Properties

Label 6525.2.a.t.1.1
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,7,0,0,-2,-12,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.79129\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.79129 q^{2} +5.79129 q^{4} -1.00000 q^{7} -10.5826 q^{8} -5.00000 q^{11} -4.58258 q^{13} +2.79129 q^{14} +17.9564 q^{16} -3.00000 q^{17} -5.58258 q^{19} +13.9564 q^{22} -4.00000 q^{23} +12.7913 q^{26} -5.79129 q^{28} -1.00000 q^{29} +4.00000 q^{31} -28.9564 q^{32} +8.37386 q^{34} +4.00000 q^{37} +15.5826 q^{38} -9.16515 q^{41} +0.417424 q^{43} -28.9564 q^{44} +11.1652 q^{46} +1.41742 q^{47} -6.00000 q^{49} -26.5390 q^{52} +9.58258 q^{53} +10.5826 q^{56} +2.79129 q^{58} -1.58258 q^{59} -14.7477 q^{61} -11.1652 q^{62} +44.9129 q^{64} -14.1652 q^{67} -17.3739 q^{68} +0.417424 q^{71} -4.00000 q^{73} -11.1652 q^{74} -32.3303 q^{76} +5.00000 q^{77} -1.58258 q^{79} +25.5826 q^{82} -2.41742 q^{83} -1.16515 q^{86} +52.9129 q^{88} -10.5826 q^{89} +4.58258 q^{91} -23.1652 q^{92} -3.95644 q^{94} -2.41742 q^{97} +16.7477 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 7 q^{4} - 2 q^{7} - 12 q^{8} - 10 q^{11} + q^{14} + 13 q^{16} - 6 q^{17} - 2 q^{19} + 5 q^{22} - 8 q^{23} + 21 q^{26} - 7 q^{28} - 2 q^{29} + 8 q^{31} - 35 q^{32} + 3 q^{34} + 8 q^{37} + 22 q^{38}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.79129 −1.97374 −0.986869 0.161521i \(-0.948360\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 0 0
\(4\) 5.79129 2.89564
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −10.5826 −3.74151
\(9\) 0 0
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) −4.58258 −1.27098 −0.635489 0.772110i \(-0.719201\pi\)
−0.635489 + 0.772110i \(0.719201\pi\)
\(14\) 2.79129 0.746003
\(15\) 0 0
\(16\) 17.9564 4.48911
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −5.58258 −1.28073 −0.640365 0.768070i \(-0.721217\pi\)
−0.640365 + 0.768070i \(0.721217\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 13.9564 2.97552
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 12.7913 2.50858
\(27\) 0 0
\(28\) −5.79129 −1.09445
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −28.9564 −5.11882
\(33\) 0 0
\(34\) 8.37386 1.43611
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 15.5826 2.52783
\(39\) 0 0
\(40\) 0 0
\(41\) −9.16515 −1.43136 −0.715678 0.698430i \(-0.753882\pi\)
−0.715678 + 0.698430i \(0.753882\pi\)
\(42\) 0 0
\(43\) 0.417424 0.0636566 0.0318283 0.999493i \(-0.489867\pi\)
0.0318283 + 0.999493i \(0.489867\pi\)
\(44\) −28.9564 −4.36535
\(45\) 0 0
\(46\) 11.1652 1.64621
\(47\) 1.41742 0.206753 0.103376 0.994642i \(-0.467035\pi\)
0.103376 + 0.994642i \(0.467035\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) −26.5390 −3.68030
\(53\) 9.58258 1.31627 0.658134 0.752901i \(-0.271346\pi\)
0.658134 + 0.752901i \(0.271346\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 10.5826 1.41416
\(57\) 0 0
\(58\) 2.79129 0.366514
\(59\) −1.58258 −0.206034 −0.103017 0.994680i \(-0.532850\pi\)
−0.103017 + 0.994680i \(0.532850\pi\)
\(60\) 0 0
\(61\) −14.7477 −1.88825 −0.944126 0.329583i \(-0.893092\pi\)
−0.944126 + 0.329583i \(0.893092\pi\)
\(62\) −11.1652 −1.41798
\(63\) 0 0
\(64\) 44.9129 5.61411
\(65\) 0 0
\(66\) 0 0
\(67\) −14.1652 −1.73055 −0.865274 0.501299i \(-0.832856\pi\)
−0.865274 + 0.501299i \(0.832856\pi\)
\(68\) −17.3739 −2.10689
\(69\) 0 0
\(70\) 0 0
\(71\) 0.417424 0.0495392 0.0247696 0.999693i \(-0.492115\pi\)
0.0247696 + 0.999693i \(0.492115\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −11.1652 −1.29792
\(75\) 0 0
\(76\) −32.3303 −3.70854
\(77\) 5.00000 0.569803
\(78\) 0 0
\(79\) −1.58258 −0.178054 −0.0890268 0.996029i \(-0.528376\pi\)
−0.0890268 + 0.996029i \(0.528376\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 25.5826 2.82512
\(83\) −2.41742 −0.265347 −0.132673 0.991160i \(-0.542356\pi\)
−0.132673 + 0.991160i \(0.542356\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.16515 −0.125642
\(87\) 0 0
\(88\) 52.9129 5.64053
\(89\) −10.5826 −1.12175 −0.560875 0.827900i \(-0.689535\pi\)
