
\(85\) −6.78492 −0.735928
\(86\) −6.55959 −0.707339
\(87\) 0 0
\(88\) 13.3882 1.42719
\(89\) −1.04284 −0.110541 −0.0552703 0.998471i \(-0.517602\pi\)
−0.0552703 + 0.998471i \(0.517602\pi\)
\(90\) 0 0
\(91\) 17.0762 1.79008
\(92\) 4.79953 0.500386
\(93\) 0 0
\(94\) −6.20140 −0.639626
\(95\) 6.61068 0.678241
\(96\) 0 0
\(97\) 4.98814 0.506469 0.253235 0.967405i \(-0.418506\pi\)
0.253235 + 0.967405i \(0.418506\pi\)
\(98\) −5.82222 −0.588133
\(99\) 0 0
\(100\) 3.90006 0.390006
\(101\) −9.57048 −0.952299 −0.476149 0.879364i \(-0.657968\pi\)
−0.476149 + 0.879364i \(0.657968\pi\)
\(102\) 0 0
\(103\) 3.25514 0.320738 0.160369 0.987057i \(-0.448732\pi\)
0.160369 + 0.987057i \(0.448732\pi\)
\(104\) −11.8991 −1.16681
\(105\) 0 0
\(106\) −3.24294 −0.314982
\(107\) 16.8136 1.62543 0.812716 0.582660i \(-0.197988\pi\)
0.812716 + 0.582660i \(0.197988\pi\)
\(108\) 0 0
\(109\) 7.63544 0.731343 0.365671 0.930744i \(-0.380839\pi\)
0.365671 + 0.930744i \(0.380839\pi\)
\(110\) 5.84929 0.557708
\(111\) 0 0
\(112\) −2.69204 −0.254373
\(113\) −10.0194 −0.942543 −0.471272 0.881988i \(-0.656205\pi\)
−0.471272 + 0.881988i \(0.656205\pi\)
\(114\) 0 0
\(115\) 5.11581 0.477051
\(116\) −0.907052 −0.0842176
\(117\) 0 0
\(118\) −4.11874 −0.379160
\(119\) −17.4180 −1.59670
\(120\) 0 0
\(121\) 14.5473 1.32248
\(122\) 5.30747 0.480516
\(123\) 0 0
\(124\) −0.914292 −0.0821058
\(125\) 11.5607 1.03402
\(126\) 0 0
\(127\) 3.88574 0.344803 0.172402 0.985027i \(-0.444847\pi\)
0.172402 + 0.985027i \(0.444847\pi\)
\(128\) 9.23523 0.816287
\(129\) 0 0
\(130\) −5.19870 −0.455956
\(131\) −16.6492 −1.45465 −0.727324 0.686294i \(-0.759236\pi\)
−0.727324 + 0.686294i \(0.759236\pi\)
\(132\) 0 0
\(133\) 16.9707 1.47154
\(134\) −4.14314 −0.357913
\(135\) 0 0
\(136\) 12.1373 1.04076
\(137\) 9.27589 0.792492 0.396246 0.918144i \(-0.370313\pi\)
0.396246 + 0.918144i \(0.370313\pi\)
\(138\) 0 0
\(139\) 15.9212 1.35042 0.675208 0.737628i \(-0.264054\pi\)
0.675208 + 0.737628i \(0.264054\pi\)
\(140\) −7.81920 −0.660843
\(141\) 0 0
\(142\) 4.79330 0.402245
\(143\) −22.7058 −1.89876
\(144\) 0 0
\(145\) −0.966824 −0.0802904
\(146\) 3.44003 0.284699
\(147\) 0 0
\(148\) −1.38940 −0.114208
\(149\) 23.3418 1.91223 0.956116 0.292988i \(-0.0946496\pi\)
0.956116 + 0.292988i \(0.0946496\pi\)
\(150\) 0 0
\(151\) −2.33209 −0.189783 −0.0948915 0.995488i \(-0.530250\pi\)
−0.0948915 + 0.995488i \(0.530250\pi\)
\(152\) −11.8256 −0.959180
\(153\) 0 0
\(154\) 15.0161 1.21003
\(155\) −0.974541 −0.0782770
\(156\) 0 0
\(157\) −19.6833 −1.57089 −0.785447 0.618929i \(-0.787567\pi\)
−0.785447 + 0.618929i \(0.787567\pi\)
\(158\) −8.78658 −0.699023
\(159\) 0 0
\(160\) 8.66389 0.684940
\(161\) 13.1331 1.03503
\(162\) 0 0
\(163\) −17.6622 −1.38341 −0.691707 0.722179i \(-0.743141\pi\)
−0.691707 + 0.722179i \(0.743141\pi\)
\(164\) 0.948552 0.0740695
\(165\) 0 0
\(166\) −1.26739 −0.0983688
\(167\) 3.39014 0.262337 0.131168 0.991360i \(-0.458127\pi\)
0.131168 + 0.991360i \(0.458127\pi\)
\(168\) 0 0
\(169\) 7.18037 0.552336
\(170\) 5.30274 0.406701
\(171\) 0 0
\(172\) −11.6595 −0.889030
\(173\) −18.6790 −1.42014 −0.710069 0.704132i \(-0.751336\pi\)
−0.710069 + 0.704132i \(0.751336\pi\)
\(174\) 0 0
\(175\) 10.6719 0.806716
\(176\) 3.57953 0.269817
\(177\) 0 0
\(178\) 0.815027 0.0610889
\(179\) 11.8846 0.888294 0.444147 0.895954i \(-0.353507\pi\)
0.444147 + 0.895954i \(0.353507\pi\)
\(180\) 0 0
\(181\) −15.7848 −1.17328 −0.586638 0.809849i \(-0.699549\pi\)
−0.586638 + 0.809849i \(0.699549\pi\)
\(182\) −13.3459 −0.989264
\(183\) 0 0
\(184\) −9.15145 −0.674654
\(185\) −1.48096 −0.108882
\(186\) 0 0
\(187\) 23.1602 1.69364
\(188\) −11.0228 −0.803924
\(189\) 0 0
\(190\) −5.16656 −0.374822
\(191\) 5.76661 0.417257 0.208629 0.977995i \(-0.433100\pi\)
0.208629 + 0.977995i \(0.433100\pi\)
\(192\) 0 0
\(193\) 0.175757 0.0126513 0.00632564 0.999980i \(-0.497986\pi\)
0.00632564 + 0.999980i \(0.497986\pi\)
\(194\) −3.89847 −0.279894
\(195\) 0 0
