Properties

Label 6525.2.a.ce.1.8
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 148x^{8} - 502x^{6} + 792x^{4} - 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1305)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.27263\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.27263 q^{2} -0.380419 q^{4} -0.255813 q^{7} -3.02939 q^{8} +4.63446 q^{11} -5.02700 q^{13} -0.325555 q^{14} -3.09444 q^{16} -0.336444 q^{17} -2.91437 q^{19} +5.89795 q^{22} +8.65656 q^{23} -6.39750 q^{26} +0.0973162 q^{28} +1.00000 q^{29} -3.26943 q^{31} +2.12070 q^{32} -0.428167 q^{34} +3.86954 q^{37} -3.70891 q^{38} +5.71649 q^{41} -6.98619 q^{43} -1.76304 q^{44} +11.0166 q^{46} -0.336444 q^{47} -6.93456 q^{49} +1.91237 q^{52} +6.01484 q^{53} +0.774958 q^{56} +1.27263 q^{58} -13.2799 q^{59} -7.77792 q^{61} -4.16077 q^{62} +8.88775 q^{64} +11.2605 q^{67} +0.127989 q^{68} -13.9668 q^{71} -8.46426 q^{73} +4.92448 q^{74} +1.10868 q^{76} -1.18556 q^{77} -15.3102 q^{79} +7.27496 q^{82} +7.60521 q^{83} -8.89082 q^{86} -14.0396 q^{88} -13.0383 q^{89} +1.28597 q^{91} -3.29312 q^{92} -0.428167 q^{94} -11.5445 q^{97} -8.82511 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} - 12 q^{11} - 16 q^{14} + 16 q^{16} - 20 q^{19} - 56 q^{26} + 12 q^{29} - 16 q^{31} + 4 q^{34} - 32 q^{41} - 68 q^{44} + 20 q^{46} - 4 q^{49} - 76 q^{56} - 44 q^{59} - 52 q^{61} + 36 q^{64}+ \cdots + 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27263 0.899884 0.449942 0.893058i \(-0.351445\pi\)
0.449942 + 0.893058i \(0.351445\pi\)
\(3\) 0 0
\(4\) −0.380419 −0.190209
\(5\) 0 0
\(6\) 0 0
\(7\) −0.255813 −0.0966884 −0.0483442 0.998831i \(-0.515394\pi\)
−0.0483442 + 0.998831i \(0.515394\pi\)
\(8\) −3.02939 −1.07105
\(9\) 0 0
\(10\) 0 0
\(11\) 4.63446 1.39734 0.698672 0.715442i \(-0.253775\pi\)
0.698672 + 0.715442i \(0.253775\pi\)
\(12\) 0 0
\(13\) −5.02700 −1.39424 −0.697120 0.716955i \(-0.745535\pi\)
−0.697120 + 0.716955i \(0.745535\pi\)
\(14\) −0.325555 −0.0870083
\(15\) 0 0
\(16\) −3.09444 −0.773611
\(17\) −0.336444 −0.0815995 −0.0407998 0.999167i \(-0.512991\pi\)
−0.0407998 + 0.999167i \(0.512991\pi\)
\(18\) 0 0
\(19\) −2.91437 −0.668602 −0.334301 0.942466i \(-0.608500\pi\)
−0.334301 + 0.942466i \(0.608500\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.89795 1.25745
\(23\) 8.65656 1.80502 0.902509 0.430671i \(-0.141723\pi\)
0.902509 + 0.430671i \(0.141723\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.39750 −1.25465
\(27\) 0 0
\(28\) 0.0973162 0.0183910
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −3.26943 −0.587207 −0.293603 0.955927i \(-0.594854\pi\)
−0.293603 + 0.955927i \(0.594854\pi\)
\(32\) 2.12070 0.374890
\(33\) 0 0
\(34\) −0.428167 −0.0734301
\(35\) 0 0
\(36\) 0 0
\(37\) 3.86954 0.636148 0.318074 0.948066i \(-0.396964\pi\)
0.318074 + 0.948066i \(0.396964\pi\)
\(38\) −3.70891 −0.601664
\(39\) 0 0
\(40\) 0 0
\(41\) 5.71649 0.892765 0.446383 0.894842i \(-0.352712\pi\)
0.446383 + 0.894842i \(0.352712\pi\)
\(42\) 0 0
\(43\) −6.98619 −1.06538 −0.532692 0.846309i \(-0.678820\pi\)
−0.532692 + 0.846309i \(0.678820\pi\)
\(44\) −1.76304 −0.265788
\(45\) 0 0
\(46\) 11.0166 1.62431
\(47\) −0.336444 −0.0490753 −0.0245377 0.999699i \(-0.507811\pi\)
−0.0245377 + 0.999699i \(0.507811\pi\)
\(48\) 0 0
\(49\) −6.93456 −0.990651
\(50\) 0 0
\(51\) 0 0
\(52\) 1.91237 0.265197
\(53\) 6.01484 0.826202 0.413101 0.910685i \(-0.364446\pi\)
0.413101 + 0.910685i \(0.364446\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.774958 0.103558
\(57\) 0 0
\(58\) 1.27263 0.167104
\(59\) −13.2799 −1.72890 −0.864451 0.502718i \(-0.832334\pi\)
−0.864451 + 0.502718i \(0.832334\pi\)
\(60\) 0 0
\(61\) −7.77792 −0.995861 −0.497930 0.867217i \(-0.665906\pi\)
−0.497930 + 0.867217i \(0.665906\pi\)
\(62\) −4.16077 −0.528418
\(63\) 0 0
\(64\) 8.88775 1.11097
\(65\) 0 0
\(66\) 0 0
\(67\) 11.2605 1.37569 0.687847 0.725856i \(-0.258556\pi\)
0.687847 + 0.725856i \(0.258556\pi\)
\(68\) 0.127989 0.0155210
\(69\) 0 0
\(70\) 0 0
\(71\) −13.9668 −1.65756 −0.828778 0.559578i \(-0.810963\pi\)
−0.828778 + 0.559578i \(0.810963\pi\)
\(72\) 0 0
\(73\) −8.46426 −0.990667 −0.495333 0.868703i \(-0.664954\pi\)
−0.495333 + 0.868703i \(0.664954\pi\)
\(74\) 4.92448 0.572459
\(75\) 0 0
