Properties

Label 6525.2.a.cf.1.10
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 268310344 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,16,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 148x^{8} - 502x^{6} + 792x^{4} - 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1305)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(1.78841\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.78841 q^{2} +1.19839 q^{4} -4.04635 q^{7} -1.43360 q^{8} +4.80986 q^{11} +0.533576 q^{13} -7.23651 q^{14} -4.96064 q^{16} -0.299844 q^{17} -6.02908 q^{19} +8.60198 q^{22} +0.379104 q^{23} +0.954250 q^{26} -4.84912 q^{28} -1.00000 q^{29} +9.14506 q^{31} -6.00444 q^{32} -0.536243 q^{34} +8.51769 q^{37} -10.7824 q^{38} -2.24106 q^{41} +6.01126 q^{43} +5.76411 q^{44} +0.677992 q^{46} -0.299844 q^{47} +9.37293 q^{49} +0.639435 q^{52} -11.8608 q^{53} +5.80083 q^{56} -1.78841 q^{58} +6.53090 q^{59} -0.755856 q^{61} +16.3551 q^{62} -0.817104 q^{64} +3.95461 q^{67} -0.359332 q^{68} +10.6771 q^{71} +11.0455 q^{73} +15.2331 q^{74} -7.22522 q^{76} -19.4624 q^{77} +7.01095 q^{79} -4.00793 q^{82} +6.15340 q^{83} +10.7506 q^{86} -6.89539 q^{88} +10.0521 q^{89} -2.15903 q^{91} +0.454316 q^{92} -0.536243 q^{94} +2.41013 q^{97} +16.7626 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} + 12 q^{11} + 16 q^{14} + 16 q^{16} - 20 q^{19} + 56 q^{26} - 12 q^{29} - 16 q^{31} + 4 q^{34} + 32 q^{41} + 68 q^{44} + 20 q^{46} - 4 q^{49} + 76 q^{56} + 44 q^{59} - 52 q^{61} + 36 q^{64}+ \cdots + 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78841 1.26459 0.632297 0.774726i \(-0.282112\pi\)
0.632297 + 0.774726i \(0.282112\pi\)
\(3\) 0 0
\(4\) 1.19839 0.599197
\(5\) 0 0
\(6\) 0 0
\(7\) −4.04635 −1.52938 −0.764688 0.644401i \(-0.777107\pi\)
−0.764688 + 0.644401i \(0.777107\pi\)
\(8\) −1.43360 −0.506853
\(9\) 0 0
\(10\) 0 0
\(11\) 4.80986 1.45023 0.725113 0.688630i \(-0.241787\pi\)
0.725113 + 0.688630i \(0.241787\pi\)
\(12\) 0 0
\(13\) 0.533576 0.147987 0.0739937 0.997259i \(-0.476426\pi\)
0.0739937 + 0.997259i \(0.476426\pi\)
\(14\) −7.23651 −1.93404
\(15\) 0 0
\(16\) −4.96064 −1.24016
\(17\) −0.299844 −0.0727229 −0.0363615 0.999339i \(-0.511577\pi\)
−0.0363615 + 0.999339i \(0.511577\pi\)
\(18\) 0 0
\(19\) −6.02908 −1.38317 −0.691583 0.722297i \(-0.743086\pi\)
−0.691583 + 0.722297i \(0.743086\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 8.60198 1.83395
\(23\) 0.379104 0.0790487 0.0395243 0.999219i \(-0.487416\pi\)
0.0395243 + 0.999219i \(0.487416\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.954250 0.187144
\(27\) 0 0
\(28\) −4.84912 −0.916398
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 9.14506 1.64250 0.821251 0.570567i \(-0.193277\pi\)
0.821251 + 0.570567i \(0.193277\pi\)
\(32\) −6.00444 −1.06145
\(33\) 0 0
\(34\) −0.536243 −0.0919650
\(35\) 0 0
\(36\) 0 0
\(37\) 8.51769 1.40030 0.700150 0.713996i \(-0.253116\pi\)
0.700150 + 0.713996i \(0.253116\pi\)
\(38\) −10.7824 −1.74914
\(39\) 0 0
\(40\) 0 0
\(41\) −2.24106 −0.349995 −0.174998 0.984569i \(-0.555992\pi\)
−0.174998 + 0.984569i \(0.555992\pi\)
\(42\) 0 0
\(43\) 6.01126 0.916708 0.458354 0.888770i \(-0.348439\pi\)
0.458354 + 0.888770i \(0.348439\pi\)
\(44\) 5.76411 0.868972
\(45\) 0 0
\(46\) 0.677992 0.0999645
\(47\) −0.299844 −0.0437368 −0.0218684 0.999761i \(-0.506961\pi\)
−0.0218684 + 0.999761i \(0.506961\pi\)
\(48\) 0 0
\(49\) 9.37293 1.33899
\(50\) 0 0
\(51\) 0 0
\(52\) 0.639435 0.0886736
\(53\) −11.8608 −1.62920 −0.814601 0.580022i \(-0.803044\pi\)
−0.814601 + 0.580022i \(0.803044\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.80083 0.775168
\(57\) 0 0
\(58\) −1.78841 −0.234829
\(59\) 6.53090 0.850251 0.425126 0.905134i \(-0.360230\pi\)
0.425126 + 0.905134i \(0.360230\pi\)
\(60\) 0 0
\(61\) −0.755856 −0.0967774 −0.0483887 0.998829i \(-0.515409\pi\)
−0.0483887 + 0.998829i \(0.515409\pi\)
\(62\) 16.3551 2.07710
\(63\) 0 0
\(64\) −0.817104 −0.102138
\(65\) 0 0
\(66\) 0 0
\(67\) 3.95461 0.483133 0.241567 0.970384i \(-0.422339\pi\)
0.241567 + 0.970384i \(0.422339\pi\)
\(68\) −0.359332 −0.0435754
\(69\) 0 0
\(70\) 0 0
\(71\) 10.6771 1.26714 0.633571 0.773684i \(-0.281588\pi\)
0.633571 + 0.773684i \(0.281588\pi\)
\(72\) 0 0
\(73\) 11.0455 1.29278 0.646389 0.763008i \(-0.276278\pi\)
0.646389 + 0.763008i \(0.276278\pi\)