\(196\) −10.3489 −0.739204
\(197\) 11.2155 0.799069 0.399535 0.916718i \(-0.369172\pi\)
0.399535 + 0.916718i \(0.369172\pi\)
\(198\) 0 0
\(199\) −20.4783 −1.45167 −0.725834 0.687870i \(-0.758546\pi\)
−0.725834 + 0.687870i \(0.758546\pi\)
\(200\) −7.43640 −0.525833
\(201\) 0 0
\(202\) 7.47979 0.526276
\(203\) −2.48199 −0.174202
\(204\) 0 0
\(205\) 1.01106 0.0706154
\(206\) −2.54405 −0.177252
\(207\) 0 0
\(208\) −3.18139 −0.220590
\(209\) −22.5655 −1.56089
\(210\) 0 0
\(211\) 1.19139 0.0820184 0.0410092 0.999159i \(-0.486943\pi\)
0.0410092 + 0.999159i \(0.486943\pi\)
\(212\) −5.76425 −0.395891
\(213\) 0 0
\(214\) −13.1406 −0.898275
\(215\) −12.4279 −0.847573
\(216\) 0 0
\(217\) −2.50180 −0.169834
\(218\) −5.96746 −0.404168
\(219\) 0 0
\(220\) 10.3970 0.700964
\(221\) −20.5842 −1.38464
\(222\) 0 0
\(223\) −14.8999 −0.997770 −0.498885 0.866668i \(-0.666257\pi\)
−0.498885 + 0.866668i \(0.666257\pi\)
\(224\) 22.2416 1.48608
\(225\) 0 0
\(226\) 7.83062 0.520885
\(227\) −24.5988 −1.63268 −0.816340 0.577572i \(-0.804000\pi\)
−0.816340 + 0.577572i \(0.804000\pi\)
\(228\) 0 0
\(229\) 1.52698 0.100906 0.0504528 0.998726i \(-0.483934\pi\)
0.0504528 + 0.998726i \(0.483934\pi\)
\(230\) −3.99825 −0.263637
\(231\) 0 0
\(232\) 1.72951 0.113548
\(233\) 14.0599 0.921094 0.460547 0.887635i \(-0.347653\pi\)
0.460547 + 0.887635i \(0.347653\pi\)
\(234\) 0 0
\(235\) −11.7492 −0.766435
\(236\) −7.32096 −0.476554
\(237\) 0 0
\(238\) 13.6130 0.882399
\(239\) −22.9174 −1.48240 −0.741201 0.671283i \(-0.765743\pi\)
−0.741201 + 0.671283i \(0.765743\pi\)
\(240\) 0 0
\(241\) −7.06874 −0.455338 −0.227669 0.973739i \(-0.573110\pi\)
−0.227669 + 0.973739i \(0.573110\pi\)
\(242\) −11.3694 −0.730855
\(243\) 0 0
\(244\) 9.43390 0.603943
\(245\) −11.0308 −0.704733
\(246\) 0 0
\(247\) 20.0556 1.27611
\(248\) 1.74332 0.110701
\(249\) 0 0
\(250\) −9.03524 −0.571439
\(251\) 0.0664671 0.00419537 0.00209768 0.999998i \(-0.499332\pi\)
0.00209768 + 0.999998i \(0.499332\pi\)
\(252\) 0 0
\(253\) −17.4627 −1.09787
\(254\) −3.03689 −0.190551
\(255\) 0 0
\(256\) −13.5308 −0.845677
\(257\) 19.3437 1.20663 0.603313 0.797504i \(-0.293847\pi\)
0.603313 + 0.797504i \(0.293847\pi\)
\(258\) 0 0
\(259\) −3.80186 −0.236236
\(260\) −9.24057 −0.573076
\(261\) 0 0
\(262\) 13.0122 0.803893
\(263\) 15.0601 0.928646 0.464323 0.885666i \(-0.346298\pi\)
0.464323 + 0.885666i \(0.346298\pi\)
\(264\) 0 0
\(265\) −6.14410 −0.377429
\(266\) −13.2634 −0.813231
\(267\) 0 0
\(268\) −7.36434 −0.449848
\(269\) −11.7365 −0.715585 −0.357792 0.933801i \(-0.616470\pi\)
−0.357792 + 0.933801i \(0.616470\pi\)
\(270\) 0 0
\(271\) −2.88026 −0.174963 −0.0874817 0.996166i \(-0.527882\pi\)
−0.0874817 + 0.996166i \(0.527882\pi\)
\(272\) 3.24506 0.196761
\(273\) 0 0
\(274\) −7.24955 −0.437961
\(275\) −14.1901 −0.855694
\(276\) 0 0
\(277\) −2.30102 −0.138255 −0.0691276 0.997608i \(-0.522022\pi\)
−0.0691276 + 0.997608i \(0.522022\pi\)
\(278\) −12.4431 −0.746290
\(279\) 0 0
\(280\) 14.9092 0.890993
\(281\) 6.34551 0.378541 0.189271 0.981925i \(-0.439388\pi\)
0.189271 + 0.981925i \(0.439388\pi\)
\(282\) 0 0
\(283\) −14.6818 −0.872741 −0.436371 0.899767i \(-0.643736\pi\)
−0.436371 + 0.899767i \(0.643736\pi\)
\(284\) 8.51998 0.505568
\(285\) 0 0
\(286\) 17.7457 1.04932
\(287\) 2.59555 0.153211
\(288\) 0 0
\(289\) 3.99614 0.235067
\(290\) 0.755619 0.0443715
\(291\) 0 0
\(292\) 6.11457 0.357828
\(293\) −25.3553 −1.48127 −0.740635 0.671908i \(-0.765475\pi\)
−0.740635 + 0.671908i \(0.765475\pi\)
\(294\) 0 0
\(295\) −7.80339 −0.454331
\(296\) 2.64923 0.153983
\(297\) 0 0
\(298\) −18.2427 −1.05677
\(299\) 15.5204 0.897570
\(300\) 0 0
\(301\) −31.9043 −1.83893
\(302\) 1.82264 0.104881
\(303\) 0 0
\(304\) −3.16173 −0.181337
\(305\) 10.0556 0.575780
\(306\) 0 0
\(307\) −12.1833 −0.695339 −0.347670 0.937617i \(-0.613027\pi\)
−0.347670 + 0.937617i \(0.613027\pi\)
\(308\) 26.6907 1.52084
\(309\) 0 0
\(310\) 0.761651 0.0432589
