Properties

Label 6534.2
Level 6534
Weight 2
Dimension 304662
Nonzero newspaces 24
Sturm bound 4704480

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 6534 = 2 \cdot 3^{3} \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(4704480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(6534))\).

Total New Old
Modular forms 1185720 304662 881058
Cusp forms 1166521 304662 861859
Eisenstein series 19199 0 19199

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(6534))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6534.2.a \(\chi_{6534}(1, \cdot)\) 6534.2.a.a 1 1
6534.2.a.b 1
6534.2.a.c 1
6534.2.a.d 1
6534.2.a.e 1
6534.2.a.f 1
6534.2.a.g 1
6534.2.a.h 1
6534.2.a.i 1
6534.2.a.j 1
6534.2.a.k 1
6534.2.a.l 1
6534.2.a.m 1
6534.2.a.n 1
6534.2.a.o 1
6534.2.a.p 1
6534.2.a.q 1
6534.2.a.r 1
6534.2.a.s 1
6534.2.a.t 1
6534.2.a.u 1
6534.2.a.v 1
6534.2.a.w 1
6534.2.a.x 1
6534.2.a.y 1
6534.2.a.z 1
6534.2.a.ba 1
6534.2.a.bb 1
6534.2.a.bc 1
6534.2.a.bd 1
6534.2.a.be 2
6534.2.a.bf 2
6534.2.a.bg 2
6534.2.a.bh 2
6534.2.a.bi 2
6534.2.a.bj 2
6534.2.a.bk 2
6534.2.a.bl 2
6534.2.a.bm 2
6534.2.a.bn 2
6534.2.a.bo 2
6534.2.a.bp 2
6534.2.a.bq 2
6534.2.a.br 2
6534.2.a.bs 2
6534.2.a.bt 2
6534.2.a.bu 2
6534.2.a.bv 2
6534.2.a.bw 2
6534.2.a.bx 2
6534.2.a.by 2
6534.2.a.bz 2
6534.2.a.ca 2
6534.2.a.cb 2
6534.2.a.cc 2
6534.2.a.cd 2
6534.2.a.ce 2
6534.2.a.cf 2
6534.2.a.cg 2
6534.2.a.ch 2
6534.2.a.ci 2
6534.2.a.cj 2
6534.2.a.ck 2
6534.2.a.cl 2
6534.2.a.cm 2
6534.2.a.cn 2
6534.2.a.co 2
6534.2.a.cp 2
6534.2.a.cq 4
6534.2.a.cr 4
6534.2.a.cs 4
6534.2.a.ct 4
6534.2.a.cu 6
6534.2.a.cv 6
6534.2.a.cw 6
6534.2.a.cx 6
6534.2.b \(\chi_{6534}(6533, \cdot)\) n/a 144 1
6534.2.e \(\chi_{6534}(2179, \cdot)\) n/a 218 2
6534.2.f \(\chi_{6534}(487, \cdot)\) n/a 576 4
6534.2.i \(\chi_{6534}(2177, \cdot)\) n/a 216 2
6534.2.j \(\chi_{6534}(727, \cdot)\) n/a 1962 6
6534.2.m \(\chi_{6534}(161, \cdot)\) n/a 576 4
6534.2.n \(\chi_{6534}(595, \cdot)\) n/a 1760 10
6534.2.o \(\chi_{6534}(1963, \cdot)\) n/a 864 8
6534.2.p \(\chi_{6534}(725, \cdot)\) n/a 1944 6
6534.2.u \(\chi_{6534}(593, \cdot)\) n/a 1760 10
6534.2.v \(\chi_{6534}(233, \cdot)\) n/a 864 8
6534.2.y \(\chi_{6534}(199, \cdot)\) n/a 2640 20
6534.2.z \(\chi_{6534}(493, \cdot)\) n/a 7776 24
6534.2.ba \(\chi_{6534}(163, \cdot)\) n/a 7040 40
6534.2.bb \(\chi_{6534}(197, \cdot)\) n/a 2640 20
6534.2.bg \(\chi_{6534}(239, \cdot)\) n/a 7776 24
6534.2.bh \(\chi_{6534}(67, \cdot)\) n/a 23760 60
6534.2.bi \(\chi_{6534}(107, \cdot)\) n/a 7040 40
6534.2.bl \(\chi_{6534}(37, \cdot)\) n/a 10560 80
6534.2.bo \(\chi_{6534}(65, \cdot)\) n/a 23760 60
6534.2.br \(\chi_{6534}(17, \cdot)\) n/a 10560 80
6534.2.bs \(\chi_{6534}(25, \cdot)\) n/a 95040 240
6534.2.bt \(\chi_{6534}(29, \cdot)\) n/a 95040 240

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(6534))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(6534)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(198))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(297))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(594))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(726))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1089))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2178))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3267))\)\(^{\oplus 2}\)