−0.560875 + 0.827900i \(0.689535\pi\)
\(90\) 0 0
\(91\) 4.58258 0.480384
\(92\) −23.1652 −2.41513
\(93\) 0 0
\(94\) −3.95644 −0.408076
\(95\) 0 0
\(96\) 0 0
\(97\) −2.41742 −0.245452 −0.122726 0.992441i \(-0.539164\pi\)
−0.122726 + 0.992441i \(0.539164\pi\)
\(98\) 16.7477 1.69178
\(99\) 0 0
\(100\) 0 0
\(101\) −8.58258 −0.853998 −0.426999 0.904252i \(-0.640429\pi\)
−0.426999 + 0.904252i \(0.640429\pi\)
\(102\) 0 0
\(103\) 3.16515 0.311872 0.155936 0.987767i \(-0.450161\pi\)
0.155936 + 0.987767i \(0.450161\pi\)
\(104\) 48.4955 4.75537
\(105\) 0 0
\(106\) −26.7477 −2.59797
\(107\) −13.1652 −1.27272 −0.636362 0.771391i \(-0.719561\pi\)
−0.636362 + 0.771391i \(0.719561\pi\)
\(108\) 0 0
\(109\) −4.16515 −0.398949 −0.199475 0.979903i \(-0.563924\pi\)
−0.199475 + 0.979903i \(0.563924\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17.9564 −1.69672
\(113\) 4.16515 0.391824 0.195912 0.980621i \(-0.437233\pi\)
0.195912 + 0.980621i \(0.437233\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.79129 −0.537708
\(117\) 0 0
\(118\) 4.41742 0.406657
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 41.1652 3.72692
\(123\) 0 0
\(124\) 23.1652 2.08029
\(125\) 0 0
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) −67.4519 −5.96196
\(129\) 0 0
\(130\) 0 0
\(131\) 15.0000 1.31056 0.655278 0.755388i \(-0.272551\pi\)
0.655278 + 0.755388i \(0.272551\pi\)
\(132\) 0 0
\(133\) 5.58258 0.484071
\(134\) 39.5390 3.41565
\(135\) 0 0
\(136\) 31.7477 2.72235
\(137\) −20.3303 −1.73693 −0.868467 0.495746i \(-0.834895\pi\)
−0.868467 + 0.495746i \(0.834895\pi\)
\(138\) 0 0
\(139\) −18.5826 −1.57615 −0.788077 0.615577i \(-0.788923\pi\)
−0.788077 + 0.615577i \(0.788923\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.16515 −0.0977773
\(143\) 22.9129 1.91607
\(144\) 0 0
\(145\) 0 0
\(146\) 11.1652 0.924035
\(147\) 0 0
\(148\) 23.1652 1.90416
\(149\) 10.7477 0.880488 0.440244 0.897878i \(-0.354892\pi\)
0.440244 + 0.897878i \(0.354892\pi\)
\(150\) 0 0
\(151\) −11.1652 −0.908607 −0.454304 0.890847i \(-0.650112\pi\)
−0.454304 + 0.890847i \(0.650112\pi\)
\(152\) 59.0780 4.79186
\(153\) 0 0
\(154\) −13.9564 −1.12464
\(155\) 0 0
\(156\) 0 0
\(157\) 16.7477 1.33661 0.668307 0.743886i \(-0.267019\pi\)
0.668307 + 0.743886i \(0.267019\pi\)
\(158\) 4.41742 0.351431
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 1.58258 0.123957 0.0619784 0.998077i \(-0.480259\pi\)
0.0619784 + 0.998077i \(0.480259\pi\)
\(164\) −53.0780 −4.14470
\(165\) 0 0
\(166\) 6.74773 0.523725
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 8.00000 0.615385
\(170\) 0 0
\(171\) 0 0
\(172\) 2.41742 0.184327
\(173\) 15.1652 1.15299 0.576493 0.817102i \(-0.304421\pi\)
0.576493 + 0.817102i \(0.304421\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −89.7822 −6.76759
\(177\) 0 0
\(178\) 29.5390 2.21404
\(179\) 22.7477 1.70024 0.850122 0.526585i \(-0.176528\pi\)
0.850122 + 0.526585i \(0.176528\pi\)
\(180\) 0 0
\(181\) −2.16515 −0.160934 −0.0804672 0.996757i \(-0.525641\pi\)
−0.0804672 + 0.996757i \(0.525641\pi\)
\(182\) −12.7913 −0.948153
\(183\) 0 0
\(184\) 42.3303 3.12063
\(185\) 0 0
\(186\) 0 0
\(187\) 15.0000 1.09691
\(188\) 8.20871 0.598682
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −16.3303 −1.17548 −0.587740 0.809050i \(-0.699982\pi\)
−0.587740 + 0.809050i \(0.699982\pi\)
\(194\) 6.74773 0.484459
\(195\) 0 0
\(196\) −34.7477 −2.48198
\(197\) 20.3303 1.44847 0.724237 0.689551i \(-0.242192\pi\)
0.724237 + 0.689551i \(0.242192\pi\)
\(198\) 0 0
\(199\) 22.5826 1.60084 0.800418 0.599442i \(-0.204611\pi\)
0.800418 + 0.599442i \(0.204611\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 23.9564 1.68557
\(203\) 1.00000 0.0701862
\(204\) 0 0
\(205\) 0 0
\(206\) −8.83485 −0.615553
\(207\) 0 0
\(208\) −82.2867 −5.70556
\(209\) 27.9129 1.93077
\(210\) 0 0
\(211\) −16.3303 −1.12422 −0.562112 0.827061i \(-0.690011\pi\)
−0.562112 + 0.827061i \(0.690011\pi\)
\(212\) 55.4955 3.81144
\(213\) 0 0
\(214\) 36.7477 2.51202
\(215\) 0 0
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 11.6261 0.787421
\(219\) 0 0