\(311\) −25.1356 −1.42531 −0.712656 0.701514i \(-0.752508\pi\)
−0.712656 + 0.701514i \(0.752508\pi\)
\(312\) 0 0
\(313\) 29.5629 1.67099 0.835497 0.549495i \(-0.185180\pi\)
0.835497 + 0.549495i \(0.185180\pi\)
\(314\) 15.3834 0.868136
\(315\) 0 0
\(316\) −15.6179 −0.878578
\(317\) 4.28813 0.240845 0.120423 0.992723i \(-0.461575\pi\)
0.120423 + 0.992723i \(0.461575\pi\)
\(318\) 0 0
\(319\) 3.30024 0.184778
\(320\) −4.67396 −0.261282
\(321\) 0 0
\(322\) −10.2641 −0.571999
\(323\) −20.4570 −1.13826
\(324\) 0 0
\(325\) 12.6118 0.699576
\(326\) 13.8039 0.764526
\(327\) 0 0
\(328\) −1.80864 −0.0998655
\(329\) −30.1622 −1.66289
\(330\) 0 0
\(331\) −27.8313 −1.52975 −0.764874 0.644179i \(-0.777199\pi\)
−0.764874 + 0.644179i \(0.777199\pi\)
\(332\) −2.25276 −0.123636
\(333\) 0 0
\(334\) −2.64956 −0.144977
\(335\) −7.84963 −0.428871
\(336\) 0 0
\(337\) 26.9017 1.46543 0.732715 0.680536i \(-0.238253\pi\)
0.732715 + 0.680536i \(0.238253\pi\)
\(338\) −5.61180 −0.305242
\(339\) 0 0
\(340\) 9.42549 0.511169
\(341\) 3.32658 0.180144
\(342\) 0 0
\(343\) −1.70905 −0.0922799
\(344\) 22.2317 1.19865
\(345\) 0 0
\(346\) 14.5985 0.784822
\(347\) −30.4987 −1.63726 −0.818629 0.574322i \(-0.805266\pi\)
−0.818629 + 0.574322i \(0.805266\pi\)
\(348\) 0 0
\(349\) −7.97533 −0.426910 −0.213455 0.976953i \(-0.568472\pi\)
−0.213455 + 0.976953i \(0.568472\pi\)
\(350\) −8.34056 −0.445822
\(351\) 0 0
\(352\) −29.5740 −1.57630
\(353\) −21.8302 −1.16190 −0.580952 0.813938i \(-0.697319\pi\)
−0.580952 + 0.813938i \(0.697319\pi\)
\(354\) 0 0
\(355\) 9.08142 0.481992
\(356\) 1.44869 0.0767805
\(357\) 0 0
\(358\) −9.28835 −0.490905
\(359\) −17.3105 −0.913611 −0.456805 0.889567i \(-0.651006\pi\)
−0.456805 + 0.889567i \(0.651006\pi\)
\(360\) 0 0
\(361\) 0.931623 0.0490328
\(362\) 12.3366 0.648397
\(363\) 0 0
\(364\) −23.7220 −1.24337
\(365\) 6.51750 0.341142
\(366\) 0 0
\(367\) −23.9067 −1.24792 −0.623961 0.781456i \(-0.714477\pi\)
−0.623961 + 0.781456i \(0.714477\pi\)
\(368\) −2.44676 −0.127546
\(369\) 0 0
\(370\) 1.15744 0.0601725
\(371\) −15.7729 −0.818888
\(372\) 0 0
\(373\) −11.5309 −0.597046 −0.298523 0.954402i \(-0.596494\pi\)
−0.298523 + 0.954402i \(0.596494\pi\)
\(374\) −18.1008 −0.935971
\(375\) 0 0
\(376\) 21.0177 1.08390
\(377\) −2.93317 −0.151066
\(378\) 0 0
\(379\) 20.7311 1.06489 0.532443 0.846466i \(-0.321274\pi\)
0.532443 + 0.846466i \(0.321274\pi\)
\(380\) −9.18344 −0.471101
\(381\) 0 0
\(382\) −4.50688 −0.230592
\(383\) −15.8552 −0.810162 −0.405081 0.914281i \(-0.632757\pi\)
−0.405081 + 0.914281i \(0.632757\pi\)
\(384\) 0 0
\(385\) 28.4496 1.44992
\(386\) −0.137363 −0.00699158
\(387\) 0 0
\(388\) −6.92944 −0.351789
\(389\) −28.5090 −1.44547 −0.722733 0.691128i \(-0.757114\pi\)
−0.722733 + 0.691128i \(0.757114\pi\)
\(390\) 0 0
\(391\) −15.8310 −0.800609
\(392\) 19.7326 0.996645
\(393\) 0 0
\(394\) −8.76543 −0.441596
\(395\) −16.6471 −0.837608
\(396\) 0 0
\(397\) 31.6207 1.58700 0.793498 0.608573i \(-0.208258\pi\)
0.793498 + 0.608573i \(0.208258\pi\)
\(398\) 16.0048 0.802246
\(399\) 0 0
\(400\) −1.98822 −0.0994111
\(401\) 17.0478 0.851325 0.425662 0.904882i \(-0.360041\pi\)
0.425662 + 0.904882i \(0.360041\pi\)
\(402\) 0 0
\(403\) −2.95658 −0.147278
\(404\) 13.2952 0.661458
\(405\) 0 0
\(406\) 1.93980 0.0962705
\(407\) 5.05523 0.250579
\(408\) 0 0
\(409\) −23.8370 −1.17866 −0.589331 0.807892i \(-0.700608\pi\)
−0.589331 + 0.807892i \(0.700608\pi\)
\(410\) −0.790191 −0.0390248
\(411\) 0 0
\(412\) −4.52198 −0.222782
\(413\) −20.0326 −0.985738
\(414\) 0 0
\(415\) −2.40121 −0.117871
\(416\) 26.2847 1.28871
\(417\) 0 0
\(418\) 17.6360 0.862604
\(419\) −15.7362 −0.768765 −0.384382 0.923174i \(-0.625586\pi\)
−0.384382 + 0.923174i \(0.625586\pi\)
\(420\) 0 0
\(421\) −23.5578 −1.14814 −0.574070 0.818806i \(-0.694636\pi\)
−0.574070 + 0.818806i \(0.694636\pi\)
\(422\) −0.931125 −0.0453265
\(423\) 0 0
\(424\) 10.9909 0.533767
\(425\) −12.8642 −0.624004
\(426\) 0 0
\(427\) 25.8143 1.24924