\(74\) 15.2331 1.77081
\(75\) 0 0
\(76\) −7.22522 −0.828790
\(77\) −19.4624 −2.21794
\(78\) 0 0
\(79\) 7.01095 0.788793 0.394397 0.918940i \(-0.370954\pi\)
0.394397 + 0.918940i \(0.370954\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −4.00793 −0.442602
\(83\) 6.15340 0.675424 0.337712 0.941250i \(-0.390347\pi\)
0.337712 + 0.941250i \(0.390347\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.7506 1.15926
\(87\) 0 0
\(88\) −6.89539 −0.735051
\(89\) 10.0521 1.06552 0.532760 0.846267i \(-0.321155\pi\)
0.532760 + 0.846267i \(0.321155\pi\)
\(90\) 0 0
\(91\) −2.15903 −0.226328
\(92\) 0.454316 0.0473658
\(93\) 0 0
\(94\) −0.536243 −0.0553093
\(95\) 0 0
\(96\) 0 0
\(97\) 2.41013 0.244711 0.122356 0.992486i \(-0.460955\pi\)
0.122356 + 0.992486i \(0.460955\pi\)
\(98\) 16.7626 1.69328
\(99\) 0 0
\(100\) 0 0
\(101\) 16.6038 1.65214 0.826071 0.563565i \(-0.190571\pi\)
0.826071 + 0.563565i \(0.190571\pi\)
\(102\) 0 0
\(103\) −13.4127 −1.32159 −0.660795 0.750566i \(-0.729781\pi\)
−0.660795 + 0.750566i \(0.729781\pi\)
\(104\) −0.764932 −0.0750078
\(105\) 0 0
\(106\) −21.2119 −2.06028
\(107\) −9.12013 −0.881676 −0.440838 0.897587i \(-0.645319\pi\)
−0.440838 + 0.897587i \(0.645319\pi\)
\(108\) 0 0
\(109\) 12.7379 1.22007 0.610037 0.792373i \(-0.291155\pi\)
0.610037 + 0.792373i \(0.291155\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 20.0725 1.89667
\(113\) −13.7766 −1.29599 −0.647995 0.761645i \(-0.724392\pi\)
−0.647995 + 0.761645i \(0.724392\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.19839 −0.111268
\(117\) 0 0
\(118\) 11.6799 1.07522
\(119\) 1.21327 0.111221
\(120\) 0 0
\(121\) 12.1347 1.10316
\(122\) −1.35178 −0.122384
\(123\) 0 0
\(124\) 10.9594 0.984183
\(125\) 0 0
\(126\) 0 0
\(127\) −6.39541 −0.567501 −0.283751 0.958898i \(-0.591579\pi\)
−0.283751 + 0.958898i \(0.591579\pi\)
\(128\) 10.5476 0.932283
\(129\) 0 0
\(130\) 0 0
\(131\) −15.6797 −1.36994 −0.684970 0.728572i \(-0.740184\pi\)
−0.684970 + 0.728572i \(0.740184\pi\)
\(132\) 0 0
\(133\) 24.3958 2.11538
\(134\) 7.07246 0.610967
\(135\) 0 0
\(136\) 0.429855 0.0368598
\(137\) 14.1792 1.21141 0.605704 0.795690i \(-0.292892\pi\)
0.605704 + 0.795690i \(0.292892\pi\)
\(138\) 0 0
\(139\) 6.15903 0.522402 0.261201 0.965284i \(-0.415881\pi\)
0.261201 + 0.965284i \(0.415881\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 19.0950 1.60242
\(143\) 2.56643 0.214615
\(144\) 0 0
\(145\) 0 0
\(146\) 19.7538 1.63484
\(147\) 0 0
\(148\) 10.2076 0.839056
\(149\) 3.29888 0.270254 0.135127 0.990828i \(-0.456856\pi\)
0.135127 + 0.990828i \(0.456856\pi\)
\(150\) 0 0
\(151\) −11.7747 −0.958209 −0.479104 0.877758i \(-0.659039\pi\)
−0.479104 + 0.877758i \(0.659039\pi\)
\(152\) 8.64327 0.701061
\(153\) 0 0
\(154\) −34.8066 −2.80479
\(155\) 0 0
\(156\) 0 0
\(157\) −20.0255 −1.59821 −0.799103 0.601195i \(-0.794692\pi\)
−0.799103 + 0.601195i \(0.794692\pi\)
\(158\) 12.5384 0.997503
\(159\) 0 0
\(160\) 0 0
\(161\) −1.53399 −0.120895
\(162\) 0 0
\(163\) 8.63537 0.676374 0.338187 0.941079i \(-0.390186\pi\)
0.338187 + 0.941079i \(0.390186\pi\)
\(164\) −2.68568 −0.209716
\(165\) 0 0
\(166\) 11.0048 0.854137
\(167\) 5.98646 0.463246 0.231623 0.972806i \(-0.425596\pi\)
0.231623 + 0.972806i \(0.425596\pi\)
\(168\) 0 0
\(169\) −12.7153 −0.978100
\(170\) 0 0
\(171\) 0 0
\(172\) 7.20386 0.549289
\(173\) 7.75331 0.589473 0.294737 0.955579i \(-0.404768\pi\)
0.294737 + 0.955579i \(0.404768\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −23.8600 −1.79851
\(177\) 0 0
\(178\) 17.9772 1.34745
\(179\) 9.21698 0.688909 0.344455 0.938803i \(-0.388064\pi\)
0.344455 + 0.938803i \(0.388064\pi\)
\(180\) 0 0
\(181\) 13.9345 1.03574 0.517871 0.855459i \(-0.326725\pi\)
0.517871 + 0.855459i \(0.326725\pi\)
\(182\) −3.86123 −0.286213
\(183\) 0 0
\(184\) −0.543482 −0.0400660
\(185\) 0 0
\(186\) 0 0
\(187\) −1.44221 −0.105465
\(188\) −0.359332 −0.0262070
\(189\) 0 0
\(190\) 0 0
\(191\) 15.8529 1.14708 0.573538 0.819179i \(-0.305570\pi\)
0.573538 + 0.819179i \(0.305570\pi\)
\(192\) 0 0
\(193\) 12.3360 0.887963 0.443982 0.896036i \(-0.353566\pi\)
0.443982 + 0.896036i \(0.353566\pi\)
\(194\) 4.31029 0.309460
\(195\) 0 0
\(196\) 11.2325 0.802319
\(197\) −6.51599 −0.464245 −0.232122 0.972687i \(-0.574567\pi\)
−0.232122 + 0.972687i \(0.574567\pi\)
\(198\) 0 0
\(199\) −8.40626 −0.595904 −0.297952 0.954581i \(-0.596304\pi\)