\(220\) 0 0
\(221\) 13.7477 0.924772
\(222\) 0 0
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 28.9564 1.93473
\(225\) 0 0
\(226\) −11.6261 −0.773359
\(227\) 1.58258 0.105039 0.0525196 0.998620i \(-0.483275\pi\)
0.0525196 + 0.998620i \(0.483275\pi\)
\(228\) 0 0
\(229\) 1.16515 0.0769954 0.0384977 0.999259i \(-0.487743\pi\)
0.0384977 + 0.999259i \(0.487743\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.5826 0.694780
\(233\) 5.16515 0.338380 0.169190 0.985583i \(-0.445885\pi\)
0.169190 + 0.985583i \(0.445885\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −9.16515 −0.596601
\(237\) 0 0
\(238\) −8.37386 −0.542797
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) −7.33030 −0.472186 −0.236093 0.971730i \(-0.575867\pi\)
−0.236093 + 0.971730i \(0.575867\pi\)
\(242\) −39.0780 −2.51203
\(243\) 0 0
\(244\) −85.4083 −5.46771
\(245\) 0 0
\(246\) 0 0
\(247\) 25.5826 1.62778
\(248\) −42.3303 −2.68798
\(249\) 0 0
\(250\) 0 0
\(251\) 2.16515 0.136663 0.0683316 0.997663i \(-0.478232\pi\)
0.0683316 + 0.997663i \(0.478232\pi\)
\(252\) 0 0
\(253\) 20.0000 1.25739
\(254\) 5.58258 0.350282
\(255\) 0 0
\(256\) 98.4519 6.15324
\(257\) −14.7477 −0.919938 −0.459969 0.887935i \(-0.652139\pi\)
−0.459969 + 0.887935i \(0.652139\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) −41.8693 −2.58670
\(263\) −6.33030 −0.390343 −0.195172 0.980769i \(-0.562526\pi\)
−0.195172 + 0.980769i \(0.562526\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −15.5826 −0.955429
\(267\) 0 0
\(268\) −82.0345 −5.01105
\(269\) −13.4174 −0.818075 −0.409037 0.912518i \(-0.634135\pi\)
−0.409037 + 0.912518i \(0.634135\pi\)
\(270\) 0 0
\(271\) −17.1652 −1.04271 −0.521354 0.853340i \(-0.674573\pi\)
−0.521354 + 0.853340i \(0.674573\pi\)
\(272\) −53.8693 −3.26631
\(273\) 0 0
\(274\) 56.7477 3.42826
\(275\) 0 0
\(276\) 0 0
\(277\) −20.9129 −1.25653 −0.628267 0.777998i \(-0.716235\pi\)
−0.628267 + 0.777998i \(0.716235\pi\)
\(278\) 51.8693 3.11091
\(279\) 0 0
\(280\) 0 0
\(281\) 9.58258 0.571649 0.285824 0.958282i \(-0.407733\pi\)
0.285824 + 0.958282i \(0.407733\pi\)
\(282\) 0 0
\(283\) 19.1652 1.13925 0.569625 0.821905i \(-0.307088\pi\)
0.569625 + 0.821905i \(0.307088\pi\)
\(284\) 2.41742 0.143448
\(285\) 0 0
\(286\) −63.9564 −3.78182
\(287\) 9.16515 0.541002
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) −23.1652 −1.35564
\(293\) 11.8348 0.691399 0.345700 0.938345i \(-0.387642\pi\)
0.345700 + 0.938345i \(0.387642\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −42.3303 −2.46040
\(297\) 0 0
\(298\) −30.0000 −1.73785
\(299\) 18.3303 1.06007
\(300\) 0 0
\(301\) −0.417424 −0.0240599
\(302\) 31.1652 1.79335
\(303\) 0 0
\(304\) −100.243 −5.74934
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 28.9564 1.64995
\(309\) 0 0
\(310\) 0 0
\(311\) 3.00000 0.170114 0.0850572 0.996376i \(-0.472893\pi\)
0.0850572 + 0.996376i \(0.472893\pi\)
\(312\) 0 0
\(313\) −1.41742 −0.0801176 −0.0400588 0.999197i \(-0.512755\pi\)
−0.0400588 + 0.999197i \(0.512755\pi\)
\(314\) −46.7477 −2.63813
\(315\) 0 0
\(316\) −9.16515 −0.515580
\(317\) −25.0000 −1.40414 −0.702070 0.712108i \(-0.747741\pi\)
−0.702070 + 0.712108i \(0.747741\pi\)
\(318\) 0 0
\(319\) 5.00000 0.279946
\(320\) 0 0
\(321\) 0 0
\(322\) −11.1652 −0.622210
\(323\) 16.7477 0.931868
\(324\) 0 0
\(325\) 0 0
\(326\) −4.41742 −0.244659
\(327\) 0 0
\(328\) 96.9909 5.35543
\(329\) −1.41742 −0.0781451
\(330\) 0 0
\(331\) 28.3303 1.55717 0.778587 0.627537i \(-0.215937\pi\)
0.778587 + 0.627537i \(0.215937\pi\)
\(332\) −14.0000 −0.768350
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.83485 0.154424 0.0772120 0.997015i \(-0.475398\pi\)
0.0772120 + 0.997015i \(0.475398\pi\)
\(338\) −22.3303 −1.21461
\(339\) 0 0
\(340\) 0 0
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) −4.41742 −0.238172
\(345\) 0 0
\(346\) −42.3303 −2.27569
\(347\) −11.1652 −0.599377 −0.299688 0.954037i \(-0.596883\pi\)
−0.299688 + 0.954037i \(0.596883\pi\)
\(348\) 0 0
\(349\) 32.3303 1.73060 0.865301 0.501253i \(-0.167127\pi\)