\(76\) 1.10868 0.127174
\(77\) −1.18556 −0.135107
\(78\) 0 0
\(79\) −15.3102 −1.72253 −0.861267 0.508153i \(-0.830328\pi\)
−0.861267 + 0.508153i \(0.830328\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.27496 0.803385
\(83\) 7.60521 0.834781 0.417390 0.908727i \(-0.362945\pi\)
0.417390 + 0.908727i \(0.362945\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.89082 −0.958722
\(87\) 0 0
\(88\) −14.0396 −1.49662
\(89\) −13.0383 −1.38206 −0.691029 0.722827i \(-0.742843\pi\)
−0.691029 + 0.722827i \(0.742843\pi\)
\(90\) 0 0
\(91\) 1.28597 0.134807
\(92\) −3.29312 −0.343331
\(93\) 0 0
\(94\) −0.428167 −0.0441621
\(95\) 0 0
\(96\) 0 0
\(97\) −11.5445 −1.17216 −0.586081 0.810253i \(-0.699330\pi\)
−0.586081 + 0.810253i \(0.699330\pi\)
\(98\) −8.82511 −0.891471
\(99\) 0 0
\(100\) 0 0
\(101\) −8.19832 −0.815763 −0.407882 0.913035i \(-0.633732\pi\)
−0.407882 + 0.913035i \(0.633732\pi\)
\(102\) 0 0
\(103\) 1.73014 0.170476 0.0852380 0.996361i \(-0.472835\pi\)
0.0852380 + 0.996361i \(0.472835\pi\)
\(104\) 15.2287 1.49330
\(105\) 0 0
\(106\) 7.65465 0.743486
\(107\) 5.38921 0.520995 0.260497 0.965475i \(-0.416113\pi\)
0.260497 + 0.965475i \(0.416113\pi\)
\(108\) 0 0
\(109\) 14.2391 1.36386 0.681929 0.731418i \(-0.261141\pi\)
0.681929 + 0.731418i \(0.261141\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.791600 0.0747992
\(113\) −9.89466 −0.930811 −0.465406 0.885098i \(-0.654091\pi\)
−0.465406 + 0.885098i \(0.654091\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.380419 −0.0353210
\(117\) 0 0
\(118\) −16.9004 −1.55581
\(119\) 0.0860668 0.00788973
\(120\) 0 0
\(121\) 10.4783 0.952569
\(122\) −9.89840 −0.896159
\(123\) 0 0
\(124\) 1.24375 0.111692
\(125\) 0 0
\(126\) 0 0
\(127\) −12.2226 −1.08458 −0.542291 0.840191i \(-0.682443\pi\)
−0.542291 + 0.840191i \(0.682443\pi\)
\(128\) 7.06940 0.624852
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0464 −1.05250 −0.526250 0.850330i \(-0.676402\pi\)
−0.526250 + 0.850330i \(0.676402\pi\)
\(132\) 0 0
\(133\) 0.745535 0.0646461
\(134\) 14.3305 1.23796
\(135\) 0 0
\(136\) 1.01922 0.0873972
\(137\) −5.47512 −0.467771 −0.233886 0.972264i \(-0.575144\pi\)
−0.233886 + 0.972264i \(0.575144\pi\)
\(138\) 0 0
\(139\) 2.71403 0.230201 0.115100 0.993354i \(-0.463281\pi\)
0.115100 + 0.993354i \(0.463281\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17.7745 −1.49161
\(143\) −23.2975 −1.94823
\(144\) 0 0
\(145\) 0 0
\(146\) −10.7719 −0.891485
\(147\) 0 0
\(148\) −1.47204 −0.121001
\(149\) −3.70395 −0.303439 −0.151720 0.988424i \(-0.548481\pi\)
−0.151720 + 0.988424i \(0.548481\pi\)
\(150\) 0 0
\(151\) 15.3481 1.24901 0.624505 0.781021i \(-0.285301\pi\)
0.624505 + 0.781021i \(0.285301\pi\)
\(152\) 8.82875 0.716107
\(153\) 0 0
\(154\) −1.50877 −0.121580
\(155\) 0 0
\(156\) 0 0
\(157\) −21.8231 −1.74168 −0.870838 0.491571i \(-0.836423\pi\)
−0.870838 + 0.491571i \(0.836423\pi\)
\(158\) −19.4842 −1.55008
\(159\) 0 0
\(160\) 0 0
\(161\) −2.21447 −0.174524
\(162\) 0 0
\(163\) 3.08019 0.241259 0.120630 0.992698i \(-0.461509\pi\)
0.120630 + 0.992698i \(0.461509\pi\)
\(164\) −2.17466 −0.169812
\(165\) 0 0
\(166\) 9.67861 0.751206
\(167\) 8.55017 0.661632 0.330816 0.943695i \(-0.392676\pi\)
0.330816 + 0.943695i \(0.392676\pi\)
\(168\) 0 0
\(169\) 12.2707 0.943903
\(170\) 0 0
\(171\) 0 0
\(172\) 2.65768 0.202646
\(173\) 5.76340 0.438183 0.219092 0.975704i \(-0.429691\pi\)
0.219092 + 0.975704i \(0.429691\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −14.3411 −1.08100
\(177\) 0 0
\(178\) −16.5929 −1.24369
\(179\) 14.1430 1.05710 0.528548 0.848903i \(-0.322736\pi\)
0.528548 + 0.848903i \(0.322736\pi\)
\(180\) 0 0
\(181\) −15.0322 −1.11734 −0.558668 0.829391i \(-0.688688\pi\)
−0.558668 + 0.829391i \(0.688688\pi\)
\(182\) 1.63657 0.121310
\(183\) 0 0
\(184\) −26.2241 −1.93326
\(185\) 0 0
\(186\) 0 0
\(187\) −1.55924 −0.114023
\(188\) 0.127989 0.00933459
\(189\) 0 0
\(190\) 0 0
\(191\) −12.2634 −0.887346 −0.443673 0.896189i \(-0.646325\pi\)
−0.443673 + 0.896189i \(0.646325\pi\)
\(192\) 0 0
\(193\) −8.34203 −0.600472 −0.300236 0.953865i \(-0.597065\pi\)
−0.300236 + 0.953865i \(0.597065\pi\)
\(194\) −14.6918 −1.05481
\(195\) 0 0
\(196\) 2.63804 0.188431
\(197\) 6.69263 0.476830 0.238415 0.971163i \(-0.423372\pi\)