−0.297952 + 0.954581i \(0.596304\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 29.6944 2.08929
\(203\) 4.04635 0.283998
\(204\) 0 0
\(205\) 0 0
\(206\) −23.9873 −1.67128
\(207\) 0 0
\(208\) −2.64688 −0.183528
\(209\) −28.9990 −2.00591
\(210\) 0 0
\(211\) −9.42279 −0.648692 −0.324346 0.945939i \(-0.605144\pi\)
−0.324346 + 0.945939i \(0.605144\pi\)
\(212\) −14.2139 −0.976214
\(213\) 0 0
\(214\) −16.3105 −1.11496
\(215\) 0 0
\(216\) 0 0
\(217\) −37.0041 −2.51200
\(218\) 22.7806 1.54290
\(219\) 0 0
\(220\) 0 0
\(221\) −0.159990 −0.0107621
\(222\) 0 0
\(223\) 18.6498 1.24889 0.624443 0.781071i \(-0.285326\pi\)
0.624443 + 0.781071i \(0.285326\pi\)
\(224\) 24.2961 1.62335
\(225\) 0 0
\(226\) −24.6381 −1.63890
\(227\) 4.72192 0.313405 0.156703 0.987646i \(-0.449914\pi\)
0.156703 + 0.987646i \(0.449914\pi\)
\(228\) 0 0
\(229\) 23.6102 1.56021 0.780104 0.625650i \(-0.215166\pi\)
0.780104 + 0.625650i \(0.215166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.43360 0.0941201
\(233\) 15.0959 0.988965 0.494482 0.869188i \(-0.335358\pi\)
0.494482 + 0.869188i \(0.335358\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.82660 0.509468
\(237\) 0 0
\(238\) 2.16983 0.140649
\(239\) −16.5534 −1.07075 −0.535374 0.844615i \(-0.679829\pi\)
−0.535374 + 0.844615i \(0.679829\pi\)
\(240\) 0 0
\(241\) 14.0704 0.906356 0.453178 0.891420i \(-0.350290\pi\)
0.453178 + 0.891420i \(0.350290\pi\)
\(242\) 21.7018 1.39505
\(243\) 0 0
\(244\) −0.905814 −0.0579888
\(245\) 0 0
\(246\) 0 0
\(247\) −3.21697 −0.204691
\(248\) −13.1103 −0.832506
\(249\) 0 0
\(250\) 0 0
\(251\) 28.4712 1.79709 0.898544 0.438883i \(-0.144626\pi\)
0.898544 + 0.438883i \(0.144626\pi\)
\(252\) 0 0
\(253\) 1.82344 0.114638
\(254\) −11.4376 −0.717659
\(255\) 0 0
\(256\) 20.4976 1.28110
\(257\) 16.3705 1.02117 0.510583 0.859829i \(-0.329430\pi\)
0.510583 + 0.859829i \(0.329430\pi\)
\(258\) 0 0
\(259\) −34.4655 −2.14158
\(260\) 0 0
\(261\) 0 0
\(262\) −28.0416 −1.73242
\(263\) −6.95196 −0.428676 −0.214338 0.976760i \(-0.568759\pi\)
−0.214338 + 0.976760i \(0.568759\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 43.6295 2.67510
\(267\) 0 0
\(268\) 4.73919 0.289492
\(269\) 17.9274 1.09305 0.546525 0.837443i \(-0.315950\pi\)
0.546525 + 0.837443i \(0.315950\pi\)
\(270\) 0 0
\(271\) −16.2551 −0.987427 −0.493713 0.869625i \(-0.664361\pi\)
−0.493713 + 0.869625i \(0.664361\pi\)
\(272\) 1.48742 0.0901881
\(273\) 0 0
\(274\) 25.3581 1.53194
\(275\) 0 0
\(276\) 0 0
\(277\) −26.4786 −1.59094 −0.795471 0.605992i \(-0.792776\pi\)
−0.795471 + 0.605992i \(0.792776\pi\)
\(278\) 11.0149 0.660627
\(279\) 0 0
\(280\) 0 0
\(281\) −9.09714 −0.542690 −0.271345 0.962482i \(-0.587468\pi\)
−0.271345 + 0.962482i \(0.587468\pi\)
\(282\) 0 0
\(283\) −6.18547 −0.367688 −0.183844 0.982955i \(-0.558854\pi\)
−0.183844 + 0.982955i \(0.558854\pi\)
\(284\) 12.7954 0.759269
\(285\) 0 0
\(286\) 4.58981 0.271401
\(287\) 9.06811 0.535274
\(288\) 0 0
\(289\) −16.9101 −0.994711
\(290\) 0 0
\(291\) 0 0
\(292\) 13.2369 0.774629
\(293\) −2.22796 −0.130159 −0.0650795 0.997880i \(-0.520730\pi\)
−0.0650795 + 0.997880i \(0.520730\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.2109 −0.709745
\(297\) 0 0
\(298\) 5.89973 0.341762
\(299\) 0.202281 0.0116982
\(300\) 0 0
\(301\) −24.3236 −1.40199
\(302\) −21.0579 −1.21175
\(303\) 0 0
\(304\) 29.9081 1.71535
\(305\) 0 0
\(306\) 0 0
\(307\) 34.9479 1.99458 0.997291 0.0735559i \(-0.0234347\pi\)
0.997291 + 0.0735559i \(0.0234347\pi\)
\(308\) −23.3236 −1.32898
\(309\) 0 0
\(310\) 0 0
\(311\) 11.8968 0.674608 0.337304 0.941396i \(-0.390485\pi\)
0.337304 + 0.941396i \(0.390485\pi\)
\(312\) 0 0
\(313\) −2.38938 −0.135056 −0.0675278 0.997717i \(-0.521511\pi\)
−0.0675278 + 0.997717i \(0.521511\pi\)
\(314\) −35.8136 −2.02108
\(315\) 0 0
\(316\) 8.40188 0.472643
\(317\) −23.9964 −1.34777 −0.673886 0.738836i \(-0.735376\pi\)
−0.673886 + 0.738836i \(0.735376\pi\)
\(318\) 0 0
\(319\) −4.80986 −0.269300
\(320\) 0 0
\(321\) 0 0
\(322\) −2.74339 −0.152883
\(323\) 1.80779 0.100588
\(324\) 0 0
\(325\) 0 0
\(326\) 15.4435 0.855339
\(327\) 0 0
\(328\) 3.21278 0.177396
\(329\) 1.21327 0.0668900
\(330\) 0 0
\(331\) 31.5068 1.73177 0.865885 0.500243i \(-0.166756\pi\)
0.865885 + 0.500243i \(0.166756\pi\)
\(332\) 7.37421 0.404712
\(333\) 0 0