0.865301 + 0.501253i \(0.167127\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 144.782 7.71692
\(353\) −33.1652 −1.76520 −0.882601 0.470122i \(-0.844210\pi\)
−0.882601 + 0.470122i \(0.844210\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −61.2867 −3.24819
\(357\) 0 0
\(358\) −63.4955 −3.35584
\(359\) 8.83485 0.466285 0.233143 0.972443i \(-0.425099\pi\)
0.233143 + 0.972443i \(0.425099\pi\)
\(360\) 0 0
\(361\) 12.1652 0.640271
\(362\) 6.04356 0.317643
\(363\) 0 0
\(364\) 26.5390 1.39102
\(365\) 0 0
\(366\) 0 0
\(367\) −17.4955 −0.913255 −0.456628 0.889658i \(-0.650943\pi\)
−0.456628 + 0.889658i \(0.650943\pi\)
\(368\) −71.8258 −3.74418
\(369\) 0 0
\(370\) 0 0
\(371\) −9.58258 −0.497503
\(372\) 0 0
\(373\) 8.33030 0.431327 0.215663 0.976468i \(-0.430809\pi\)
0.215663 + 0.976468i \(0.430809\pi\)
\(374\) −41.8693 −2.16501
\(375\) 0 0
\(376\) −15.0000 −0.773566
\(377\) 4.58258 0.236015
\(378\) 0 0
\(379\) −26.0000 −1.33553 −0.667765 0.744372i \(-0.732749\pi\)
−0.667765 + 0.744372i \(0.732749\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −11.1652 −0.571259
\(383\) −5.58258 −0.285256 −0.142628 0.989776i \(-0.545555\pi\)
−0.142628 + 0.989776i \(0.545555\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 45.5826 2.32009
\(387\) 0 0
\(388\) −14.0000 −0.710742
\(389\) −2.58258 −0.130942 −0.0654709 0.997854i \(-0.520855\pi\)
−0.0654709 + 0.997854i \(0.520855\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 63.4955 3.20700
\(393\) 0 0
\(394\) −56.7477 −2.85891
\(395\) 0 0
\(396\) 0 0
\(397\) −29.1652 −1.46376 −0.731878 0.681435i \(-0.761356\pi\)
−0.731878 + 0.681435i \(0.761356\pi\)
\(398\) −63.0345 −3.15963
\(399\) 0 0
\(400\) 0 0
\(401\) −21.5826 −1.07778 −0.538891 0.842375i \(-0.681157\pi\)
−0.538891 + 0.842375i \(0.681157\pi\)
\(402\) 0 0
\(403\) −18.3303 −0.913097
\(404\) −49.7042 −2.47287
\(405\) 0 0
\(406\) −2.79129 −0.138529
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) 24.7477 1.22370 0.611848 0.790975i \(-0.290426\pi\)
0.611848 + 0.790975i \(0.290426\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 18.3303 0.903069
\(413\) 1.58258 0.0778735
\(414\) 0 0
\(415\) 0 0
\(416\) 132.695 6.50591
\(417\) 0 0
\(418\) −77.9129 −3.81084
\(419\) 18.8348 0.920143 0.460071 0.887882i \(-0.347824\pi\)
0.460071 + 0.887882i \(0.347824\pi\)
\(420\) 0 0
\(421\) 13.5826 0.661974 0.330987 0.943635i \(-0.392618\pi\)
0.330987 + 0.943635i \(0.392618\pi\)
\(422\) 45.5826 2.21893
\(423\) 0 0
\(424\) −101.408 −4.92482
\(425\) 0 0
\(426\) 0 0
\(427\) 14.7477 0.713693
\(428\) −76.2432 −3.68535
\(429\) 0 0
\(430\) 0 0
\(431\) 20.8348 1.00358 0.501790 0.864990i \(-0.332675\pi\)
0.501790 + 0.864990i \(0.332675\pi\)
\(432\) 0 0
\(433\) 39.0780 1.87797 0.938985 0.343958i \(-0.111768\pi\)
0.938985 + 0.343958i \(0.111768\pi\)
\(434\) 11.1652 0.535944
\(435\) 0 0
\(436\) −24.1216 −1.15521
\(437\) 22.3303 1.06820
\(438\) 0 0
\(439\) 28.9129 1.37994 0.689968 0.723840i \(-0.257624\pi\)
0.689968 + 0.723840i \(0.257624\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −38.3739 −1.82526
\(443\) −8.58258 −0.407770 −0.203885 0.978995i \(-0.565357\pi\)
−0.203885 + 0.978995i \(0.565357\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 19.5390 0.925199
\(447\) 0 0
\(448\) −44.9129 −2.12193
\(449\) −34.0780 −1.60824 −0.804121 0.594466i \(-0.797364\pi\)
−0.804121 + 0.594466i \(0.797364\pi\)
\(450\) 0 0
\(451\) 45.8258 2.15785
\(452\) 24.1216 1.13458
\(453\) 0 0
\(454\) −4.41742 −0.207320
\(455\) 0 0
\(456\) 0 0
\(457\) −23.7477 −1.11087 −0.555436 0.831559i \(-0.687449\pi\)
−0.555436 + 0.831559i \(0.687449\pi\)
\(458\) −3.25227 −0.151969
\(459\) 0 0
\(460\) 0 0
\(461\) −9.16515 −0.426864 −0.213432 0.976958i \(-0.568464\pi\)
−0.213432 + 0.976958i \(0.568464\pi\)
\(462\) 0 0
\(463\) −18.1652 −0.844206 −0.422103 0.906548i \(-0.638708\pi\)
−0.422103 + 0.906548i \(0.638708\pi\)
\(464\) −17.9564 −0.833607
\(465\) 0 0
\(466\) −14.4174 −0.667874
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) 14.1652 0.654086
\(470\) 0 0
\(471\) 0 0
\(472\) 16.7477 0.770877
\(473\) −2.08712 −0.0959659