0.238415 + 0.971163i \(0.423372\pi\)
\(198\) 0 0
\(199\) 12.5583 0.890235 0.445117 0.895472i \(-0.353162\pi\)
0.445117 + 0.895472i \(0.353162\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −10.4334 −0.734092
\(203\) −0.255813 −0.0179546
\(204\) 0 0
\(205\) 0 0
\(206\) 2.20183 0.153409
\(207\) 0 0
\(208\) 15.5558 1.07860
\(209\) −13.5065 −0.934267
\(210\) 0 0
\(211\) −13.6479 −0.939563 −0.469782 0.882783i \(-0.655667\pi\)
−0.469782 + 0.882783i \(0.655667\pi\)
\(212\) −2.28816 −0.157151
\(213\) 0 0
\(214\) 6.85846 0.468835
\(215\) 0 0
\(216\) 0 0
\(217\) 0.836364 0.0567761
\(218\) 18.1211 1.22731
\(219\) 0 0
\(220\) 0 0
\(221\) 1.69130 0.113769
\(222\) 0 0
\(223\) −13.4721 −0.902158 −0.451079 0.892484i \(-0.648961\pi\)
−0.451079 + 0.892484i \(0.648961\pi\)
\(224\) −0.542503 −0.0362475
\(225\) 0 0
\(226\) −12.5922 −0.837622
\(227\) −1.54298 −0.102411 −0.0512057 0.998688i \(-0.516306\pi\)
−0.0512057 + 0.998688i \(0.516306\pi\)
\(228\) 0 0
\(229\) 7.89526 0.521734 0.260867 0.965375i \(-0.415992\pi\)
0.260867 + 0.965375i \(0.415992\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.02939 −0.198889
\(233\) 28.4782 1.86567 0.932836 0.360301i \(-0.117326\pi\)
0.932836 + 0.360301i \(0.117326\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5.05194 0.328853
\(237\) 0 0
\(238\) 0.109531 0.00709984
\(239\) 8.88508 0.574728 0.287364 0.957821i \(-0.407221\pi\)
0.287364 + 0.957821i \(0.407221\pi\)
\(240\) 0 0
\(241\) −29.8901 −1.92539 −0.962695 0.270589i \(-0.912782\pi\)
−0.962695 + 0.270589i \(0.912782\pi\)
\(242\) 13.3349 0.857202
\(243\) 0 0
\(244\) 2.95887 0.189422
\(245\) 0 0
\(246\) 0 0
\(247\) 14.6505 0.932192
\(248\) 9.90437 0.628928
\(249\) 0 0
\(250\) 0 0
\(251\) −15.9551 −1.00708 −0.503539 0.863973i \(-0.667969\pi\)
−0.503539 + 0.863973i \(0.667969\pi\)
\(252\) 0 0
\(253\) 40.1185 2.52223
\(254\) −15.5548 −0.975998
\(255\) 0 0
\(256\) −8.77878 −0.548674
\(257\) −17.1593 −1.07037 −0.535185 0.844735i \(-0.679758\pi\)
−0.535185 + 0.844735i \(0.679758\pi\)
\(258\) 0 0
\(259\) −0.989880 −0.0615081
\(260\) 0 0
\(261\) 0 0
\(262\) −15.3306 −0.947128
\(263\) 1.72781 0.106542 0.0532708 0.998580i \(-0.483035\pi\)
0.0532708 + 0.998580i \(0.483035\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.948789 0.0581740
\(267\) 0 0
\(268\) −4.28372 −0.261670
\(269\) −4.97931 −0.303594 −0.151797 0.988412i \(-0.548506\pi\)
−0.151797 + 0.988412i \(0.548506\pi\)
\(270\) 0 0
\(271\) 13.0881 0.795047 0.397524 0.917592i \(-0.369870\pi\)
0.397524 + 0.917592i \(0.369870\pi\)
\(272\) 1.04111 0.0631263
\(273\) 0 0
\(274\) −6.96779 −0.420939
\(275\) 0 0
\(276\) 0 0
\(277\) −20.8147 −1.25063 −0.625316 0.780371i \(-0.715030\pi\)
−0.625316 + 0.780371i \(0.715030\pi\)
\(278\) 3.45394 0.207154
\(279\) 0 0
\(280\) 0 0
\(281\) 3.93338 0.234646 0.117323 0.993094i \(-0.462569\pi\)
0.117323 + 0.993094i \(0.462569\pi\)
\(282\) 0 0
\(283\) 5.47745 0.325600 0.162800 0.986659i \(-0.447947\pi\)
0.162800 + 0.986659i \(0.447947\pi\)
\(284\) 5.31324 0.315282
\(285\) 0 0
\(286\) −29.6490 −1.75318
\(287\) −1.46235 −0.0863201
\(288\) 0 0
\(289\) −16.8868 −0.993342
\(290\) 0 0
\(291\) 0 0
\(292\) 3.21996 0.188434
\(293\) −11.9974 −0.700893 −0.350446 0.936583i \(-0.613970\pi\)
−0.350446 + 0.936583i \(0.613970\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.7223 −0.681347
\(297\) 0 0
\(298\) −4.71375 −0.273060
\(299\) −43.5166 −2.51663
\(300\) 0 0
\(301\) 1.78716 0.103010
\(302\) 19.5324 1.12396
\(303\) 0 0
\(304\) 9.01836 0.517238
\(305\) 0 0
\(306\) 0 0
\(307\) 26.4807 1.51133 0.755666 0.654957i \(-0.227313\pi\)
0.755666 + 0.654957i \(0.227313\pi\)
\(308\) 0.451009 0.0256986
\(309\) 0 0
\(310\) 0 0
\(311\) −1.71530 −0.0972660 −0.0486330 0.998817i \(-0.515486\pi\)
−0.0486330 + 0.998817i \(0.515486\pi\)
\(312\) 0 0
\(313\) 33.3782 1.88665 0.943325 0.331871i \(-0.107680\pi\)
0.943325 + 0.331871i \(0.107680\pi\)
\(314\) −27.7727 −1.56731
\(315\) 0 0
\(316\) 5.82429 0.327642
\(317\) −17.9712 −1.00936 −0.504682 0.863305i \(-0.668390\pi\)
−0.504682 + 0.863305i \(0.668390\pi\)
\(318\) 0 0
\(319\) 4.63446 0.259480
\(320\) 0 0
\(321\) 0 0
\(322\) −2.81819 −0.157052
\(323\) 0.980521 0.0545577
\(324\) 0 0
\(325\) 0 0
\(326\) 3.91994 0.217105
\(327\) 0 0
