Properties

 Label 6534.2 Level 6534 Weight 2 Dimension 304662 Nonzero newspaces 24 Sturm bound 4704480

Defining parameters

 Level: $$N$$ = $$6534 = 2 \cdot 3^{3} \cdot 11^{2}$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$24$$ Sturm bound: $$4704480$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(6534))$$.

Total New Old
Modular forms 1185720 304662 881058
Cusp forms 1166521 304662 861859
Eisenstein series 19199 0 19199

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(6534))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
6534.2.a $$\chi_{6534}(1, \cdot)$$ 6534.2.a.a 1 1
6534.2.a.b 1
6534.2.a.c 1
6534.2.a.d 1
6534.2.a.e 1
6534.2.a.f 1
6534.2.a.g 1
6534.2.a.h 1
6534.2.a.i 1
6534.2.a.j 1
6534.2.a.k 1
6534.2.a.l 1
6534.2.a.m 1
6534.2.a.n 1
6534.2.a.o 1
6534.2.a.p 1
6534.2.a.q 1
6534.2.a.r 1
6534.2.a.s 1
6534.2.a.t 1
6534.2.a.u 1
6534.2.a.v 1
6534.2.a.w 1
6534.2.a.x 1
6534.2.a.y 1
6534.2.a.z 1
6534.2.a.ba 1
6534.2.a.bb 1
6534.2.a.bc 1
6534.2.a.bd 1
6534.2.a.be 2
6534.2.a.bf 2
6534.2.a.bg 2
6534.2.a.bh 2
6534.2.a.bi 2
6534.2.a.bj 2
6534.2.a.bk 2
6534.2.a.bl 2
6534.2.a.bm 2
6534.2.a.bn 2
6534.2.a.bo 2
6534.2.a.bp 2
6534.2.a.bq 2
6534.2.a.br 2
6534.2.a.bs 2
6534.2.a.bt 2
6534.2.a.bu 2
6534.2.a.bv 2
6534.2.a.bw 2
6534.2.a.bx 2
6534.2.a.by 2
6534.2.a.bz 2
6534.2.a.ca 2
6534.2.a.cb 2
6534.2.a.cc 2
6534.2.a.cd 2
6534.2.a.ce 2
6534.2.a.cf 2
6534.2.a.cg 2
6534.2.a.ch 2
6534.2.a.ci 2
6534.2.a.cj 2
6534.2.a.ck 2
6534.2.a.cl 2
6534.2.a.cm 2
6534.2.a.cn 2
6534.2.a.co 2
6534.2.a.cp 2
6534.2.a.cq 4
6534.2.a.cr 4
6534.2.a.cs 4
6534.2.a.ct 4
6534.2.a.cu 6
6534.2.a.cv 6
6534.2.a.cw 6
6534.2.a.cx 6
6534.2.b $$\chi_{6534}(6533, \cdot)$$ n/a 144 1
6534.2.e $$\chi_{6534}(2179, \cdot)$$ n/a 218 2
6534.2.f $$\chi_{6534}(487, \cdot)$$ n/a 576 4
6534.2.i $$\chi_{6534}(2177, \cdot)$$ n/a 216 2
6534.2.j $$\chi_{6534}(727, \cdot)$$ n/a 1962 6
6534.2.m $$\chi_{6534}(161, \cdot)$$ n/a 576 4
6534.2.n $$\chi_{6534}(595, \cdot)$$ n/a 1760 10
6534.2.o $$\chi_{6534}(1963, \cdot)$$ n/a 864 8
6534.2.p $$\chi_{6534}(725, \cdot)$$ n/a 1944 6
6534.2.u $$\chi_{6534}(593, \cdot)$$ n/a 1760 10
6534.2.v $$\chi_{6534}(233, \cdot)$$ n/a 864 8
6534.2.y $$\chi_{6534}(199, \cdot)$$ n/a 2640 20
6534.2.z $$\chi_{6534}(493, \cdot)$$ n/a 7776 24
6534.2.ba $$\chi_{6534}(163, \cdot)$$ n/a 7040 40
6534.2.bb $$\chi_{6534}(197, \cdot)$$ n/a 2640 20
6534.2.bg $$\chi_{6534}(239, \cdot)$$ n/a 7776 24
6534.2.bh $$\chi_{6534}(67, \cdot)$$ n/a 23760 60
6534.2.bi $$\chi_{6534}(107, \cdot)$$ n/a 7040 40
6534.2.bl $$\chi_{6534}(37, \cdot)$$ n/a 10560 80
6534.2.bo $$\chi_{6534}(65, \cdot)$$ n/a 23760 60
6534.2.br $$\chi_{6534}(17, \cdot)$$ n/a 10560 80
6534.2.bs $$\chi_{6534}(25, \cdot)$$ n/a 95040 240
6534.2.bt $$\chi_{6534}(29, \cdot)$$ n/a 95040 240

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(6534))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(6534)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(11))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(18))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(22))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(27))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(33))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(54))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(66))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(99))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(121))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(198))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(242))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(297))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(363))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(594))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(726))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1089))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2178))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(3267))$$$$^{\oplus 2}$$