\(474\) 0 0
\(475\) 0 0
\(476\) 17.3739 0.796330
\(477\) 0 0
\(478\) −72.5735 −3.31943
\(479\) 0.834849 0.0381452 0.0190726 0.999818i \(-0.493929\pi\)
0.0190726 + 0.999818i \(0.493929\pi\)
\(480\) 0 0
\(481\) −18.3303 −0.835790
\(482\) 20.4610 0.931972
\(483\) 0 0
\(484\) 81.0780 3.68536
\(485\) 0 0
\(486\) 0 0
\(487\) 34.3303 1.55565 0.777827 0.628478i \(-0.216322\pi\)
0.777827 + 0.628478i \(0.216322\pi\)
\(488\) 156.069 7.06491
\(489\) 0 0
\(490\) 0 0
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) 0 0
\(493\) 3.00000 0.135113
\(494\) −71.4083 −3.21281
\(495\) 0 0
\(496\) 71.8258 3.22507
\(497\) −0.417424 −0.0187240
\(498\) 0 0
\(499\) −22.5826 −1.01093 −0.505467 0.862846i \(-0.668680\pi\)
−0.505467 + 0.862846i \(0.668680\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −6.04356 −0.269737
\(503\) 22.9129 1.02163 0.510817 0.859689i \(-0.329343\pi\)
0.510817 + 0.859689i \(0.329343\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −55.8258 −2.48176
\(507\) 0 0
\(508\) −11.5826 −0.513894
\(509\) 0.747727 0.0331424 0.0165712 0.999863i \(-0.494725\pi\)
0.0165712 + 0.999863i \(0.494725\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) −139.904 −6.18293
\(513\) 0 0
\(514\) 41.1652 1.81572
\(515\) 0 0
\(516\) 0 0
\(517\) −7.08712 −0.311691
\(518\) 11.1652 0.490569
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0780 0.923445 0.461723 0.887024i \(-0.347232\pi\)
0.461723 + 0.887024i \(0.347232\pi\)
\(522\) 0 0
\(523\) −3.33030 −0.145624 −0.0728120 0.997346i \(-0.523197\pi\)
−0.0728120 + 0.997346i \(0.523197\pi\)
\(524\) 86.8693 3.79490
\(525\) 0 0
\(526\) 17.6697 0.770435
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 32.3303 1.40170
\(533\) 42.0000 1.81922
\(534\) 0 0
\(535\) 0 0
\(536\) 149.904 6.47486
\(537\) 0 0
\(538\) 37.4519 1.61467
\(539\) 30.0000 1.29219
\(540\) 0 0
\(541\) 23.4955 1.01015 0.505074 0.863076i \(-0.331465\pi\)
0.505074 + 0.863076i \(0.331465\pi\)
\(542\) 47.9129 2.05803
\(543\) 0 0
\(544\) 86.8693 3.72449
\(545\) 0 0
\(546\) 0 0
\(547\) 14.1652 0.605658 0.302829 0.953045i \(-0.402069\pi\)
0.302829 + 0.953045i \(0.402069\pi\)
\(548\) −117.739 −5.02955
\(549\) 0 0
\(550\) 0 0
\(551\) 5.58258 0.237826
\(552\) 0 0
\(553\) 1.58258 0.0672980
\(554\) 58.3739 2.48007
\(555\) 0 0
\(556\) −107.617 −4.56398
\(557\) 4.74773 0.201168 0.100584 0.994929i \(-0.467929\pi\)
0.100584 + 0.994929i \(0.467929\pi\)
\(558\) 0 0
\(559\) −1.91288 −0.0809061
\(560\) 0 0
\(561\) 0 0
\(562\) −26.7477 −1.12828
\(563\) −5.41742 −0.228317 −0.114159 0.993463i \(-0.536417\pi\)
−0.114159 + 0.993463i \(0.536417\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −53.4955 −2.24858
\(567\) 0 0
\(568\) −4.41742 −0.185351
\(569\) −19.4174 −0.814021 −0.407010 0.913424i \(-0.633429\pi\)
−0.407010 + 0.913424i \(0.633429\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 132.695 5.54826
\(573\) 0 0
\(574\) −25.5826 −1.06780
\(575\) 0 0
\(576\) 0 0
\(577\) 0.834849 0.0347552 0.0173776 0.999849i \(-0.494468\pi\)
0.0173776 + 0.999849i \(0.494468\pi\)
\(578\) 22.3303 0.928818
\(579\) 0 0
\(580\) 0 0
\(581\) 2.41742 0.100292
\(582\) 0 0
\(583\) −47.9129 −1.98435
\(584\) 42.3303 1.75164
\(585\) 0 0
\(586\) −33.0345 −1.36464
\(587\) −2.41742 −0.0997778 −0.0498889 0.998755i \(-0.515887\pi\)
−0.0498889 + 0.998755i \(0.515887\pi\)
\(588\) 0 0
\(589\) −22.3303 −0.920104
\(590\) 0 0
\(591\) 0 0
\(592\) 71.8258 2.95202
\(593\) 17.5826 0.722030 0.361015 0.932560i \(-0.382430\pi\)
0.361015 + 0.932560i \(0.382430\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 62.2432 2.54958
\(597\) 0 0
\(598\) −51.1652 −2.09230
\(599\) 18.1652 0.742208 0.371104 0.928591i \(-0.378979\pi\)
0.371104 + 0.928591i \(0.378979\pi\)
\(600\) 0 0
\(601\) 4.33030 0.176637 0.0883184 0.996092i \(-0.471851\pi\)
0.0883184 + 0.996092i \(0.471851\pi\)
\(602\) 1.16515 0.0474880
\(603\) 0 0
\(604\) −64.6606 −2.63100
\(605\) 0 0
\(606\) 0 0
\(607\) 5.58258 0.226590 0.113295 0.993561i \(-0.463860\pi\)
0.113295 + 0.993561i \(0.463860\pi\)
\(608\) 161.652 6.55583
\(609\) 0 0
\(610\) 0 0