\(328\) −17.3175 −0.956196
\(329\) 0.0860668 0.00474501
\(330\) 0 0
\(331\) 6.49393 0.356939 0.178469 0.983945i \(-0.442885\pi\)
0.178469 + 0.983945i \(0.442885\pi\)
\(332\) −2.89317 −0.158783
\(333\) 0 0
\(334\) 10.8812 0.595392
\(335\) 0 0
\(336\) 0 0
\(337\) −6.36156 −0.346536 −0.173268 0.984875i \(-0.555433\pi\)
−0.173268 + 0.984875i \(0.555433\pi\)
\(338\) 15.6161 0.849403
\(339\) 0 0
\(340\) 0 0
\(341\) −15.1521 −0.820530
\(342\) 0 0
\(343\) 3.56465 0.192473
\(344\) 21.1639 1.14108
\(345\) 0 0
\(346\) 7.33466 0.394314
\(347\) 21.6036 1.15974 0.579871 0.814708i \(-0.303103\pi\)
0.579871 + 0.814708i \(0.303103\pi\)
\(348\) 0 0
\(349\) −4.12603 −0.220861 −0.110431 0.993884i \(-0.535223\pi\)
−0.110431 + 0.993884i \(0.535223\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 9.82830 0.523850
\(353\) 7.07724 0.376684 0.188342 0.982104i \(-0.439689\pi\)
0.188342 + 0.982104i \(0.439689\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.96002 0.262881
\(357\) 0 0
\(358\) 17.9988 0.951264
\(359\) −14.4359 −0.761900 −0.380950 0.924596i \(-0.624403\pi\)
−0.380950 + 0.924596i \(0.624403\pi\)
\(360\) 0 0
\(361\) −10.5064 −0.552971
\(362\) −19.1304 −1.00547
\(363\) 0 0
\(364\) −0.489209 −0.0256415
\(365\) 0 0
\(366\) 0 0
\(367\) −15.4145 −0.804630 −0.402315 0.915501i \(-0.631794\pi\)
−0.402315 + 0.915501i \(0.631794\pi\)
\(368\) −26.7873 −1.39638
\(369\) 0 0
\(370\) 0 0
\(371\) −1.53868 −0.0798841
\(372\) 0 0
\(373\) −29.8574 −1.54596 −0.772979 0.634432i \(-0.781234\pi\)
−0.772979 + 0.634432i \(0.781234\pi\)
\(374\) −1.98433 −0.102607
\(375\) 0 0
\(376\) 1.01922 0.0525621
\(377\) −5.02700 −0.258904
\(378\) 0 0
\(379\) 37.3451 1.91829 0.959144 0.282920i \(-0.0913030\pi\)
0.959144 + 0.282920i \(0.0913030\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −15.6067 −0.798508
\(383\) −25.8159 −1.31913 −0.659566 0.751647i \(-0.729260\pi\)
−0.659566 + 0.751647i \(0.729260\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.6163 −0.540355
\(387\) 0 0
\(388\) 4.39173 0.222956
\(389\) 20.6935 1.04920 0.524600 0.851349i \(-0.324215\pi\)
0.524600 + 0.851349i \(0.324215\pi\)
\(390\) 0 0
\(391\) −2.91245 −0.147289
\(392\) 21.0075 1.06104
\(393\) 0 0
\(394\) 8.51723 0.429092
\(395\) 0 0
\(396\) 0 0
\(397\) −2.38045 −0.119471 −0.0597357 0.998214i \(-0.519026\pi\)
−0.0597357 + 0.998214i \(0.519026\pi\)
\(398\) 15.9820 0.801108
\(399\) 0 0
\(400\) 0 0
\(401\) −32.0936 −1.60268 −0.801339 0.598211i \(-0.795879\pi\)
−0.801339 + 0.598211i \(0.795879\pi\)
\(402\) 0 0
\(403\) 16.4354 0.818707
\(404\) 3.11879 0.155166
\(405\) 0 0
\(406\) −0.325555 −0.0161570
\(407\) 17.9332 0.888918
\(408\) 0 0
\(409\) −31.5011 −1.55763 −0.778815 0.627253i \(-0.784179\pi\)
−0.778815 + 0.627253i \(0.784179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.658179 −0.0324261
\(413\) 3.39719 0.167165
\(414\) 0 0
\(415\) 0 0
\(416\) −10.6608 −0.522686
\(417\) 0 0
\(418\) −17.1888 −0.840732
\(419\) −3.15481 −0.154123 −0.0770613 0.997026i \(-0.524554\pi\)
−0.0770613 + 0.997026i \(0.524554\pi\)
\(420\) 0 0
\(421\) −11.9631 −0.583048 −0.291524 0.956564i \(-0.594162\pi\)
−0.291524 + 0.956564i \(0.594162\pi\)
\(422\) −17.3687 −0.845497
\(423\) 0 0
\(424\) −18.2213 −0.884904
\(425\) 0 0
\(426\) 0 0
\(427\) 1.98970 0.0962882
\(428\) −2.05016 −0.0990981
\(429\) 0 0
\(430\) 0 0
\(431\) −31.2658 −1.50602 −0.753011 0.658008i \(-0.771399\pi\)
−0.753011 + 0.658008i \(0.771399\pi\)
\(432\) 0 0
\(433\) 30.6459 1.47275 0.736373 0.676575i \(-0.236537\pi\)
0.736373 + 0.676575i \(0.236537\pi\)
\(434\) 1.06438 0.0510919
\(435\) 0 0
\(436\) −5.41682 −0.259419
\(437\) −25.2284 −1.20684
\(438\) 0 0
\(439\) 0.717425 0.0342408 0.0171204 0.999853i \(-0.494550\pi\)
0.0171204 + 0.999853i \(0.494550\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.15240 0.102379
\(443\) −27.0649 −1.28589 −0.642947 0.765911i \(-0.722288\pi\)
−0.642947 + 0.765911i \(0.722288\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −17.1450 −0.811838
\(447\) 0 0
\(448\) −2.27361 −0.107418
\(449\) −30.3663 −1.43307 −0.716536 0.697550i \(-0.754273\pi\)
−0.716536 + 0.697550i \(0.754273\pi\)
\(450\) 0 0
\(451\) 26.4929 1.24750
\(452\) 3.76411 0.177049
\(453\) 0 0
\(454\) −1.96364 −0.0921584
\(455\) 0 0
\(456\) 0 0