\(334\) 10.7062 0.585818
\(335\) 0 0
\(336\) 0 0
\(337\) 22.5941 1.23078 0.615389 0.788223i \(-0.288999\pi\)
0.615389 + 0.788223i \(0.288999\pi\)
\(338\) −22.7401 −1.23690
\(339\) 0 0
\(340\) 0 0
\(341\) 43.9865 2.38200
\(342\) 0 0
\(343\) −9.60169 −0.518443
\(344\) −8.61771 −0.464636
\(345\) 0 0
\(346\) 13.8661 0.745444
\(347\) −25.3237 −1.35945 −0.679724 0.733468i \(-0.737901\pi\)
−0.679724 + 0.733468i \(0.737901\pi\)
\(348\) 0 0
\(349\) −11.9657 −0.640511 −0.320255 0.947331i \(-0.603769\pi\)
−0.320255 + 0.947331i \(0.603769\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −28.8805 −1.53934
\(353\) −27.8488 −1.48224 −0.741120 0.671372i \(-0.765705\pi\)
−0.741120 + 0.671372i \(0.765705\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.0464 0.638456
\(357\) 0 0
\(358\) 16.4837 0.871190
\(359\) 25.8847 1.36614 0.683071 0.730352i \(-0.260644\pi\)
0.683071 + 0.730352i \(0.260644\pi\)
\(360\) 0 0
\(361\) 17.3498 0.913150
\(362\) 24.9205 1.30979
\(363\) 0 0
\(364\) −2.58738 −0.135615
\(365\) 0 0
\(366\) 0 0
\(367\) −30.0434 −1.56825 −0.784126 0.620602i \(-0.786888\pi\)
−0.784126 + 0.620602i \(0.786888\pi\)
\(368\) −1.88060 −0.0980330
\(369\) 0 0
\(370\) 0 0
\(371\) 47.9928 2.49166
\(372\) 0 0
\(373\) 17.3011 0.895819 0.447909 0.894079i \(-0.352169\pi\)
0.447909 + 0.894079i \(0.352169\pi\)
\(374\) −2.57925 −0.133370
\(375\) 0 0
\(376\) 0.429855 0.0221681
\(377\) −0.533576 −0.0274806
\(378\) 0 0
\(379\) 6.00981 0.308703 0.154351 0.988016i \(-0.450671\pi\)
0.154351 + 0.988016i \(0.450671\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 28.3514 1.45059
\(383\) 15.9914 0.817124 0.408562 0.912731i \(-0.366030\pi\)
0.408562 + 0.912731i \(0.366030\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 22.0617 1.12291
\(387\) 0 0
\(388\) 2.88828 0.146630
\(389\) −3.12916 −0.158655 −0.0793274 0.996849i \(-0.525277\pi\)
−0.0793274 + 0.996849i \(0.525277\pi\)
\(390\) 0 0
\(391\) −0.113672 −0.00574865
\(392\) −13.4370 −0.678670
\(393\) 0 0
\(394\) −11.6532 −0.587081
\(395\) 0 0
\(396\) 0 0
\(397\) −39.3500 −1.97492 −0.987461 0.157863i \(-0.949540\pi\)
−0.987461 + 0.157863i \(0.949540\pi\)
\(398\) −15.0338 −0.753577
\(399\) 0 0
\(400\) 0 0
\(401\) −5.07853 −0.253610 −0.126805 0.991928i \(-0.540472\pi\)
−0.126805 + 0.991928i \(0.540472\pi\)
\(402\) 0 0
\(403\) 4.87959 0.243070
\(404\) 19.8979 0.989960
\(405\) 0 0
\(406\) 7.23651 0.359142
\(407\) 40.9689 2.03075
\(408\) 0 0
\(409\) −4.17655 −0.206517 −0.103259 0.994655i \(-0.532927\pi\)
−0.103259 + 0.994655i \(0.532927\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0737 −0.791894
\(413\) −26.4263 −1.30035
\(414\) 0 0
\(415\) 0 0
\(416\) −3.20383 −0.157081
\(417\) 0 0
\(418\) −51.8620 −2.53666
\(419\) 16.1637 0.789647 0.394824 0.918757i \(-0.370806\pi\)
0.394824 + 0.918757i \(0.370806\pi\)
\(420\) 0 0
\(421\) 4.91937 0.239755 0.119878 0.992789i \(-0.461750\pi\)
0.119878 + 0.992789i \(0.461750\pi\)
\(422\) −16.8518 −0.820331
\(423\) 0 0
\(424\) 17.0035 0.825765
\(425\) 0 0
\(426\) 0 0
\(427\) 3.05846 0.148009
\(428\) −10.9295 −0.528298
\(429\) 0 0
\(430\) 0 0
\(431\) −41.1719 −1.98318 −0.991591 0.129411i \(-0.958691\pi\)
−0.991591 + 0.129411i \(0.958691\pi\)
\(432\) 0 0
\(433\) −22.9724 −1.10398 −0.551991 0.833850i \(-0.686132\pi\)
−0.551991 + 0.833850i \(0.686132\pi\)
\(434\) −66.1783 −3.17666
\(435\) 0 0
\(436\) 15.2651 0.731065
\(437\) −2.28565 −0.109337
\(438\) 0 0
\(439\) 5.53152 0.264005 0.132003 0.991249i \(-0.457859\pi\)
0.132003 + 0.991249i \(0.457859\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.286127 −0.0136097
\(443\) 3.02219 0.143589 0.0717944 0.997419i \(-0.477127\pi\)
0.0717944 + 0.997419i \(0.477127\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 33.3535 1.57933
\(447\) 0 0
\(448\) 3.30629 0.156207
\(449\) −7.44290 −0.351252 −0.175626 0.984457i \(-0.556195\pi\)
−0.175626 + 0.984457i \(0.556195\pi\)
\(450\) 0 0
\(451\) −10.7792 −0.507572
\(452\) −16.5098 −0.776554
\(453\) 0 0
\(454\) 8.44471 0.396330
\(455\) 0 0
\(456\) 0 0
\(457\) 2.81240 0.131558 0.0657792 0.997834i \(-0.479047\pi\)
0.0657792 + 0.997834i \(0.479047\pi\)
\(458\) 42.2246 1.97303
\(459\) 0 0
\(460\) 0 0
\(461\) −15.3906 −0.716810 −0.358405 0.933566i \(-0.616679\pi\)
−0.358405 + 0.933566i \(0.616679\pi\)
\(462\) 0 0
\(463\) 23.7976 1.10597 0.552984 0.833192i \(-0.313489\pi\)