\(611\) −6.49545 −0.262778
\(612\) 0 0
\(613\) 16.2523 0.656423 0.328212 0.944604i \(-0.393554\pi\)
0.328212 + 0.944604i \(0.393554\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −52.9129 −2.13192
\(617\) −39.4955 −1.59003 −0.795014 0.606592i \(-0.792536\pi\)
−0.795014 + 0.606592i \(0.792536\pi\)
\(618\) 0 0
\(619\) −5.16515 −0.207605 −0.103802 0.994598i \(-0.533101\pi\)
−0.103802 + 0.994598i \(0.533101\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −8.37386 −0.335761
\(623\) 10.5826 0.423982
\(624\) 0 0
\(625\) 0 0
\(626\) 3.95644 0.158131
\(627\) 0 0
\(628\) 96.9909 3.87036
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −34.9129 −1.38986 −0.694930 0.719078i \(-0.744565\pi\)
−0.694930 + 0.719078i \(0.744565\pi\)
\(632\) 16.7477 0.666189
\(633\) 0 0
\(634\) 69.7822 2.77141
\(635\) 0 0
\(636\) 0 0
\(637\) 27.4955 1.08941
\(638\) −13.9564 −0.552541
\(639\) 0 0
\(640\) 0 0
\(641\) −2.58258 −0.102006 −0.0510028 0.998699i \(-0.516242\pi\)
−0.0510028 + 0.998699i \(0.516242\pi\)
\(642\) 0 0
\(643\) 29.6606 1.16970 0.584850 0.811141i \(-0.301153\pi\)
0.584850 + 0.811141i \(0.301153\pi\)
\(644\) 23.1652 0.912835
\(645\) 0 0
\(646\) −46.7477 −1.83926
\(647\) −2.74773 −0.108024 −0.0540121 0.998540i \(-0.517201\pi\)
−0.0540121 + 0.998540i \(0.517201\pi\)
\(648\) 0 0
\(649\) 7.91288 0.310608
\(650\) 0 0
\(651\) 0 0
\(652\) 9.16515 0.358935
\(653\) 7.83485 0.306601 0.153301 0.988180i \(-0.451010\pi\)
0.153301 + 0.988180i \(0.451010\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −164.573 −6.42552
\(657\) 0 0
\(658\) 3.95644 0.154238
\(659\) 0.165151 0.00643338 0.00321669 0.999995i \(-0.498976\pi\)
0.00321669 + 0.999995i \(0.498976\pi\)
\(660\) 0 0
\(661\) 25.0000 0.972387 0.486194 0.873851i \(-0.338385\pi\)
0.486194 + 0.873851i \(0.338385\pi\)
\(662\) −79.0780 −3.07345
\(663\) 0 0
\(664\) 25.5826 0.992796
\(665\) 0 0
\(666\) 0 0
\(667\) 4.00000 0.154881
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 73.7386 2.84665
\(672\) 0 0
\(673\) 25.7477 0.992502 0.496251 0.868179i \(-0.334710\pi\)
0.496251 + 0.868179i \(0.334710\pi\)
\(674\) −7.91288 −0.304793
\(675\) 0 0
\(676\) 46.3303 1.78193
\(677\) −46.8258 −1.79966 −0.899830 0.436241i \(-0.856310\pi\)
−0.899830 + 0.436241i \(0.856310\pi\)
\(678\) 0 0
\(679\) 2.41742 0.0927722
\(680\) 0 0
\(681\) 0 0
\(682\) 55.8258 2.13768
\(683\) −11.1652 −0.427223 −0.213611 0.976919i \(-0.568523\pi\)
−0.213611 + 0.976919i \(0.568523\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −36.2867 −1.38543
\(687\) 0 0
\(688\) 7.49545 0.285762
\(689\) −43.9129 −1.67295
\(690\) 0 0
\(691\) −2.91288 −0.110811 −0.0554056 0.998464i \(-0.517645\pi\)
−0.0554056 + 0.998464i \(0.517645\pi\)
\(692\) 87.8258 3.33863
\(693\) 0 0
\(694\) 31.1652 1.18301
\(695\) 0 0
\(696\) 0 0
\(697\) 27.4955 1.04146
\(698\) −90.2432 −3.41575
\(699\) 0 0
\(700\) 0 0
\(701\) −41.0780 −1.55150 −0.775748 0.631043i \(-0.782627\pi\)
−0.775748 + 0.631043i \(0.782627\pi\)
\(702\) 0 0
\(703\) −22.3303 −0.842203
\(704\) −224.564 −8.46359
\(705\) 0 0
\(706\) 92.5735 3.48405
\(707\) 8.58258 0.322781
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 111.991 4.19704
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 131.739 4.92330
\(717\) 0 0
\(718\) −24.6606 −0.920326
\(719\) 37.9129 1.41391 0.706956 0.707258i \(-0.250068\pi\)
0.706956 + 0.707258i \(0.250068\pi\)
\(720\) 0 0
\(721\) −3.16515 −0.117876
\(722\) −33.9564 −1.26373
\(723\) 0 0
\(724\) −12.5390 −0.466009
\(725\) 0 0
\(726\) 0 0
\(727\) −46.3303 −1.71830 −0.859148 0.511727i \(-0.829006\pi\)
−0.859148 + 0.511727i \(0.829006\pi\)
\(728\) −48.4955 −1.79736
\(729\) 0 0
\(730\) 0 0
\(731\) −1.25227 −0.0463170
\(732\) 0 0
\(733\) 47.5826 1.75750 0.878751 0.477280i \(-0.158377\pi\)
0.878751 + 0.477280i \(0.158377\pi\)
\(734\) 48.8348 1.80253
\(735\) 0 0
\(736\) 115.826 4.26939
\(737\) 70.8258 2.60890
\(738\) 0 0
\(739\) 46.7477 1.71964 0.859821 0.510595i \(-0.170575\pi\)
0.859821 + 0.510595i \(0.170575\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 26.7477 0.981940
