Defining parameters
| Level: | \( N \) | \(=\) | \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6525.ct (of order \(28\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
| Character field: | \(\Q(\zeta_{28})\) | ||
| Sturm bound: | \(1800\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6525, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 11088 | 2724 | 8364 |
| Cusp forms | 10512 | 2676 | 7836 |
| Eisenstein series | 576 | 48 | 528 |
Decomposition of \(S_{2}^{\mathrm{new}}(6525, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6525, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6525, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1305, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2175, [\chi])\)\(^{\oplus 2}\)