\(457\) 2.43167 0.113749 0.0568743 0.998381i \(-0.481887\pi\)
0.0568743 + 0.998381i \(0.481887\pi\)
\(458\) 10.0477 0.469500
\(459\) 0 0
\(460\) 0 0
\(461\) 8.28439 0.385842 0.192921 0.981214i \(-0.438204\pi\)
0.192921 + 0.981214i \(0.438204\pi\)
\(462\) 0 0
\(463\) 7.05654 0.327945 0.163973 0.986465i \(-0.447569\pi\)
0.163973 + 0.986465i \(0.447569\pi\)
\(464\) −3.09444 −0.143656
\(465\) 0 0
\(466\) 36.2422 1.67889
\(467\) −6.07165 −0.280963 −0.140481 0.990083i \(-0.544865\pi\)
−0.140481 + 0.990083i \(0.544865\pi\)
\(468\) 0 0
\(469\) −2.88060 −0.133014
\(470\) 0 0
\(471\) 0 0
\(472\) 40.2301 1.85174
\(473\) −32.3773 −1.48871
\(474\) 0 0
\(475\) 0 0
\(476\) −0.0327414 −0.00150070
\(477\) 0 0
\(478\) 11.3074 0.517188
\(479\) −29.7675 −1.36011 −0.680055 0.733161i \(-0.738044\pi\)
−0.680055 + 0.733161i \(0.738044\pi\)
\(480\) 0 0
\(481\) −19.4522 −0.886943
\(482\) −38.0390 −1.73263
\(483\) 0 0
\(484\) −3.98613 −0.181188
\(485\) 0 0
\(486\) 0 0
\(487\) 41.9050 1.89890 0.949448 0.313923i \(-0.101643\pi\)
0.949448 + 0.313923i \(0.101643\pi\)
\(488\) 23.5623 1.06662
\(489\) 0 0
\(490\) 0 0
\(491\) −7.22435 −0.326030 −0.163015 0.986624i \(-0.552122\pi\)
−0.163015 + 0.986624i \(0.552122\pi\)
\(492\) 0 0
\(493\) −0.336444 −0.0151527
\(494\) 18.6447 0.838864
\(495\) 0 0
\(496\) 10.1171 0.454270
\(497\) 3.57290 0.160266
\(498\) 0 0
\(499\) −15.5607 −0.696593 −0.348296 0.937384i \(-0.613240\pi\)
−0.348296 + 0.937384i \(0.613240\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −20.3049 −0.906253
\(503\) 38.5096 1.71706 0.858529 0.512765i \(-0.171379\pi\)
0.858529 + 0.512765i \(0.171379\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 51.0560 2.26971
\(507\) 0 0
\(508\) 4.64971 0.206298
\(509\) 31.6646 1.40351 0.701754 0.712419i \(-0.252400\pi\)
0.701754 + 0.712419i \(0.252400\pi\)
\(510\) 0 0
\(511\) 2.16527 0.0957860
\(512\) −25.3109 −1.11860
\(513\) 0 0
\(514\) −21.8375 −0.963209
\(515\) 0 0
\(516\) 0 0
\(517\) −1.55924 −0.0685751
\(518\) −1.25975 −0.0553502
\(519\) 0 0
\(520\) 0 0
\(521\) 20.2023 0.885079 0.442539 0.896749i \(-0.354078\pi\)
0.442539 + 0.896749i \(0.354078\pi\)
\(522\) 0 0
\(523\) −12.1052 −0.529325 −0.264663 0.964341i \(-0.585261\pi\)
−0.264663 + 0.964341i \(0.585261\pi\)
\(524\) 4.58268 0.200195
\(525\) 0 0
\(526\) 2.19886 0.0958751
\(527\) 1.09998 0.0479158
\(528\) 0 0
\(529\) 51.9361 2.25809
\(530\) 0 0
\(531\) 0 0
\(532\) −0.283615 −0.0122963
\(533\) −28.7368 −1.24473
\(534\) 0 0
\(535\) 0 0
\(536\) −34.1125 −1.47344
\(537\) 0 0
\(538\) −6.33681 −0.273199
\(539\) −32.1380 −1.38428
\(540\) 0 0
\(541\) −14.4279 −0.620304 −0.310152 0.950687i \(-0.600380\pi\)
−0.310152 + 0.950687i \(0.600380\pi\)
\(542\) 16.6563 0.715450
\(543\) 0 0
\(544\) −0.713495 −0.0305909
\(545\) 0 0
\(546\) 0 0
\(547\) 41.9178 1.79228 0.896139 0.443774i \(-0.146361\pi\)
0.896139 + 0.443774i \(0.146361\pi\)
\(548\) 2.08284 0.0889744
\(549\) 0 0
\(550\) 0 0
\(551\) −2.91437 −0.124156
\(552\) 0 0
\(553\) 3.91656 0.166549
\(554\) −26.4893 −1.12542
\(555\) 0 0
\(556\) −1.03247 −0.0437863
\(557\) 3.60324 0.152674 0.0763372 0.997082i \(-0.475677\pi\)
0.0763372 + 0.997082i \(0.475677\pi\)
\(558\) 0 0
\(559\) 35.1196 1.48540
\(560\) 0 0
\(561\) 0 0
\(562\) 5.00573 0.211154
\(563\) 15.5829 0.656741 0.328370 0.944549i \(-0.393501\pi\)
0.328370 + 0.944549i \(0.393501\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6.97075 0.293003
\(567\) 0 0
\(568\) 42.3109 1.77532
\(569\) 36.9718 1.54994 0.774970 0.631998i \(-0.217765\pi\)
0.774970 + 0.631998i \(0.217765\pi\)
\(570\) 0 0
\(571\) 29.9692 1.25417 0.627086 0.778950i \(-0.284248\pi\)
0.627086 + 0.778950i \(0.284248\pi\)
\(572\) 8.86279 0.370572
\(573\) 0 0
\(574\) −1.86103 −0.0776780
\(575\) 0 0
\(576\) 0 0
\(577\) 7.12327 0.296546 0.148273 0.988946i \(-0.452629\pi\)
0.148273 + 0.988946i \(0.452629\pi\)
\(578\) −21.4906 −0.893892
\(579\) 0 0
\(580\) 0 0
\(581\) −1.94552 −0.0807136
\(582\) 0 0
\(583\) 27.8756 1.15449
\(584\) 25.6415 1.06105
\(585\) 0 0
\(586\) −15.2682 −0.630722
\(587\) −7.87237 −0.324928 −0.162464 0.986715i \(-0.551944\pi\)
−0.162464 + 0.986715i \(0.551944\pi\)
\(588\) 0 0
\(589\) 9.52833 0.392608
\(590\) 0 0
\(591\) 0 0
\(592\) −11.9741 −0.492131