\(428\) −23.3572 −1.12901
\(429\) 0 0
\(430\) 9.71296 0.468401
\(431\) −1.41170 −0.0679990 −0.0339995 0.999422i \(-0.510824\pi\)
−0.0339995 + 0.999422i \(0.510824\pi\)
\(432\) 0 0
\(433\) 13.0105 0.625244 0.312622 0.949878i \(-0.398793\pi\)
0.312622 + 0.949878i \(0.398793\pi\)
\(434\) 1.95528 0.0938564
\(435\) 0 0
\(436\) −10.6070 −0.507984
\(437\) 15.4245 0.737853
\(438\) 0 0
\(439\) 20.7384 0.989789 0.494895 0.868953i \(-0.335207\pi\)
0.494895 + 0.868953i \(0.335207\pi\)
\(440\) −19.8243 −0.945087
\(441\) 0 0
\(442\) 16.0875 0.765207
\(443\) 33.9675 1.61384 0.806921 0.590659i \(-0.201132\pi\)
0.806921 + 0.590659i \(0.201132\pi\)
\(444\) 0 0
\(445\) 1.54416 0.0732001
\(446\) 11.6450 0.551406
\(447\) 0 0
\(448\) −11.9988 −0.566890
\(449\) 1.20059 0.0566596 0.0283298 0.999599i \(-0.490981\pi\)
0.0283298 + 0.999599i \(0.490981\pi\)
\(450\) 0 0
\(451\) −3.45123 −0.162512
\(452\) 13.9187 0.654683
\(453\) 0 0
\(454\) 19.2251 0.902280
\(455\) −25.2853 −1.18539
\(456\) 0 0
\(457\) −32.0532 −1.49939 −0.749693 0.661786i \(-0.769799\pi\)
−0.749693 + 0.661786i \(0.769799\pi\)
\(458\) −1.19341 −0.0557643
\(459\) 0 0
\(460\) −7.10679 −0.331356
\(461\) 0.336685 0.0156810 0.00784049 0.999969i \(-0.497504\pi\)
0.00784049 + 0.999969i \(0.497504\pi\)
\(462\) 0 0
\(463\) −2.95273 −0.137225 −0.0686125 0.997643i \(-0.521857\pi\)
−0.0686125 + 0.997643i \(0.521857\pi\)
\(464\) 0.462408 0.0214668
\(465\) 0 0
\(466\) −10.9885 −0.509032
\(467\) 3.78427 0.175115 0.0875576 0.996159i \(-0.472094\pi\)
0.0875576 + 0.996159i \(0.472094\pi\)
\(468\) 0 0
\(469\) −20.1513 −0.930498
\(470\) 9.18258 0.423561
\(471\) 0 0
\(472\) 13.9592 0.642522
\(473\) 42.4223 1.95058
\(474\) 0 0
\(475\) 12.5338 0.575091
\(476\) 24.1968 1.10906
\(477\) 0 0
\(478\) 17.9110 0.819231
\(479\) −3.16676 −0.144693 −0.0723465 0.997380i \(-0.523049\pi\)
−0.0723465 + 0.997380i \(0.523049\pi\)
\(480\) 0 0
\(481\) −4.49296 −0.204862
\(482\) 5.52456 0.251637
\(483\) 0 0
\(484\) −20.2089 −0.918586
\(485\) −7.38607 −0.335384
\(486\) 0 0
\(487\) 1.22501 0.0555106 0.0277553 0.999615i \(-0.491164\pi\)
0.0277553 + 0.999615i \(0.491164\pi\)
\(488\) −17.9880 −0.814278
\(489\) 0 0
\(490\) 8.62111 0.389462
\(491\) −40.5477 −1.82989 −0.914946 0.403577i \(-0.867767\pi\)
−0.914946 + 0.403577i \(0.867767\pi\)
\(492\) 0 0
\(493\) 2.99187 0.134747
\(494\) −15.6744 −0.705225
\(495\) 0 0
\(496\) 0.466099 0.0209285
\(497\) 23.3135 1.04575
\(498\) 0 0
\(499\) −41.1516 −1.84220 −0.921100 0.389325i \(-0.872708\pi\)
−0.921100 + 0.389325i \(0.872708\pi\)
\(500\) −16.0599 −0.718222
\(501\) 0 0
\(502\) −0.0519473 −0.00231852
\(503\) −10.1538 −0.452735 −0.226368 0.974042i \(-0.572685\pi\)
−0.226368 + 0.974042i \(0.572685\pi\)
\(504\) 0 0
\(505\) 14.1713 0.630613
\(506\) 13.6480 0.606726
\(507\) 0 0
\(508\) −5.39800 −0.239498
\(509\) 24.2472 1.07474 0.537369 0.843347i \(-0.319418\pi\)
0.537369 + 0.843347i \(0.319418\pi\)
\(510\) 0 0
\(511\) 16.7315 0.740157
\(512\) −7.89547 −0.348934
\(513\) 0 0
\(514\) −15.1180 −0.666827
\(515\) −4.81997 −0.212393
\(516\) 0 0
\(517\) 40.1058 1.76385
\(518\) 2.97134 0.130553
\(519\) 0 0
\(520\) 17.6194 0.772660
\(521\) −6.35050 −0.278221 −0.139110 0.990277i \(-0.544424\pi\)
−0.139110 + 0.990277i \(0.544424\pi\)
\(522\) 0 0
\(523\) 28.1100 1.22916 0.614582 0.788853i \(-0.289325\pi\)
0.614582 + 0.788853i \(0.289325\pi\)
\(524\) 23.1288 1.01039
\(525\) 0 0
\(526\) −11.7702 −0.513205
\(527\) 3.01575 0.131368
\(528\) 0 0
\(529\) −11.0635 −0.481020
\(530\) 4.80191 0.208582
\(531\) 0 0
\(532\) −23.5754 −1.02212
\(533\) 3.06737 0.132863
\(534\) 0 0
\(535\) −24.8963 −1.07636
\(536\) 14.0419 0.606516
\(537\) 0 0
\(538\) 9.17261 0.395459
\(539\) 37.6535 1.62185
\(540\) 0 0
\(541\) 2.68780 0.115558 0.0577788 0.998329i \(-0.481598\pi\)
0.0577788 + 0.998329i \(0.481598\pi\)
\(542\) 2.25106 0.0966914
\(543\) 0 0
\(544\) −26.8107 −1.14950
\(545\) −11.3060 −0.484296
\(546\) 0 0
\(547\) 32.8075 1.40275 0.701373 0.712794i \(-0.252571\pi\)