0.552984 + 0.833192i \(0.313489\pi\)
\(464\) 4.96064 0.230292
\(465\) 0 0
\(466\) 26.9976 1.25064
\(467\) 41.1731 1.90526 0.952632 0.304126i \(-0.0983644\pi\)
0.952632 + 0.304126i \(0.0983644\pi\)
\(468\) 0 0
\(469\) −16.0017 −0.738892
\(470\) 0 0
\(471\) 0 0
\(472\) −9.36267 −0.430952
\(473\) 28.9133 1.32943
\(474\) 0 0
\(475\) 0 0
\(476\) 1.45398 0.0666431
\(477\) 0 0
\(478\) −29.6041 −1.35406
\(479\) −21.5362 −0.984013 −0.492007 0.870591i \(-0.663736\pi\)
−0.492007 + 0.870591i \(0.663736\pi\)
\(480\) 0 0
\(481\) 4.54484 0.207227
\(482\) 25.1636 1.14617
\(483\) 0 0
\(484\) 14.5422 0.661009
\(485\) 0 0
\(486\) 0 0
\(487\) −6.21272 −0.281525 −0.140763 0.990043i \(-0.544955\pi\)
−0.140763 + 0.990043i \(0.544955\pi\)
\(488\) 1.08359 0.0490519
\(489\) 0 0
\(490\) 0 0
\(491\) −24.2502 −1.09439 −0.547197 0.837004i \(-0.684305\pi\)
−0.547197 + 0.837004i \(0.684305\pi\)
\(492\) 0 0
\(493\) 0.299844 0.0135043
\(494\) −5.75326 −0.258851
\(495\) 0 0
\(496\) −45.3654 −2.03696
\(497\) −43.2034 −1.93794
\(498\) 0 0
\(499\) 35.0007 1.56685 0.783424 0.621487i \(-0.213471\pi\)
0.783424 + 0.621487i \(0.213471\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 50.9181 2.27259
\(503\) 2.11250 0.0941917 0.0470958 0.998890i \(-0.485003\pi\)
0.0470958 + 0.998890i \(0.485003\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.26104 0.144971
\(507\) 0 0
\(508\) −7.66423 −0.340045
\(509\) 39.5330 1.75227 0.876134 0.482068i \(-0.160114\pi\)
0.876134 + 0.482068i \(0.160114\pi\)
\(510\) 0 0
\(511\) −44.6939 −1.97714
\(512\) 15.5628 0.687785
\(513\) 0 0
\(514\) 29.2772 1.29136
\(515\) 0 0
\(516\) 0 0
\(517\) −1.44221 −0.0634283
\(518\) −61.6384 −2.70823
\(519\) 0 0
\(520\) 0 0
\(521\) −24.4951 −1.07315 −0.536575 0.843853i \(-0.680282\pi\)
−0.536575 + 0.843853i \(0.680282\pi\)
\(522\) 0 0
\(523\) −13.4730 −0.589133 −0.294567 0.955631i \(-0.595175\pi\)
−0.294567 + 0.955631i \(0.595175\pi\)
\(524\) −18.7904 −0.820864
\(525\) 0 0
\(526\) −12.4329 −0.542101
\(527\) −2.74210 −0.119448
\(528\) 0 0
\(529\) −22.8563 −0.993751
\(530\) 0 0
\(531\) 0 0
\(532\) 29.2358 1.26753
\(533\) −1.19578 −0.0517949
\(534\) 0 0
\(535\) 0 0
\(536\) −5.66932 −0.244877
\(537\) 0 0
\(538\) 32.0614 1.38226
\(539\) 45.0825 1.94184
\(540\) 0 0
\(541\) −36.4294 −1.56622 −0.783111 0.621882i \(-0.786368\pi\)
−0.783111 + 0.621882i \(0.786368\pi\)
\(542\) −29.0707 −1.24869
\(543\) 0 0
\(544\) 1.80040 0.0771915
\(545\) 0 0
\(546\) 0 0
\(547\) −27.1863 −1.16240 −0.581201 0.813760i \(-0.697417\pi\)
−0.581201 + 0.813760i \(0.697417\pi\)
\(548\) 16.9922 0.725872
\(549\) 0 0
\(550\) 0 0
\(551\) 6.02908 0.256848
\(552\) 0 0
\(553\) −28.3687 −1.20636
\(554\) −47.3544 −2.01190
\(555\) 0 0
\(556\) 7.38095 0.313022
\(557\) −41.0921 −1.74113 −0.870564 0.492055i \(-0.836246\pi\)
−0.870564 + 0.492055i \(0.836246\pi\)
\(558\) 0 0
\(559\) 3.20746 0.135661
\(560\) 0 0
\(561\) 0 0
\(562\) −16.2694 −0.686282
\(563\) 26.6574 1.12348 0.561738 0.827315i \(-0.310133\pi\)
0.561738 + 0.827315i \(0.310133\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −11.0621 −0.464976
\(567\) 0 0
\(568\) −15.3067 −0.642254
\(569\) 17.9467 0.752363 0.376181 0.926546i \(-0.377237\pi\)
0.376181 + 0.926546i \(0.377237\pi\)
\(570\) 0 0
\(571\) −44.9019 −1.87909 −0.939543 0.342432i \(-0.888749\pi\)
−0.939543 + 0.342432i \(0.888749\pi\)
\(572\) 3.07559 0.128597
\(573\) 0 0
\(574\) 16.2175 0.676904
\(575\) 0 0
\(576\) 0 0
\(577\) −24.3767 −1.01482 −0.507408 0.861706i \(-0.669396\pi\)
−0.507408 + 0.861706i \(0.669396\pi\)
\(578\) −30.2421 −1.25791
\(579\) 0 0
\(580\) 0 0
\(581\) −24.8988 −1.03298
\(582\) 0 0
\(583\) −57.0486 −2.36271
\(584\) −15.8348 −0.655248
\(585\) 0 0
\(586\) −3.98450 −0.164598
\(587\) −0.641677 −0.0264848 −0.0132424 0.999912i \(-0.504215\pi\)
−0.0132424 + 0.999912i \(0.504215\pi\)
\(588\) 0 0
\(589\) −55.1363 −2.27185
\(590\) 0 0
\(591\) 0 0
\(592\) −42.2532 −1.73660
\(593\) −7.16264 −0.294134 −0.147067 0.989127i \(-0.546983\pi\)
−0.147067 + 0.989127i \(0.546983\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.95336 0.161936
\(597\) 0 0
\(598\) 0.361760 0.0147935
\(599\) 33.7150 1.37756 0.688779 0.724971i \(-0.258147\pi\)
0.688779 + 0.724971i \(0.258147\pi\)
\(600\) 0 0
\(601\) 12.3214 0.502600 0.251300 0.967909i \(-0.419142\pi\)
0.251300 + 0.967909i \(0.419142\pi\)