\(743\) 2.25227 0.0826279 0.0413139 0.999146i \(-0.486846\pi\)
0.0413139 + 0.999146i \(0.486846\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −23.2523 −0.851326
\(747\) 0 0
\(748\) 86.8693 3.17626
\(749\) 13.1652 0.481044
\(750\) 0 0
\(751\) 37.4955 1.36823 0.684114 0.729375i \(-0.260189\pi\)
0.684114 + 0.729375i \(0.260189\pi\)
\(752\) 25.4519 0.928135
\(753\) 0 0
\(754\) −12.7913 −0.465831
\(755\) 0 0
\(756\) 0 0
\(757\) −34.3303 −1.24776 −0.623878 0.781522i \(-0.714444\pi\)
−0.623878 + 0.781522i \(0.714444\pi\)
\(758\) 72.5735 2.63599
\(759\) 0 0
\(760\) 0 0
\(761\) −45.5826 −1.65237 −0.826184 0.563401i \(-0.809493\pi\)
−0.826184 + 0.563401i \(0.809493\pi\)
\(762\) 0 0
\(763\) 4.16515 0.150789
\(764\) 23.1652 0.838086
\(765\) 0 0
\(766\) 15.5826 0.563021
\(767\) 7.25227 0.261864
\(768\) 0 0
\(769\) 16.4174 0.592027 0.296014 0.955184i \(-0.404343\pi\)
0.296014 + 0.955184i \(0.404343\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −94.5735 −3.40377
\(773\) 13.1652 0.473518 0.236759 0.971568i \(-0.423915\pi\)
0.236759 + 0.971568i \(0.423915\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 25.5826 0.918361
\(777\) 0 0
\(778\) 7.20871 0.258445
\(779\) 51.1652 1.83318
\(780\) 0 0
\(781\) −2.08712 −0.0746831
\(782\) −33.4955 −1.19779
\(783\) 0 0
\(784\) −107.739 −3.84781
\(785\) 0 0
\(786\) 0 0
\(787\) 24.0000 0.855508 0.427754 0.903895i \(-0.359305\pi\)
0.427754 + 0.903895i \(0.359305\pi\)
\(788\) 117.739 4.19427
\(789\) 0 0
\(790\) 0 0
\(791\) −4.16515 −0.148096
\(792\) 0 0
\(793\) 67.5826 2.39993
\(794\) 81.4083 2.88907
\(795\) 0 0
\(796\) 130.782 4.63545
\(797\) −4.33030 −0.153387 −0.0766936 0.997055i \(-0.524436\pi\)
−0.0766936 + 0.997055i \(0.524436\pi\)
\(798\) 0 0
\(799\) −4.25227 −0.150435
\(800\) 0 0
\(801\) 0 0
\(802\) 60.2432 2.12726
\(803\) 20.0000 0.705785
\(804\) 0 0
\(805\) 0 0
\(806\) 51.1652 1.80222
\(807\) 0 0
\(808\) 90.8258 3.19524
\(809\) 20.0780 0.705906 0.352953 0.935641i \(-0.385178\pi\)
0.352953 + 0.935641i \(0.385178\pi\)
\(810\) 0 0
\(811\) 23.4174 0.822297 0.411148 0.911568i \(-0.365128\pi\)
0.411148 + 0.911568i \(0.365128\pi\)
\(812\) 5.79129 0.203234
\(813\) 0 0
\(814\) 55.8258 1.95669
\(815\) 0 0
\(816\) 0 0
\(817\) −2.33030 −0.0815270
\(818\) −69.0780 −2.41526
\(819\) 0 0
\(820\) 0 0
\(821\) −23.4955 −0.819997 −0.409999 0.912086i \(-0.634471\pi\)
−0.409999 + 0.912086i \(0.634471\pi\)
\(822\) 0 0
\(823\) 13.0780 0.455871 0.227936 0.973676i \(-0.426802\pi\)
0.227936 + 0.973676i \(0.426802\pi\)
\(824\) −33.4955 −1.16687
\(825\) 0 0
\(826\) −4.41742 −0.153702
\(827\) 47.8258 1.66306 0.831532 0.555476i \(-0.187464\pi\)
0.831532 + 0.555476i \(0.187464\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −205.817 −7.13541
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 161.652 5.59083
\(837\) 0 0
\(838\) −52.5735 −1.81612
\(839\) −6.49545 −0.224248 −0.112124 0.993694i \(-0.535765\pi\)
−0.112124 + 0.993694i \(0.535765\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −37.9129 −1.30656
\(843\) 0 0
\(844\) −94.5735 −3.25535
\(845\) 0 0
\(846\) 0 0
\(847\) −14.0000 −0.481046
\(848\) 172.069 5.90887
\(849\) 0 0
\(850\) 0 0
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) 6.74773 0.231038 0.115519 0.993305i \(-0.463147\pi\)
0.115519 + 0.993305i \(0.463147\pi\)
\(854\) −41.1652 −1.40864
\(855\) 0 0
\(856\) 139.321 4.76190
\(857\) 26.6606 0.910709 0.455354 0.890310i \(-0.349513\pi\)
0.455354 + 0.890310i \(0.349513\pi\)
\(858\) 0 0
\(859\) −38.4174 −1.31079 −0.655393 0.755288i \(-0.727497\pi\)
−0.655393 + 0.755288i \(0.727497\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −58.1561 −1.98080
\(863\) −15.5826 −0.530437 −0.265219 0.964188i \(-0.585444\pi\)
−0.265219 + 0.964188i \(0.585444\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −109.078 −3.70662
\(867\) 0 0
\(868\) −23.1652 −0.786276
\(869\) 7.91288 0.268426
\(870\) 0 0
\(871\) 64.9129 2.19949
\(872\) 44.0780 1.49267
\(873\) 0 0
\(874\) −62.3303 −2.10835
\(875\) 0 0
\(876\) 0 0
\(877\) −56.3303 −1.90214 −0.951070 0.308977i \(-0.900013\pi\)