0.701373 + 0.712794i \(0.252571\pi\)
\(548\) −12.8859 −0.550458
\(549\) 0 0
\(550\) 11.0902 0.472889
\(551\) −2.91504 −0.124185
\(552\) 0 0
\(553\) −42.7358 −1.81731
\(554\) 1.79836 0.0764050
\(555\) 0 0
\(556\) −22.1174 −0.937987
\(557\) 9.89968 0.419463 0.209731 0.977759i \(-0.432741\pi\)
0.209731 + 0.977759i \(0.432741\pi\)
\(558\) 0 0
\(559\) −37.7039 −1.59470
\(560\) 3.98617 0.168446
\(561\) 0 0
\(562\) −4.95932 −0.209196
\(563\) −7.03550 −0.296511 −0.148256 0.988949i \(-0.547366\pi\)
−0.148256 + 0.988949i \(0.547366\pi\)
\(564\) 0 0
\(565\) 14.8359 0.624153
\(566\) 11.4745 0.482310
\(567\) 0 0
\(568\) −16.2454 −0.681640
\(569\) 3.93812 0.165095 0.0825473 0.996587i \(-0.473694\pi\)
0.0825473 + 0.996587i \(0.473694\pi\)
\(570\) 0 0
\(571\) 25.5675 1.06996 0.534982 0.844863i \(-0.320318\pi\)
0.534982 + 0.844863i \(0.320318\pi\)
\(572\) 31.5425 1.31886
\(573\) 0 0
\(574\) −2.02855 −0.0846700
\(575\) 9.69954 0.404499
\(576\) 0 0
\(577\) 4.69942 0.195639 0.0978197 0.995204i \(-0.468813\pi\)
0.0978197 + 0.995204i \(0.468813\pi\)
\(578\) −3.12318 −0.129907
\(579\) 0 0
\(580\) 1.34310 0.0557690
\(581\) −6.16430 −0.255738
\(582\) 0 0
\(583\) 20.9728 0.868605
\(584\) −11.6589 −0.482448
\(585\) 0 0
\(586\) 19.8163 0.818606
\(587\) 27.7731 1.14632 0.573159 0.819444i \(-0.305718\pi\)
0.573159 + 0.819444i \(0.305718\pi\)
\(588\) 0 0
\(589\) −2.93830 −0.121071
\(590\) 6.09872 0.251080
\(591\) 0 0
\(592\) 0.708306 0.0291112
\(593\) −14.3326 −0.588570 −0.294285 0.955718i \(-0.595082\pi\)
−0.294285 + 0.955718i \(0.595082\pi\)
\(594\) 0 0
\(595\) 25.7913 1.05734
\(596\) −32.4260 −1.32822
\(597\) 0 0
\(598\) −12.1300 −0.496031
\(599\) 27.5031 1.12375 0.561873 0.827223i \(-0.310081\pi\)
0.561873 + 0.827223i \(0.310081\pi\)
\(600\) 0 0
\(601\) 18.7502 0.764836 0.382418 0.923989i \(-0.375091\pi\)
0.382418 + 0.923989i \(0.375091\pi\)
\(602\) 24.9347 1.01626
\(603\) 0 0
\(604\) 3.23970 0.131822
\(605\) −21.5406 −0.875750
\(606\) 0 0
\(607\) 26.4087 1.07190 0.535948 0.844251i \(-0.319954\pi\)
0.535948 + 0.844251i \(0.319954\pi\)
\(608\) 26.1222 1.05939
\(609\) 0 0
\(610\) −7.85891 −0.318198
\(611\) −35.6450 −1.44204
\(612\) 0 0
\(613\) −34.9615 −1.41208 −0.706042 0.708170i \(-0.749521\pi\)
−0.706042 + 0.708170i \(0.749521\pi\)
\(614\) 9.52185 0.384271
\(615\) 0 0
\(616\) −50.8922 −2.05051
\(617\) −7.15141 −0.287905 −0.143952 0.989585i \(-0.545981\pi\)
−0.143952 + 0.989585i \(0.545981\pi\)
\(618\) 0 0
\(619\) −18.8216 −0.756504 −0.378252 0.925703i \(-0.623475\pi\)
−0.378252 + 0.925703i \(0.623475\pi\)
\(620\) 1.35382 0.0543706
\(621\) 0 0
\(622\) 19.6447 0.787681
\(623\) 3.96410 0.158818
\(624\) 0 0
\(625\) −3.08098 −0.123239
\(626\) −23.1048 −0.923454
\(627\) 0 0
\(628\) 27.3436 1.09113
\(629\) 4.58288 0.182731
\(630\) 0 0
\(631\) 23.4802 0.934732 0.467366 0.884064i \(-0.345203\pi\)
0.467366 + 0.884064i \(0.345203\pi\)
\(632\) 29.7793 1.18456
\(633\) 0 0
\(634\) −3.35138 −0.133100
\(635\) −5.75371 −0.228329
\(636\) 0 0
\(637\) −33.4655 −1.32595
\(638\) −2.57929 −0.102115
\(639\) 0 0
\(640\) −13.6749 −0.540546
\(641\) −4.35901 −0.172171 −0.0860853 0.996288i \(-0.527436\pi\)
−0.0860853 + 0.996288i \(0.527436\pi\)
\(642\) 0 0
\(643\) 19.0120 0.749760 0.374880 0.927073i \(-0.377684\pi\)
0.374880 + 0.927073i \(0.377684\pi\)
\(644\) −18.2443 −0.718925
\(645\) 0 0
\(646\) 15.9881 0.629043
\(647\) −20.6268 −0.810924 −0.405462 0.914112i \(-0.632889\pi\)
−0.405462 + 0.914112i \(0.632889\pi\)
\(648\) 0 0
\(649\) 26.6367 1.04558
\(650\) −9.85671 −0.386612
\(651\) 0 0
\(652\) 24.5361 0.960907
\(653\) 5.99076 0.234437 0.117218 0.993106i \(-0.462602\pi\)
0.117218 + 0.993106i \(0.462602\pi\)
\(654\) 0 0
\(655\) 24.6529 0.963269
\(656\) −0.483565 −0.0188800
\(657\) 0 0
\(658\) 23.5732 0.918978
\(659\) −38.8389 −1.51295 −0.756475 0.654022i \(-0.773080\pi\)
−0.756475 + 0.654022i \(0.773080\pi\)
\(660\) 0 0
\(661\) 30.9957 1.20559 0.602796 0.797896i \(-0.294053\pi\)