\(602\) −43.5005 −1.77295
\(603\) 0 0
\(604\) −14.1107 −0.574156
\(605\) 0 0
\(606\) 0 0
\(607\) −3.07175 −0.124678 −0.0623392 0.998055i \(-0.519856\pi\)
−0.0623392 + 0.998055i \(0.519856\pi\)
\(608\) 36.2013 1.46816
\(609\) 0 0
\(610\) 0 0
\(611\) −0.159990 −0.00647249
\(612\) 0 0
\(613\) −35.7184 −1.44265 −0.721327 0.692595i \(-0.756468\pi\)
−0.721327 + 0.692595i \(0.756468\pi\)
\(614\) 62.5010 2.52234
\(615\) 0 0
\(616\) 27.9011 1.12417
\(617\) 29.1211 1.17237 0.586185 0.810177i \(-0.300629\pi\)
0.586185 + 0.810177i \(0.300629\pi\)
\(618\) 0 0
\(619\) 11.7565 0.472534 0.236267 0.971688i \(-0.424076\pi\)
0.236267 + 0.971688i \(0.424076\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 21.2764 0.853105
\(623\) −40.6742 −1.62958
\(624\) 0 0
\(625\) 0 0
\(626\) −4.27317 −0.170790
\(627\) 0 0
\(628\) −23.9984 −0.957640
\(629\) −2.55398 −0.101834
\(630\) 0 0
\(631\) 30.6569 1.22043 0.610216 0.792235i \(-0.291083\pi\)
0.610216 + 0.792235i \(0.291083\pi\)
\(632\) −10.0509 −0.399802
\(633\) 0 0
\(634\) −42.9153 −1.70438
\(635\) 0 0
\(636\) 0 0
\(637\) 5.00117 0.198154
\(638\) −8.60198 −0.340556
\(639\) 0 0
\(640\) 0 0
\(641\) −45.7844 −1.80838 −0.904188 0.427135i \(-0.859523\pi\)
−0.904188 + 0.427135i \(0.859523\pi\)
\(642\) 0 0
\(643\) −43.7394 −1.72491 −0.862456 0.506132i \(-0.831075\pi\)
−0.862456 + 0.506132i \(0.831075\pi\)
\(644\) −1.83832 −0.0724400
\(645\) 0 0
\(646\) 3.23306 0.127203
\(647\) −10.6969 −0.420537 −0.210269 0.977644i \(-0.567434\pi\)
−0.210269 + 0.977644i \(0.567434\pi\)
\(648\) 0 0
\(649\) 31.4127 1.23306
\(650\) 0 0
\(651\) 0 0
\(652\) 10.3486 0.405282
\(653\) −17.4970 −0.684709 −0.342355 0.939571i \(-0.611224\pi\)
−0.342355 + 0.939571i \(0.611224\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 11.1171 0.434050
\(657\) 0 0
\(658\) 2.16983 0.0845887
\(659\) 38.0331 1.48156 0.740779 0.671748i \(-0.234456\pi\)
0.740779 + 0.671748i \(0.234456\pi\)
\(660\) 0 0
\(661\) −1.61112 −0.0626654 −0.0313327 0.999509i \(-0.509975\pi\)
−0.0313327 + 0.999509i \(0.509975\pi\)
\(662\) 56.3469 2.18999
\(663\) 0 0
\(664\) −8.82149 −0.342340
\(665\) 0 0
\(666\) 0 0
\(667\) −0.379104 −0.0146790
\(668\) 7.17414 0.277576
\(669\) 0 0
\(670\) 0 0
\(671\) −3.63556 −0.140349
\(672\) 0 0
\(673\) −6.25241 −0.241013 −0.120506 0.992713i \(-0.538452\pi\)
−0.120506 + 0.992713i \(0.538452\pi\)
\(674\) 40.4074 1.55644
\(675\) 0 0
\(676\) −15.2379 −0.586075
\(677\) −23.4775 −0.902312 −0.451156 0.892445i \(-0.648988\pi\)
−0.451156 + 0.892445i \(0.648988\pi\)
\(678\) 0 0
\(679\) −9.75221 −0.374256
\(680\) 0 0
\(681\) 0 0
\(682\) 78.6656 3.01226
\(683\) −6.95644 −0.266181 −0.133090 0.991104i \(-0.542490\pi\)
−0.133090 + 0.991104i \(0.542490\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −17.1717 −0.655619
\(687\) 0 0
\(688\) −29.8197 −1.13686
\(689\) −6.32862 −0.241101
\(690\) 0 0
\(691\) −50.6725 −1.92767 −0.963836 0.266498i \(-0.914133\pi\)
−0.963836 + 0.266498i \(0.914133\pi\)
\(692\) 9.29153 0.353211
\(693\) 0 0
\(694\) −45.2891 −1.71915
\(695\) 0 0
\(696\) 0 0
\(697\) 0.671970 0.0254527
\(698\) −21.3996 −0.809986
\(699\) 0 0
\(700\) 0 0
\(701\) 26.3580 0.995527 0.497763 0.867313i \(-0.334155\pi\)
0.497763 + 0.867313i \(0.334155\pi\)
\(702\) 0 0
\(703\) −51.3539 −1.93685
\(704\) −3.93015 −0.148123
\(705\) 0 0
\(706\) −49.8049 −1.87443
\(707\) −67.1849 −2.52675
\(708\) 0 0
\(709\) 1.33497 0.0501357 0.0250678 0.999686i \(-0.492020\pi\)
0.0250678 + 0.999686i \(0.492020\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −14.4106 −0.540061
\(713\) 3.46693 0.129838
\(714\) 0 0
\(715\) 0 0
\(716\) 11.0456 0.412793
\(717\) 0 0
\(718\) 46.2923 1.72761
\(719\) 5.44486 0.203059 0.101530 0.994833i \(-0.467626\pi\)
0.101530 + 0.994833i \(0.467626\pi\)
\(720\) 0 0
\(721\) 54.2724 2.02121
\(722\) 31.0286 1.15476
\(723\) 0 0
\(724\) 16.6990 0.620614
\(725\) 0 0
\(726\) 0 0
\(727\) 32.6745 1.21183 0.605916 0.795529i \(-0.292807\pi\)
0.605916 + 0.795529i \(0.292807\pi\)
\(728\) 3.09518 0.114715
\(729\) 0 0
\(730\) 0 0
\(731\) −1.80244 −0.0666657
\(732\) 0 0
\(733\) 20.9195 0.772678 0.386339 0.922357i \(-0.373740\pi\)
0.386339 + 0.922357i \(0.373740\pi\)
\(734\) −53.7297 −1.98320
\(735\) 0 0
\(736\) −2.27631 −0.0839059
\(737\) 19.0211 0.700653
\(738\) 0 0
\(739\) 13.2392 0.487011 0.243505 0.969900i \(-0.421703\pi\)