\(593\) −17.9188 −0.735836 −0.367918 0.929858i \(-0.619929\pi\)
−0.367918 + 0.929858i \(0.619929\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.40905 0.0577170
\(597\) 0 0
\(598\) −55.3804 −2.26467
\(599\) 20.1934 0.825078 0.412539 0.910940i \(-0.364642\pi\)
0.412539 + 0.910940i \(0.364642\pi\)
\(600\) 0 0
\(601\) 23.2527 0.948496 0.474248 0.880391i \(-0.342720\pi\)
0.474248 + 0.880391i \(0.342720\pi\)
\(602\) 2.27439 0.0926973
\(603\) 0 0
\(604\) −5.83870 −0.237573
\(605\) 0 0
\(606\) 0 0
\(607\) 17.6177 0.715082 0.357541 0.933897i \(-0.383615\pi\)
0.357541 + 0.933897i \(0.383615\pi\)
\(608\) −6.18050 −0.250652
\(609\) 0 0
\(610\) 0 0
\(611\) 1.69130 0.0684228
\(612\) 0 0
\(613\) −13.4161 −0.541873 −0.270937 0.962597i \(-0.587333\pi\)
−0.270937 + 0.962597i \(0.587333\pi\)
\(614\) 33.7001 1.36002
\(615\) 0 0
\(616\) 3.59151 0.144706
\(617\) 7.99166 0.321732 0.160866 0.986976i \(-0.448571\pi\)
0.160866 + 0.986976i \(0.448571\pi\)
\(618\) 0 0
\(619\) −15.0770 −0.605996 −0.302998 0.952991i \(-0.597988\pi\)
−0.302998 + 0.952991i \(0.597988\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −2.18294 −0.0875281
\(623\) 3.33538 0.133629
\(624\) 0 0
\(625\) 0 0
\(626\) 42.4781 1.69776
\(627\) 0 0
\(628\) 8.30193 0.331283
\(629\) −1.30188 −0.0519094
\(630\) 0 0
\(631\) 10.5154 0.418611 0.209306 0.977850i \(-0.432880\pi\)
0.209306 + 0.977850i \(0.432880\pi\)
\(632\) 46.3805 1.84492
\(633\) 0 0
\(634\) −22.8707 −0.908311
\(635\) 0 0
\(636\) 0 0
\(637\) 34.8600 1.38121
\(638\) 5.89795 0.233502
\(639\) 0 0
\(640\) 0 0
\(641\) −27.2479 −1.07623 −0.538113 0.842873i \(-0.680863\pi\)
−0.538113 + 0.842873i \(0.680863\pi\)
\(642\) 0 0
\(643\) −36.3023 −1.43162 −0.715812 0.698293i \(-0.753943\pi\)
−0.715812 + 0.698293i \(0.753943\pi\)
\(644\) 0.842424 0.0331962
\(645\) 0 0
\(646\) 1.24784 0.0490955
\(647\) 8.77892 0.345135 0.172567 0.984998i \(-0.444794\pi\)
0.172567 + 0.984998i \(0.444794\pi\)
\(648\) 0 0
\(649\) −61.5454 −2.41587
\(650\) 0 0
\(651\) 0 0
\(652\) −1.17176 −0.0458898
\(653\) 44.1466 1.72759 0.863794 0.503845i \(-0.168082\pi\)
0.863794 + 0.503845i \(0.168082\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −17.6894 −0.690653
\(657\) 0 0
\(658\) 0.109531 0.00426996
\(659\) 22.7653 0.886810 0.443405 0.896321i \(-0.353770\pi\)
0.443405 + 0.896321i \(0.353770\pi\)
\(660\) 0 0
\(661\) 29.3474 1.14148 0.570740 0.821131i \(-0.306656\pi\)
0.570740 + 0.821131i \(0.306656\pi\)
\(662\) 8.26435 0.321203
\(663\) 0 0
\(664\) −23.0391 −0.894092
\(665\) 0 0
\(666\) 0 0
\(667\) 8.65656 0.335183
\(668\) −3.25264 −0.125849
\(669\) 0 0
\(670\) 0 0
\(671\) −36.0465 −1.39156
\(672\) 0 0
\(673\) 42.2267 1.62772 0.813860 0.581060i \(-0.197362\pi\)
0.813860 + 0.581060i \(0.197362\pi\)
\(674\) −8.09590 −0.311842
\(675\) 0 0
\(676\) −4.66802 −0.179539
\(677\) −19.9803 −0.767907 −0.383953 0.923353i \(-0.625438\pi\)
−0.383953 + 0.923353i \(0.625438\pi\)
\(678\) 0 0
\(679\) 2.95323 0.113334
\(680\) 0 0
\(681\) 0 0
\(682\) −19.2829 −0.738381
\(683\) 23.0491 0.881950 0.440975 0.897519i \(-0.354633\pi\)
0.440975 + 0.897519i \(0.354633\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.53647 0.173203
\(687\) 0 0
\(688\) 21.6184 0.824193
\(689\) −30.2366 −1.15192
\(690\) 0 0
\(691\) 4.01208 0.152627 0.0763134 0.997084i \(-0.475685\pi\)
0.0763134 + 0.997084i \(0.475685\pi\)
\(692\) −2.19250 −0.0833465
\(693\) 0 0
\(694\) 27.4933 1.04363
\(695\) 0 0
\(696\) 0 0
\(697\) −1.92328 −0.0728493
\(698\) −5.25090 −0.198750
\(699\) 0 0
\(700\) 0 0
\(701\) 4.49887 0.169920 0.0849599 0.996384i \(-0.472924\pi\)
0.0849599 + 0.996384i \(0.472924\pi\)
\(702\) 0 0
\(703\) −11.2773 −0.425330
\(704\) 41.1900 1.55240
\(705\) 0 0
\(706\) 9.00670 0.338971
\(707\) 2.09724 0.0788748
\(708\) 0 0
\(709\) 36.7777 1.38121 0.690607 0.723230i \(-0.257343\pi\)
0.690607 + 0.723230i \(0.257343\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 39.4981 1.48025
\(713\) −28.3020 −1.05992
\(714\) 0 0
\(715\) 0 0
\(716\) −5.38026 −0.201070
\(717\) 0 0
\(718\) −18.3716 −0.685621
\(719\) −25.4279 −0.948300 −0.474150 0.880444i \(-0.657245\pi\)
−0.474150 + 0.880444i \(0.657245\pi\)
\(720\) 0 0
\(721\) −0.442594 −0.0164831
\(722\) −13.3708 −0.497609
\(723\) 0 0
\(724\) 5.71854 0.212528
\(725\) 0 0
\(726\) 0 0