0.602796 + 0.797896i \(0.294053\pi\)
\(662\) 21.7515 0.845397
\(663\) 0 0
\(664\) 4.29543 0.166695
\(665\) −25.1289 −0.974458
\(666\) 0 0
\(667\) −2.25586 −0.0873472
\(668\) −4.70953 −0.182217
\(669\) 0 0
\(670\) 6.13486 0.237010
\(671\) −34.3245 −1.32508
\(672\) 0 0
\(673\) −38.5896 −1.48752 −0.743760 0.668447i \(-0.766959\pi\)
−0.743760 + 0.668447i \(0.766959\pi\)
\(674\) −21.0250 −0.809852
\(675\) 0 0
\(676\) −9.97485 −0.383648
\(677\) 3.98869 0.153298 0.0766489 0.997058i \(-0.475578\pi\)
0.0766489 + 0.997058i \(0.475578\pi\)
\(678\) 0 0
\(679\) −18.9612 −0.727666
\(680\) −17.9719 −0.689193
\(681\) 0 0
\(682\) −2.59988 −0.0995547
\(683\) 42.1155 1.61151 0.805753 0.592252i \(-0.201761\pi\)
0.805753 + 0.592252i \(0.201761\pi\)
\(684\) 0 0
\(685\) −13.7350 −0.524789
\(686\) 1.33570 0.0509974
\(687\) 0 0
\(688\) 5.94394 0.226610
\(689\) −18.6401 −0.710131
\(690\) 0 0
\(691\) −8.55061 −0.325281 −0.162640 0.986685i \(-0.552001\pi\)
−0.162640 + 0.986685i \(0.552001\pi\)
\(692\) 25.9485 0.986415
\(693\) 0 0
\(694\) 23.8362 0.904811
\(695\) −23.5749 −0.894246
\(696\) 0 0
\(697\) −3.12875 −0.118510
\(698\) 6.23310 0.235926
\(699\) 0 0
\(700\) −14.8252 −0.560338
\(701\) 0.881949 0.0333108 0.0166554 0.999861i \(-0.494698\pi\)
0.0166554 + 0.999861i \(0.494698\pi\)
\(702\) 0 0
\(703\) −4.46519 −0.168408
\(704\) 15.9545 0.601307
\(705\) 0 0
\(706\) 17.0613 0.642112
\(707\) 36.3799 1.36821
\(708\) 0 0
\(709\) −40.2337 −1.51101 −0.755504 0.655144i \(-0.772608\pi\)
−0.755504 + 0.655144i \(0.772608\pi\)
\(710\) −7.09756 −0.266367
\(711\) 0 0
\(712\) −2.76228 −0.103521
\(713\) −2.27387 −0.0851569
\(714\) 0 0
\(715\) 33.6211 1.25736
\(716\) −16.5098 −0.617001
\(717\) 0 0
\(718\) 13.5289 0.504896
\(719\) −13.7722 −0.513615 −0.256807 0.966463i \(-0.582671\pi\)
−0.256807 + 0.966463i \(0.582671\pi\)
\(720\) 0 0
\(721\) −12.3736 −0.460818
\(722\) −0.728108 −0.0270974
\(723\) 0 0
\(724\) 21.9280 0.814948
\(725\) −1.83309 −0.0680794
\(726\) 0 0
\(727\) −12.4849 −0.463039 −0.231520 0.972830i \(-0.574370\pi\)
−0.231520 + 0.972830i \(0.574370\pi\)
\(728\) 45.2317 1.67640
\(729\) 0 0
\(730\) −5.09374 −0.188528
\(731\) 38.4584 1.42243
\(732\) 0 0
\(733\) −26.8730 −0.992575 −0.496288 0.868158i \(-0.665304\pi\)
−0.496288 + 0.868158i \(0.665304\pi\)
\(734\) 18.6843 0.689649
\(735\) 0 0
\(736\) 20.2152 0.745141
\(737\) 26.7946 0.986991
\(738\) 0 0
\(739\) −24.3811 −0.896874 −0.448437 0.893815i \(-0.648019\pi\)
−0.448437 + 0.893815i \(0.648019\pi\)
\(740\) 2.05732 0.0756287
\(741\) 0 0
\(742\) 12.3273 0.452549
\(743\) −36.0700 −1.32328 −0.661640 0.749822i \(-0.730139\pi\)
−0.661640 + 0.749822i \(0.730139\pi\)
\(744\) 0 0
\(745\) −34.5628 −1.26628
\(746\) 9.01192 0.329950
\(747\) 0 0
\(748\) −32.1738 −1.17639
\(749\) −63.9129 −2.33533
\(750\) 0 0
\(751\) −2.33641 −0.0852570 −0.0426285 0.999091i \(-0.513573\pi\)
−0.0426285 + 0.999091i \(0.513573\pi\)
\(752\) 5.61937 0.204917
\(753\) 0 0
\(754\) 2.29241 0.0834847
\(755\) 3.45319 0.125674
\(756\) 0 0
\(757\) −16.1729 −0.587815 −0.293907 0.955834i \(-0.594956\pi\)
−0.293907 + 0.955834i \(0.594956\pi\)
\(758\) −16.2024 −0.588496
\(759\) 0 0
\(760\) 17.5104 0.635170
\(761\) −45.3568 −1.64418 −0.822092 0.569355i \(-0.807193\pi\)
−0.822092 + 0.569355i \(0.807193\pi\)
\(762\) 0 0
\(763\) −29.0243 −1.05075
\(764\) −8.01088 −0.289823
\(765\) 0 0
\(766\) 12.3916 0.447726
\(767\) −23.6741 −0.854821
\(768\) 0 0
\(769\) 18.3658 0.662289 0.331144 0.943580i \(-0.392565\pi\)
0.331144 + 0.943580i \(0.392565\pi\)
\(770\) −22.2347 −0.801283
\(771\) 0 0
\(772\) −0.244159 −0.00878748
\(773\) 29.4789 1.06028 0.530141 0.847910i \(-0.322139\pi\)
0.530141 + 0.847910i \(0.322139\pi\)
\(774\) 0 0
\(775\) −1.84773 −0.0663722
\(776\) 13.2126 0.474306
\(777\) 0 0
\(778\) 22.2812 0.798819
\(779\) 3.04841 0.109221
\(780\) 0 0
\(781\) −30.9993 −1.10924
\(782\) 12.3727 0.442447
\(783\) 0 0
\(784\) 5.27577 0.188420
\(785\) 29.1455 1.04025
\(786\) 0 0
