Properties

Label 6552.2.a.bs
Level $6552$
Weight $2$
Character orbit 6552.a
Self dual yes
Analytic conductor $52.318$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6552,2,Mod(1,6552)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6552, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6552.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6552.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.3179834043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.138892.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 2x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 - 1) q^{5} - q^{7} + ( - \beta_{2} + 1) q^{11} + q^{13} + (\beta_{3} - 1) q^{17} + (\beta_{3} + \beta_{2} + \beta_1 - 1) q^{19} + (\beta_{3} + \beta_{2} - \beta_1 + 1) q^{23} + (\beta_{3} - \beta_{2} + \beta_1 + 4) q^{25} + ( - \beta_{3} - \beta_{2} - \beta_1 - 1) q^{29} + ( - \beta_{2} - \beta_1 + 2) q^{31} + (\beta_1 + 1) q^{35} + ( - \beta_{3} + 1) q^{37} + (\beta_{3} + \beta_{2} - 2) q^{41} + ( - \beta_{3} - \beta_{2} + \beta_1 - 1) q^{43} + ( - \beta_{3} - \beta_1 - 4) q^{47} + q^{49} + ( - 2 \beta_{3} - \beta_{2} - 3 \beta_1 - 4) q^{53} + (\beta_{3} + 2 \beta_{2} - 4 \beta_1 - 1) q^{55} + ( - \beta_{3} + \beta_{2} - 2) q^{59} + ( - \beta_{3} + 2 \beta_{2} - 2 \beta_1 + 1) q^{61} + ( - \beta_1 - 1) q^{65} + ( - 2 \beta_{3} - 2 \beta_{2} + \cdots + 2) q^{67}+ \cdots + ( - 2 \beta_{3} - \beta_{2} - 3 \beta_1 + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} - 4 q^{7} + 3 q^{11} + 4 q^{13} - 3 q^{17} - 4 q^{19} + 8 q^{23} + 14 q^{25} - 4 q^{29} + 9 q^{31} + 2 q^{35} + 3 q^{37} - 6 q^{41} - 8 q^{43} - 15 q^{47} + 4 q^{49} - 13 q^{53} + 7 q^{55} - 8 q^{59} + 9 q^{61} - 2 q^{65} + 8 q^{71} + 32 q^{73} - 3 q^{77} - q^{79} - 13 q^{83} + 17 q^{85} - 7 q^{89} - 4 q^{91} - 24 q^{95} + 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 10x^{2} + 2x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu^{2} - 8\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{2} + 2\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{3} + 5\beta_{2} + 2\beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.13296
3.44214
−2.52690
1.21773
0 0 0 −4.16291 0 −1.00000 0 0 0
1.2 0 0 0 −1.69903 0 −1.00000 0 0 0
1.3 0 0 0 0.152457 0 −1.00000 0 0 0
1.4 0 0 0 3.70948 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6552.2.a.bs 4
3.b odd 2 1 2184.2.a.v 4
12.b even 2 1 4368.2.a.bs 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2184.2.a.v 4 3.b odd 2 1
4368.2.a.bs 4 12.b even 2 1
6552.2.a.bs 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6552))\):

\( T_{5}^{4} + 2T_{5}^{3} - 15T_{5}^{2} - 24T_{5} + 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 3T_{11}^{3} - 34T_{11}^{2} + 112T_{11} + 48 \) Copy content Toggle raw display
\( T_{17}^{4} + 3T_{17}^{3} - 36T_{17}^{2} - 20T_{17} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots + 48 \) Copy content Toggle raw display
$13$ \( (T - 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 8 T^{3} + \cdots + 752 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 108 \) Copy content Toggle raw display
$31$ \( T^{4} - 9 T^{3} + \cdots - 256 \) Copy content Toggle raw display
$37$ \( T^{4} - 3 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{4} + 8 T^{3} + \cdots + 752 \) Copy content Toggle raw display
$47$ \( T^{4} + 15 T^{3} + \cdots - 768 \) Copy content Toggle raw display
$53$ \( T^{4} + 13 T^{3} + \cdots + 3144 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$61$ \( T^{4} - 9 T^{3} + \cdots + 6056 \) Copy content Toggle raw display
$67$ \( T^{4} - 260 T^{2} + \cdots + 16064 \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$73$ \( T^{4} - 32 T^{3} + \cdots + 908 \) Copy content Toggle raw display
$79$ \( T^{4} + T^{3} + \cdots - 832 \) Copy content Toggle raw display
$83$ \( T^{4} + 13 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$89$ \( T^{4} + 7 T^{3} + \cdots - 328 \) Copy content Toggle raw display
$97$ \( T^{4} - 19 T^{3} + \cdots + 4328 \) Copy content Toggle raw display
show more
show less