\(727\) −11.6265 −0.431205 −0.215602 0.976481i \(-0.569171\pi\)
−0.215602 + 0.976481i \(0.569171\pi\)
\(728\) −3.89571 −0.144385
\(729\) 0 0
\(730\) 0 0
\(731\) 2.35046 0.0869349
\(732\) 0 0
\(733\) −25.6926 −0.948978 −0.474489 0.880261i \(-0.657367\pi\)
−0.474489 + 0.880261i \(0.657367\pi\)
\(734\) −19.6169 −0.724073
\(735\) 0 0
\(736\) 18.3580 0.676683
\(737\) 52.1866 1.92232
\(738\) 0 0
\(739\) −33.3612 −1.22721 −0.613606 0.789612i \(-0.710282\pi\)
−0.613606 + 0.789612i \(0.710282\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.95816 −0.0718864
\(743\) 25.6430 0.940750 0.470375 0.882467i \(-0.344119\pi\)
0.470375 + 0.882467i \(0.344119\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −37.9973 −1.39118
\(747\) 0 0
\(748\) 0.593162 0.0216882
\(749\) −1.37863 −0.0503741
\(750\) 0 0
\(751\) 46.6411 1.70196 0.850979 0.525200i \(-0.176009\pi\)
0.850979 + 0.525200i \(0.176009\pi\)
\(752\) 1.04111 0.0379652
\(753\) 0 0
\(754\) −6.39750 −0.232983
\(755\) 0 0
\(756\) 0 0
\(757\) −2.69262 −0.0978650 −0.0489325 0.998802i \(-0.515582\pi\)
−0.0489325 + 0.998802i \(0.515582\pi\)
\(758\) 47.5264 1.72624
\(759\) 0 0
\(760\) 0 0
\(761\) −0.471501 −0.0170919 −0.00854595 0.999963i \(-0.502720\pi\)
−0.00854595 + 0.999963i \(0.502720\pi\)
\(762\) 0 0
\(763\) −3.64255 −0.131869
\(764\) 4.66521 0.168781
\(765\) 0 0
\(766\) −32.8540 −1.18706
\(767\) 66.7583 2.41050
\(768\) 0 0
\(769\) 9.04380 0.326128 0.163064 0.986616i \(-0.447862\pi\)
0.163064 + 0.986616i \(0.447862\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.17346 0.114215
\(773\) −9.91726 −0.356699 −0.178350 0.983967i \(-0.557076\pi\)
−0.178350 + 0.983967i \(0.557076\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 34.9726 1.25544
\(777\) 0 0
\(778\) 26.3351 0.944159
\(779\) −16.6600 −0.596905
\(780\) 0 0
\(781\) −64.7287 −2.31617
\(782\) −3.70646 −0.132543
\(783\) 0 0
\(784\) 21.4586 0.766379
\(785\) 0 0
\(786\) 0 0
\(787\) −8.53609 −0.304279 −0.152139 0.988359i \(-0.548616\pi\)
−0.152139 + 0.988359i \(0.548616\pi\)
\(788\) −2.54600 −0.0906976
\(789\) 0 0
\(790\) 0 0
\(791\) 2.53119 0.0899986
\(792\) 0 0
\(793\) 39.0996 1.38847
\(794\) −3.02943 −0.107510
\(795\) 0 0
\(796\) −4.77741 −0.169331
\(797\) −12.5563 −0.444768 −0.222384 0.974959i \(-0.571384\pi\)
−0.222384 + 0.974959i \(0.571384\pi\)
\(798\) 0 0
\(799\) 0.113194 0.00400453
\(800\) 0 0
\(801\) 0 0
\(802\) −40.8432 −1.44222
\(803\) −39.2273 −1.38430
\(804\) 0 0
\(805\) 0 0
\(806\) 20.9162 0.736741
\(807\) 0 0
\(808\) 24.8359 0.873723
\(809\) 16.4082 0.576883 0.288441 0.957498i \(-0.406863\pi\)
0.288441 + 0.957498i \(0.406863\pi\)
\(810\) 0 0
\(811\) 29.4688 1.03479 0.517394 0.855747i \(-0.326902\pi\)
0.517394 + 0.855747i \(0.326902\pi\)
\(812\) 0.0973162 0.00341513
\(813\) 0 0
\(814\) 22.8223 0.799923
\(815\) 0 0
\(816\) 0 0
\(817\) 20.3603 0.712318
\(818\) −40.0892 −1.40169
\(819\) 0 0
\(820\) 0 0
\(821\) −28.5209 −0.995385 −0.497693 0.867353i \(-0.665819\pi\)
−0.497693 + 0.867353i \(0.665819\pi\)
\(822\) 0 0
\(823\) −16.7546 −0.584028 −0.292014 0.956414i \(-0.594325\pi\)
−0.292014 + 0.956414i \(0.594325\pi\)
\(824\) −5.24127 −0.182588
\(825\) 0 0
\(826\) 4.32336 0.150429
\(827\) 3.38369 0.117662 0.0588312 0.998268i \(-0.481263\pi\)
0.0588312 + 0.998268i \(0.481263\pi\)
\(828\) 0 0
\(829\) −14.4434 −0.501639 −0.250819 0.968034i \(-0.580700\pi\)
−0.250819 + 0.968034i \(0.580700\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −44.6787 −1.54896
\(833\) 2.33309 0.0808367
\(834\) 0 0
\(835\) 0 0
\(836\) 5.13814 0.177706
\(837\) 0 0
\(838\) −4.01490 −0.138692
\(839\) 27.6642 0.955075 0.477538 0.878611i \(-0.341529\pi\)
0.477538 + 0.878611i \(0.341529\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −15.2246 −0.524675
\(843\) 0 0
\(844\) 5.19193 0.178714
\(845\) 0 0
\(846\) 0 0
\(847\) −2.68048 −0.0921024
\(848\) −18.6126 −0.639159
\(849\) 0 0
\(850\) 0 0
\(851\) 33.4969 1.14826
\(852\) 0 0
\(853\) −4.26068 −0.145883 −0.0729415 0.997336i \(-0.523239\pi\)
−0.0729415 + 0.997336i \(0.523239\pi\)
\(854\) 2.53214 0.0866481
\(855\) 0 0
\(856\) −16.3260 −0.558011
\(857\) −28.7104 −0.980729 −0.490364 0.871518i \(-0.663136\pi\)
−0.490364 + 0.871518i \(0.663136\pi\)
\(858\) 0 0