\(787\) 32.0568 1.14270 0.571351 0.820706i \(-0.306419\pi\)
0.571351 + 0.820706i \(0.306419\pi\)
\(788\) −15.5803 −0.555027
\(789\) 0 0
\(790\) 13.0105 0.462894
\(791\) 38.0863 1.35419
\(792\) 0 0
\(793\) 30.5068 1.08333
\(794\) −24.7131 −0.877034
\(795\) 0 0
\(796\) 28.4481 1.00832
\(797\) 11.7864 0.417496 0.208748 0.977969i \(-0.433061\pi\)
0.208748 + 0.977969i \(0.433061\pi\)
\(798\) 0 0
\(799\) 36.3584 1.28627
\(800\) 16.4267 0.580771
\(801\) 0 0
\(802\) −13.3236 −0.470474
\(803\) −22.2474 −0.785093
\(804\) 0 0
\(805\) −19.4465 −0.685400
\(806\) 2.31071 0.0813913
\(807\) 0 0
\(808\) −25.3504 −0.891823
\(809\) 21.4155 0.752929 0.376464 0.926431i \(-0.377140\pi\)
0.376464 + 0.926431i \(0.377140\pi\)
\(810\) 0 0
\(811\) 1.73790 0.0610258 0.0305129 0.999534i \(-0.490286\pi\)
0.0305129 + 0.999534i \(0.490286\pi\)
\(812\) 3.44794 0.120999
\(813\) 0 0
\(814\) −3.95091 −0.138479
\(815\) 26.1529 0.916097
\(816\) 0 0
\(817\) −37.4708 −1.31094
\(818\) 18.6297 0.651373
\(819\) 0 0
\(820\) −1.40455 −0.0490489
\(821\) −8.91880 −0.311268 −0.155634 0.987815i \(-0.549742\pi\)
−0.155634 + 0.987815i \(0.549742\pi\)
\(822\) 0 0
\(823\) 1.85218 0.0645628 0.0322814 0.999479i \(-0.489723\pi\)
0.0322814 + 0.999479i \(0.489723\pi\)
\(824\) 8.62224 0.300370
\(825\) 0 0
\(826\) 15.6564 0.544756
\(827\) 21.0373 0.731537 0.365769 0.930706i \(-0.380806\pi\)
0.365769 + 0.930706i \(0.380806\pi\)
\(828\) 0 0
\(829\) 5.67239 0.197010 0.0985050 0.995137i \(-0.468594\pi\)
0.0985050 + 0.995137i \(0.468594\pi\)
\(830\) 1.87666 0.0651399
\(831\) 0 0
\(832\) −14.1799 −0.491601
\(833\) 34.1352 1.18272
\(834\) 0 0
\(835\) −5.01987 −0.173720
\(836\) 31.3475 1.08418
\(837\) 0 0
\(838\) 12.2986 0.424849
\(839\) 23.9284 0.826099 0.413050 0.910709i \(-0.364464\pi\)
0.413050 + 0.910709i \(0.364464\pi\)
\(840\) 0 0
\(841\) −28.5737 −0.985299
\(842\) 18.4116 0.634505
\(843\) 0 0
\(844\) −1.65505 −0.0569693
\(845\) −10.6322 −0.365757
\(846\) 0 0
\(847\) −55.2982 −1.90007
\(848\) 2.93857 0.100911
\(849\) 0 0
\(850\) 10.0540 0.344848
\(851\) −3.45547 −0.118452
\(852\) 0 0
\(853\) 6.75335 0.231230 0.115615 0.993294i \(-0.463116\pi\)
0.115615 + 0.993294i \(0.463116\pi\)
\(854\) −20.1751 −0.690377
\(855\) 0 0
\(856\) 44.5360 1.52221
\(857\) −18.8564 −0.644123 −0.322062 0.946719i \(-0.604376\pi\)
−0.322062 + 0.946719i \(0.604376\pi\)
\(858\) 0 0
\(859\) 32.4166 1.10604 0.553019 0.833168i \(-0.313476\pi\)
0.553019 + 0.833168i \(0.313476\pi\)
\(860\) 17.2646 0.588717
\(861\) 0 0
\(862\) 1.10331 0.0375788
\(863\) −47.2242 −1.60753 −0.803765 0.594947i \(-0.797173\pi\)
−0.803765 + 0.594947i \(0.797173\pi\)
\(864\) 0 0
\(865\) 27.6585 0.940416
\(866\) −10.1683 −0.345533
\(867\) 0 0
\(868\) 3.47546 0.117965
\(869\) 56.8247 1.92765
\(870\) 0 0
\(871\) −23.8143 −0.806918
\(872\) 20.2248 0.684899
\(873\) 0 0
\(874\) −12.0550 −0.407766
\(875\) −43.9452 −1.48562
\(876\) 0 0
\(877\) 5.63165 0.190167 0.0950837 0.995469i \(-0.469688\pi\)
0.0950837 + 0.995469i \(0.469688\pi\)
\(878\) −16.2080 −0.546995
\(879\) 0 0
\(880\) −5.30030 −0.178673
\(881\) −5.67058 −0.191047 −0.0955234 0.995427i \(-0.530452\pi\)
−0.0955234 + 0.995427i \(0.530452\pi\)
\(882\) 0 0
\(883\) 34.3021 1.15436 0.577179 0.816618i \(-0.304153\pi\)
0.577179 + 0.816618i \(0.304153\pi\)
\(884\) 28.5952 0.961762
\(885\) 0 0
\(886\) −26.5472 −0.891871
\(887\) 26.8838 0.902670 0.451335 0.892355i \(-0.350948\pi\)
0.451335 + 0.892355i \(0.350948\pi\)
\(888\) 0 0
\(889\) −14.7707 −0.495394
\(890\) −1.20683 −0.0404531
\(891\) 0 0
\(892\) 20.6987 0.693043
\(893\) −35.4247 −1.18544
\(894\) 0 0
\(895\) −17.5978 −0.588229
\(896\) −35.1055 −1.17279
\(897\) 0 0
\(898\) −0.938322 −0.0313122
\(899\) 0.429732 0.0143324
\(900\) 0 0
\(901\) 19.0131 0.633419
\(902\) 2.69731 0.0898104
\(903\) 0 0
\(904\) −26.5394 −0.882687
\(905\) 23.3730 0.776945
\(906\) 0 0
\(907\) 30.4385 1.01070 0.505348 0.862916i \(-0.331364\pi\)
0.505348 + 0.862916i \(0.331364\pi\)