0.243505 + 0.969900i \(0.421703\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 85.8306 3.15094
\(743\) 45.8151 1.68079 0.840397 0.541971i \(-0.182322\pi\)
0.840397 + 0.541971i \(0.182322\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 30.9414 1.13285
\(747\) 0 0
\(748\) −1.72834 −0.0631942
\(749\) 36.9032 1.34841
\(750\) 0 0
\(751\) −26.2736 −0.958738 −0.479369 0.877614i \(-0.659134\pi\)
−0.479369 + 0.877614i \(0.659134\pi\)
\(752\) 1.48742 0.0542406
\(753\) 0 0
\(754\) −0.954250 −0.0347518
\(755\) 0 0
\(756\) 0 0
\(757\) −19.2465 −0.699527 −0.349763 0.936838i \(-0.613738\pi\)
−0.349763 + 0.936838i \(0.613738\pi\)
\(758\) 10.7480 0.390384
\(759\) 0 0
\(760\) 0 0
\(761\) −19.9183 −0.722037 −0.361019 0.932559i \(-0.617571\pi\)
−0.361019 + 0.932559i \(0.617571\pi\)
\(762\) 0 0
\(763\) −51.5422 −1.86595
\(764\) 18.9980 0.687325
\(765\) 0 0
\(766\) 28.5992 1.03333
\(767\) 3.48473 0.125826
\(768\) 0 0
\(769\) 13.5530 0.488734 0.244367 0.969683i \(-0.421420\pi\)
0.244367 + 0.969683i \(0.421420\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.7834 0.532065
\(773\) −4.56321 −0.164127 −0.0820635 0.996627i \(-0.526151\pi\)
−0.0820635 + 0.996627i \(0.526151\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −3.45515 −0.124033
\(777\) 0 0
\(778\) −5.59621 −0.200634
\(779\) 13.5115 0.484101
\(780\) 0 0
\(781\) 51.3555 1.83764
\(782\) −0.203292 −0.00726971
\(783\) 0 0
\(784\) −46.4957 −1.66056
\(785\) 0 0
\(786\) 0 0
\(787\) 17.3056 0.616878 0.308439 0.951244i \(-0.400193\pi\)
0.308439 + 0.951244i \(0.400193\pi\)
\(788\) −7.80873 −0.278174
\(789\) 0 0
\(790\) 0 0
\(791\) 55.7448 1.98206
\(792\) 0 0
\(793\) −0.403307 −0.0143218
\(794\) −70.3738 −2.49747
\(795\) 0 0
\(796\) −10.0740 −0.357064
\(797\) 25.4230 0.900531 0.450265 0.892895i \(-0.351329\pi\)
0.450265 + 0.892895i \(0.351329\pi\)
\(798\) 0 0
\(799\) 0.0899066 0.00318067
\(800\) 0 0
\(801\) 0 0
\(802\) −9.08247 −0.320713
\(803\) 53.1273 1.87482
\(804\) 0 0
\(805\) 0 0
\(806\) 8.72668 0.307384
\(807\) 0 0
\(808\) −23.8032 −0.837393
\(809\) −39.8770 −1.40200 −0.701001 0.713160i \(-0.747263\pi\)
−0.701001 + 0.713160i \(0.747263\pi\)
\(810\) 0 0
\(811\) 37.9902 1.33402 0.667008 0.745050i \(-0.267574\pi\)
0.667008 + 0.745050i \(0.267574\pi\)
\(812\) 4.84912 0.170171
\(813\) 0 0
\(814\) 73.2690 2.56808
\(815\) 0 0
\(816\) 0 0
\(817\) −36.2424 −1.26796
\(818\) −7.46937 −0.261160
\(819\) 0 0
\(820\) 0 0
\(821\) −2.02361 −0.0706245 −0.0353122 0.999376i \(-0.511243\pi\)
−0.0353122 + 0.999376i \(0.511243\pi\)
\(822\) 0 0
\(823\) −1.80919 −0.0630642 −0.0315321 0.999503i \(-0.510039\pi\)
−0.0315321 + 0.999503i \(0.510039\pi\)
\(824\) 19.2284 0.669851
\(825\) 0 0
\(826\) −47.2610 −1.64442
\(827\) 18.8027 0.653834 0.326917 0.945053i \(-0.393990\pi\)
0.326917 + 0.945053i \(0.393990\pi\)
\(828\) 0 0
\(829\) 13.7594 0.477884 0.238942 0.971034i \(-0.423199\pi\)
0.238942 + 0.971034i \(0.423199\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.435987 −0.0151151
\(833\) −2.81042 −0.0973753
\(834\) 0 0
\(835\) 0 0
\(836\) −34.7523 −1.20193
\(837\) 0 0
\(838\) 28.9072 0.998583
\(839\) −14.1913 −0.489938 −0.244969 0.969531i \(-0.578778\pi\)
−0.244969 + 0.969531i \(0.578778\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 8.79782 0.303193
\(843\) 0 0
\(844\) −11.2922 −0.388694
\(845\) 0 0
\(846\) 0 0
\(847\) −49.1014 −1.68714
\(848\) 58.8370 2.02047
\(849\) 0 0
\(850\) 0 0
\(851\) 3.22909 0.110692
\(852\) 0 0
\(853\) 16.7293 0.572801 0.286401 0.958110i \(-0.407541\pi\)
0.286401 + 0.958110i \(0.407541\pi\)
\(854\) 5.46976 0.187171
\(855\) 0 0
\(856\) 13.0746 0.446880
\(857\) 33.2564 1.13602 0.568009 0.823023i \(-0.307714\pi\)
0.568009 + 0.823023i \(0.307714\pi\)
\(858\) 0 0
\(859\) −56.5319 −1.92884 −0.964422 0.264366i \(-0.914837\pi\)
−0.964422 + 0.264366i \(0.914837\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −73.6321 −2.50792
\(863\) 43.9271 1.49530 0.747648 0.664096i \(-0.231183\pi\)
0.747648 + 0.664096i \(0.231183\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −41.0839 −1.39609
\(867\) 0 0
\(868\) −44.3455 −1.50519
\(869\) 33.7217 1.14393
\(870\) 0 0
\(871\) 2.11009 0.0714976
\(872\) −18.2611 −0.618397
\(873\) 0 0
\(874\) −4.08767 −0.138267
\(875\) 0 0
\(876\) 0 0
\(877\) 13.5059 0.456063 0.228032 0.973654i \(-0.426771\pi\)