−0.951070 + 0.308977i \(0.900013\pi\)
\(878\) −80.7042 −2.72363
\(879\) 0 0
\(880\) 0 0
\(881\) −32.0780 −1.08074 −0.540368 0.841429i \(-0.681715\pi\)
−0.540368 + 0.841429i \(0.681715\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 79.6170 2.67781
\(885\) 0 0
\(886\) 23.9564 0.804832
\(887\) 0.912878 0.0306515 0.0153257 0.999883i \(-0.495121\pi\)
0.0153257 + 0.999883i \(0.495121\pi\)
\(888\) 0 0
\(889\) 2.00000 0.0670778
\(890\) 0 0
\(891\) 0 0
\(892\) −40.5390 −1.35735
\(893\) −7.91288 −0.264794
\(894\) 0 0
\(895\) 0 0
\(896\) 67.4519 2.25341
\(897\) 0 0
\(898\) 95.1216 3.17425
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) −28.7477 −0.957726
\(902\) −127.913 −4.25903
\(903\) 0 0
\(904\) −44.0780 −1.46601
\(905\) 0 0
\(906\) 0 0
\(907\) −14.4174 −0.478723 −0.239361 0.970931i \(-0.576938\pi\)
−0.239361 + 0.970931i \(0.576938\pi\)
\(908\) 9.16515 0.304156
\(909\) 0 0
\(910\) 0 0
\(911\) −40.8258 −1.35262 −0.676309 0.736618i \(-0.736422\pi\)
−0.676309 + 0.736618i \(0.736422\pi\)
\(912\) 0 0
\(913\) 12.0871 0.400025
\(914\) 66.2867 2.19257
\(915\) 0 0
\(916\) 6.74773 0.222951
\(917\) −15.0000 −0.495344
\(918\) 0 0
\(919\) −26.9129 −0.887774 −0.443887 0.896083i \(-0.646401\pi\)
−0.443887 + 0.896083i \(0.646401\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 25.5826 0.842517
\(923\) −1.91288 −0.0629632
\(924\) 0 0
\(925\) 0 0
\(926\) 50.7042 1.66624
\(927\) 0 0
\(928\) 28.9564 0.950542
\(929\) −52.3303 −1.71690 −0.858451 0.512896i \(-0.828573\pi\)
−0.858451 + 0.512896i \(0.828573\pi\)
\(930\) 0 0
\(931\) 33.4955 1.09777
\(932\) 29.9129 0.979829
\(933\) 0 0
\(934\) 22.3303 0.730670
\(935\) 0 0
\(936\) 0 0
\(937\) 9.41742 0.307654 0.153827 0.988098i \(-0.450840\pi\)
0.153827 + 0.988098i \(0.450840\pi\)
\(938\) −39.5390 −1.29099
\(939\) 0 0
\(940\) 0 0
\(941\) 25.9129 0.844736 0.422368 0.906425i \(-0.361199\pi\)
0.422368 + 0.906425i \(0.361199\pi\)
\(942\) 0 0
\(943\) 36.6606 1.19383
\(944\) −28.4174 −0.924908
\(945\) 0 0
\(946\) 5.82576 0.189412
\(947\) −9.08712 −0.295292 −0.147646 0.989040i \(-0.547170\pi\)
−0.147646 + 0.989040i \(0.547170\pi\)
\(948\) 0 0
\(949\) 18.3303 0.595027
\(950\) 0 0
\(951\) 0 0
\(952\) −31.7477 −1.02895
\(953\) −28.4174 −0.920531 −0.460265 0.887781i \(-0.652246\pi\)
−0.460265 + 0.887781i \(0.652246\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 150.573 4.86989
\(957\) 0 0
\(958\) −2.33030 −0.0752887
\(959\) 20.3303 0.656500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 51.1652 1.64963
\(963\) 0 0
\(964\) −42.4519 −1.36728
\(965\) 0 0
\(966\) 0 0
\(967\) −36.7477 −1.18173 −0.590864 0.806771i \(-0.701213\pi\)
−0.590864 + 0.806771i \(0.701213\pi\)
\(968\) −148.156 −4.76192
\(969\) 0 0
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) 18.5826 0.595730
\(974\) −95.8258 −3.07046
\(975\) 0 0
\(976\) −264.817 −8.47657
\(977\) −57.4955 −1.83944 −0.919721 0.392572i \(-0.871585\pi\)
−0.919721 + 0.392572i \(0.871585\pi\)
\(978\) 0 0
\(979\) 52.9129 1.69110
\(980\) 0 0
\(981\) 0 0
\(982\) 44.6606 1.42518
\(983\) 36.8348 1.17485 0.587425 0.809279i \(-0.300142\pi\)
0.587425 + 0.809279i \(0.300142\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −8.37386 −0.266678
\(987\) 0 0
\(988\) 148.156 4.71347
\(989\) −1.66970 −0.0530933
\(990\) 0 0
\(991\) −48.0780 −1.52725 −0.763624 0.645661i \(-0.776582\pi\)
−0.763624 + 0.645661i \(0.776582\pi\)
\(992\) −115.826 −3.67747
\(993\) 0 0
\(994\) 1.16515 0.0369564
\(995\) 0 0
\(996\) 0 0
\(997\) 19.1652 0.606966 0.303483 0.952837i \(-0.401850\pi\)
0.303483 + 0.952837i \(0.401850\pi\)
\(998\) 63.0345 1.99532
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.t.1.1 2
3.2 odd 2 2175.2.a.r.1.2 2
5.4 even 2 1305.2.a.m.1.2 2
15.2 even 4 2175.2.c.f.349.4 4
15.8 even 4 2175.2.c.f.349.1 4
15.14 odd 2 435.2.a.f.1.1 2
60.59 even 2 6960.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.a.f.1.1 2 15.14 odd 2
1305.2.a.m.1.2 2 5.4 even 2
2175.2.a.r.1.2 2 3.2 odd 2
2175.2.c.f.349.1 4 15.8 even 4
2175.2.c.f.349.4 4 15.2 even 4
6525.2.a.t.1.1 2 1.1 even 1 trivial
6960.2.a.bw.1.2 2 60.59 even 2