\(908\) 34.1722 1.13404
\(909\) 0 0
\(910\) 19.7616 0.655092
\(911\) 14.0660 0.466026 0.233013 0.972474i \(-0.425142\pi\)
0.233013 + 0.972474i \(0.425142\pi\)
\(912\) 0 0
\(913\) 8.19650 0.271265
\(914\) 25.0511 0.828617
\(915\) 0 0
\(916\) −2.12125 −0.0700882
\(917\) 63.2880 2.08995
\(918\) 0 0
\(919\) 29.0015 0.956670 0.478335 0.878177i \(-0.341240\pi\)
0.478335 + 0.878177i \(0.341240\pi\)
\(920\) 13.5508 0.446756
\(921\) 0 0
\(922\) −0.263135 −0.00866590
\(923\) 27.5514 0.906865
\(924\) 0 0
\(925\) −2.80789 −0.0923229
\(926\) 2.30770 0.0758357
\(927\) 0 0
\(928\) −3.82041 −0.125411
\(929\) −44.5589 −1.46193 −0.730965 0.682415i \(-0.760930\pi\)
−0.730965 + 0.682415i \(0.760930\pi\)
\(930\) 0 0
\(931\) −33.2586 −1.09001
\(932\) −19.5318 −0.639784
\(933\) 0 0
\(934\) −2.95759 −0.0967753
\(935\) −34.2939 −1.12153
\(936\) 0 0
\(937\) −20.5920 −0.672710 −0.336355 0.941735i \(-0.609194\pi\)
−0.336355 + 0.941735i \(0.609194\pi\)
\(938\) 15.7492 0.514229
\(939\) 0 0
\(940\) 16.3218 0.532359
\(941\) 56.7820 1.85104 0.925520 0.378698i \(-0.123628\pi\)
0.925520 + 0.378698i \(0.123628\pi\)
\(942\) 0 0
\(943\) 2.35907 0.0768219
\(944\) 3.73217 0.121472
\(945\) 0 0
\(946\) −33.1550 −1.07796
\(947\) −15.7756 −0.512638 −0.256319 0.966592i \(-0.582510\pi\)
−0.256319 + 0.966592i \(0.582510\pi\)
\(948\) 0 0
\(949\) 19.7729 0.641856
\(950\) −9.79578 −0.317817
\(951\) 0 0
\(952\) −46.1369 −1.49530
\(953\) −50.4349 −1.63375 −0.816873 0.576818i \(-0.804294\pi\)
−0.816873 + 0.576818i \(0.804294\pi\)
\(954\) 0 0
\(955\) −8.53878 −0.276308
\(956\) 31.8364 1.02966
\(957\) 0 0
\(958\) 2.47497 0.0799628
\(959\) −35.2601 −1.13861
\(960\) 0 0
\(961\) −30.5668 −0.986027
\(962\) 3.51147 0.113214
\(963\) 0 0
\(964\) 9.81978 0.316274
\(965\) −0.260248 −0.00837769
\(966\) 0 0
\(967\) 21.8942 0.704070 0.352035 0.935987i \(-0.385490\pi\)
0.352035 + 0.935987i \(0.385490\pi\)
\(968\) 38.5331 1.23850
\(969\) 0 0
\(970\) 5.77257 0.185346
\(971\) −21.3313 −0.684555 −0.342277 0.939599i \(-0.611198\pi\)
−0.342277 + 0.939599i \(0.611198\pi\)
\(972\) 0 0
\(973\) −60.5205 −1.94020
\(974\) −0.957406 −0.0306773
\(975\) 0 0
\(976\) −4.80933 −0.153943
\(977\) 7.17129 0.229430 0.114715 0.993398i \(-0.463405\pi\)
0.114715 + 0.993398i \(0.463405\pi\)
\(978\) 0 0
\(979\) −5.27096 −0.168460
\(980\) 15.3238 0.489502
\(981\) 0 0
\(982\) 31.6900 1.01127
\(983\) −41.4135 −1.32089 −0.660443 0.750876i \(-0.729631\pi\)
−0.660443 + 0.750876i \(0.729631\pi\)
\(984\) 0 0
\(985\) −16.6070 −0.529144
\(986\) −2.33829 −0.0744662
\(987\) 0 0
\(988\) −27.8609 −0.886374
\(989\) −28.9975 −0.922067
\(990\) 0 0
\(991\) −54.5793 −1.73377 −0.866884 0.498509i \(-0.833881\pi\)
−0.866884 + 0.498509i \(0.833881\pi\)
\(992\) −3.85091 −0.122267
\(993\) 0 0
\(994\) −18.2206 −0.577922
\(995\) 30.3227 0.961295
\(996\) 0 0
\(997\) −26.5122 −0.839649 −0.419824 0.907605i \(-0.637908\pi\)
−0.419824 + 0.907605i \(0.637908\pi\)
\(998\) 32.1620 1.01807
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6561.2.a.c.1.30 72
3.2 odd 2 6561.2.a.d.1.43 72
81.5 odd 54 243.2.g.a.73.5 144
81.11 odd 54 729.2.g.a.514.4 144
81.16 even 27 81.2.g.a.13.4 144
81.22 even 27 729.2.g.d.217.5 144
81.32 odd 54 729.2.g.b.703.4 144
81.38 odd 54 729.2.g.b.28.4 144
81.43 even 27 729.2.g.c.28.5 144
81.49 even 27 729.2.g.c.703.5 144
81.59 odd 54 729.2.g.a.217.4 144
81.65 odd 54 243.2.g.a.10.5 144
81.70 even 27 729.2.g.d.514.5 144
81.76 even 27 81.2.g.a.25.4 yes 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.4 144 81.16 even 27
81.2.g.a.25.4 yes 144 81.76 even 27
243.2.g.a.10.5 144 81.65 odd 54
243.2.g.a.73.5 144 81.5 odd 54
729.2.g.a.217.4 144 81.59 odd 54
729.2.g.a.514.4 144 81.11 odd 54
729.2.g.b.28.4 144 81.38 odd 54
729.2.g.b.703.4 144 81.32 odd 54
729.2.g.c.28.5 144 81.43 even 27
729.2.g.c.703.5 144 81.49 even 27
729.2.g.d.217.5 144 81.22 even 27
729.2.g.d.514.5 144 81.70 even 27
6561.2.a.c.1.30 72 1.1 even 1 trivial
6561.2.a.d.1.43 72 3.2 odd 2