0.228032 + 0.973654i \(0.426771\pi\)
\(878\) 9.89261 0.333859
\(879\) 0 0
\(880\) 0 0
\(881\) 40.0575 1.34957 0.674785 0.738014i \(-0.264236\pi\)
0.674785 + 0.738014i \(0.264236\pi\)
\(882\) 0 0
\(883\) −16.0102 −0.538786 −0.269393 0.963030i \(-0.586823\pi\)
−0.269393 + 0.963030i \(0.586823\pi\)
\(884\) −0.191731 −0.00644861
\(885\) 0 0
\(886\) 5.40491 0.181581
\(887\) 13.8430 0.464802 0.232401 0.972620i \(-0.425342\pi\)
0.232401 + 0.972620i \(0.425342\pi\)
\(888\) 0 0
\(889\) 25.8781 0.867923
\(890\) 0 0
\(891\) 0 0
\(892\) 22.3499 0.748329
\(893\) 1.80779 0.0604953
\(894\) 0 0
\(895\) 0 0
\(896\) −42.6792 −1.42581
\(897\) 0 0
\(898\) −13.3109 −0.444191
\(899\) −9.14506 −0.305005
\(900\) 0 0
\(901\) 3.55639 0.118480
\(902\) −19.2776 −0.641873
\(903\) 0 0
\(904\) 19.7500 0.656876
\(905\) 0 0
\(906\) 0 0
\(907\) 2.47532 0.0821915 0.0410958 0.999155i \(-0.486915\pi\)
0.0410958 + 0.999155i \(0.486915\pi\)
\(908\) 5.65873 0.187791
\(909\) 0 0
\(910\) 0 0
\(911\) 4.32063 0.143149 0.0715744 0.997435i \(-0.477198\pi\)
0.0715744 + 0.997435i \(0.477198\pi\)
\(912\) 0 0
\(913\) 29.5970 0.979518
\(914\) 5.02971 0.166368
\(915\) 0 0
\(916\) 28.2944 0.934872
\(917\) 63.4454 2.09515
\(918\) 0 0
\(919\) 34.6470 1.14290 0.571450 0.820637i \(-0.306381\pi\)
0.571450 + 0.820637i \(0.306381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −27.5246 −0.906473
\(923\) 5.69706 0.187521
\(924\) 0 0
\(925\) 0 0
\(926\) 42.5597 1.39860
\(927\) 0 0
\(928\) 6.00444 0.197106
\(929\) 9.64854 0.316558 0.158279 0.987394i \(-0.449405\pi\)
0.158279 + 0.987394i \(0.449405\pi\)
\(930\) 0 0
\(931\) −56.5102 −1.85205
\(932\) 18.0908 0.592585
\(933\) 0 0
\(934\) 73.6342 2.40938
\(935\) 0 0
\(936\) 0 0
\(937\) −5.16386 −0.168696 −0.0843480 0.996436i \(-0.526881\pi\)
−0.0843480 + 0.996436i \(0.526881\pi\)
\(938\) −28.6176 −0.934398
\(939\) 0 0
\(940\) 0 0
\(941\) 46.0541 1.50132 0.750661 0.660688i \(-0.229735\pi\)
0.750661 + 0.660688i \(0.229735\pi\)
\(942\) 0 0
\(943\) −0.849596 −0.0276666
\(944\) −32.3975 −1.05445
\(945\) 0 0
\(946\) 51.7087 1.68120
\(947\) −7.00646 −0.227679 −0.113840 0.993499i \(-0.536315\pi\)
−0.113840 + 0.993499i \(0.536315\pi\)
\(948\) 0 0
\(949\) 5.89361 0.191315
\(950\) 0 0
\(951\) 0 0
\(952\) −1.73934 −0.0563725
\(953\) −48.2817 −1.56400 −0.781998 0.623281i \(-0.785799\pi\)
−0.781998 + 0.623281i \(0.785799\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −19.8375 −0.641589
\(957\) 0 0
\(958\) −38.5154 −1.24438
\(959\) −57.3738 −1.85270
\(960\) 0 0
\(961\) 52.6322 1.69781
\(962\) 8.12801 0.262058
\(963\) 0 0
\(964\) 16.8619 0.543086
\(965\) 0 0
\(966\) 0 0
\(967\) 19.8989 0.639906 0.319953 0.947433i \(-0.396333\pi\)
0.319953 + 0.947433i \(0.396333\pi\)
\(968\) −17.3963 −0.559138
\(969\) 0 0
\(970\) 0 0
\(971\) −28.8071 −0.924464 −0.462232 0.886759i \(-0.652951\pi\)
−0.462232 + 0.886759i \(0.652951\pi\)
\(972\) 0 0
\(973\) −24.9216 −0.798950
\(974\) −11.1109 −0.356015
\(975\) 0 0
\(976\) 3.74953 0.120019
\(977\) 34.4662 1.10267 0.551336 0.834284i \(-0.314118\pi\)
0.551336 + 0.834284i \(0.314118\pi\)
\(978\) 0 0
\(979\) 48.3491 1.54524
\(980\) 0 0
\(981\) 0 0
\(982\) −43.3691 −1.38396
\(983\) 21.8433 0.696695 0.348347 0.937366i \(-0.386743\pi\)
0.348347 + 0.937366i \(0.386743\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.536243 0.0170775
\(987\) 0 0
\(988\) −3.85521 −0.122650
\(989\) 2.27889 0.0724646
\(990\) 0 0
\(991\) −6.00703 −0.190820 −0.0954099 0.995438i \(-0.530416\pi\)
−0.0954099 + 0.995438i \(0.530416\pi\)
\(992\) −54.9110 −1.74343
\(993\) 0 0
\(994\) −77.2652 −2.45070
\(995\) 0 0
\(996\) 0 0
\(997\) −19.9499 −0.631821 −0.315911 0.948789i \(-0.602310\pi\)
−0.315911 + 0.948789i \(0.602310\pi\)
\(998\) 62.5955 1.98143
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.cf.1.10 12
3.2 odd 2 6525.2.a.ce.1.3 12
5.2 odd 4 1305.2.c.l.784.10 yes 12
5.3 odd 4 1305.2.c.l.784.3 yes 12
5.4 even 2 inner 6525.2.a.cf.1.3 12
15.2 even 4 1305.2.c.k.784.3 12
15.8 even 4 1305.2.c.k.784.10 yes 12
15.14 odd 2 6525.2.a.ce.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.3 12 15.2 even 4
1305.2.c.k.784.10 yes 12 15.8 even 4
1305.2.c.l.784.3 yes 12 5.3 odd 4
1305.2.c.l.784.10 yes 12 5.2 odd 4
6525.2.a.ce.1.3 12 3.2 odd 2
6525.2.a.ce.1.10 12 15.14 odd 2
6525.2.a.cf.1.3 12 5.4 even 2 inner
6525.2.a.cf.1.10 12 1.1 even 1 trivial