\(859\) −39.3734 −1.34340 −0.671701 0.740822i \(-0.734436\pi\)
−0.671701 + 0.740822i \(0.734436\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −39.7898 −1.35525
\(863\) −22.1235 −0.753094 −0.376547 0.926398i \(-0.622889\pi\)
−0.376547 + 0.926398i \(0.622889\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 39.0008 1.32530
\(867\) 0 0
\(868\) −0.318168 −0.0107993
\(869\) −70.9546 −2.40697
\(870\) 0 0
\(871\) −56.6068 −1.91805
\(872\) −43.1357 −1.46076
\(873\) 0 0
\(874\) −32.1064 −1.08602
\(875\) 0 0
\(876\) 0 0
\(877\) 32.3439 1.09217 0.546087 0.837728i \(-0.316117\pi\)
0.546087 + 0.837728i \(0.316117\pi\)
\(878\) 0.913015 0.0308128
\(879\) 0 0
\(880\) 0 0
\(881\) 54.6109 1.83989 0.919944 0.392051i \(-0.128234\pi\)
0.919944 + 0.392051i \(0.128234\pi\)
\(882\) 0 0
\(883\) −47.5511 −1.60022 −0.800111 0.599852i \(-0.795226\pi\)
−0.800111 + 0.599852i \(0.795226\pi\)
\(884\) −0.643403 −0.0216400
\(885\) 0 0
\(886\) −34.4436 −1.15715
\(887\) −10.4630 −0.351312 −0.175656 0.984452i \(-0.556205\pi\)
−0.175656 + 0.984452i \(0.556205\pi\)
\(888\) 0 0
\(889\) 3.12671 0.104866
\(890\) 0 0
\(891\) 0 0
\(892\) 5.12504 0.171599
\(893\) 0.980521 0.0328119
\(894\) 0 0
\(895\) 0 0
\(896\) −1.80845 −0.0604160
\(897\) 0 0
\(898\) −38.6449 −1.28960
\(899\) −3.26943 −0.109042
\(900\) 0 0
\(901\) −2.02365 −0.0674177
\(902\) 33.7156 1.12261
\(903\) 0 0
\(904\) 29.9747 0.996945
\(905\) 0 0
\(906\) 0 0
\(907\) −10.7211 −0.355989 −0.177994 0.984032i \(-0.556961\pi\)
−0.177994 + 0.984032i \(0.556961\pi\)
\(908\) 0.586980 0.0194796
\(909\) 0 0
\(910\) 0 0
\(911\) 3.57634 0.118489 0.0592447 0.998243i \(-0.481131\pi\)
0.0592447 + 0.998243i \(0.481131\pi\)
\(912\) 0 0
\(913\) 35.2461 1.16648
\(914\) 3.09461 0.102361
\(915\) 0 0
\(916\) −3.00351 −0.0992386
\(917\) 3.08163 0.101765
\(918\) 0 0
\(919\) −22.2776 −0.734870 −0.367435 0.930049i \(-0.619764\pi\)
−0.367435 + 0.930049i \(0.619764\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 10.5429 0.347213
\(923\) 70.2112 2.31103
\(924\) 0 0
\(925\) 0 0
\(926\) 8.98035 0.295113
\(927\) 0 0
\(928\) 2.12070 0.0696153
\(929\) 21.1779 0.694826 0.347413 0.937712i \(-0.387060\pi\)
0.347413 + 0.937712i \(0.387060\pi\)
\(930\) 0 0
\(931\) 20.2099 0.662352
\(932\) −10.8337 −0.354868
\(933\) 0 0
\(934\) −7.72695 −0.252834
\(935\) 0 0
\(936\) 0 0
\(937\) 34.4462 1.12531 0.562654 0.826693i \(-0.309780\pi\)
0.562654 + 0.826693i \(0.309780\pi\)
\(938\) −3.66593 −0.119697
\(939\) 0 0
\(940\) 0 0
\(941\) −0.296167 −0.00965477 −0.00482738 0.999988i \(-0.501537\pi\)
−0.00482738 + 0.999988i \(0.501537\pi\)
\(942\) 0 0
\(943\) 49.4851 1.61146
\(944\) 41.0940 1.33750
\(945\) 0 0
\(946\) −41.2042 −1.33966
\(947\) −46.9467 −1.52556 −0.762782 0.646656i \(-0.776167\pi\)
−0.762782 + 0.646656i \(0.776167\pi\)
\(948\) 0 0
\(949\) 42.5498 1.38123
\(950\) 0 0
\(951\) 0 0
\(952\) −0.260730 −0.00845029
\(953\) 1.91375 0.0619926 0.0309963 0.999519i \(-0.490132\pi\)
0.0309963 + 0.999519i \(0.490132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.38005 −0.109319
\(957\) 0 0
\(958\) −37.8829 −1.22394
\(959\) 1.40061 0.0452280
\(960\) 0 0
\(961\) −20.3108 −0.655188
\(962\) −24.7554 −0.798145
\(963\) 0 0
\(964\) 11.3707 0.366227
\(965\) 0 0
\(966\) 0 0
\(967\) −4.01326 −0.129058 −0.0645288 0.997916i \(-0.520554\pi\)
−0.0645288 + 0.997916i \(0.520554\pi\)
\(968\) −31.7427 −1.02025
\(969\) 0 0
\(970\) 0 0
\(971\) 4.54751 0.145937 0.0729683 0.997334i \(-0.476753\pi\)
0.0729683 + 0.997334i \(0.476753\pi\)
\(972\) 0 0
\(973\) −0.694284 −0.0222577
\(974\) 53.3295 1.70879
\(975\) 0 0
\(976\) 24.0683 0.770409
\(977\) 44.2333 1.41515 0.707574 0.706639i \(-0.249789\pi\)
0.707574 + 0.706639i \(0.249789\pi\)
\(978\) 0 0
\(979\) −60.4256 −1.93121
\(980\) 0 0
\(981\) 0 0
\(982\) −9.19391 −0.293389
\(983\) 34.2083 1.09107 0.545537 0.838087i \(-0.316326\pi\)
0.545537 + 0.838087i \(0.316326\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −0.428167 −0.0136356
\(987\) 0 0
\(988\) −5.57334 −0.177312
\(989\) −60.4764 −1.92304
\(990\) 0 0
\(991\) −1.76770 −0.0561528 −0.0280764 0.999606i \(-0.508938\pi\)
−0.0280764 + 0.999606i \(0.508938\pi\)
\(992\) −6.93347 −0.220138
\(993\) 0 0
\(994\) 4.54697 0.144221
\(995\) 0 0
\(996\) 0 0
\(997\) −23.7398 −0.751848 −0.375924 0.926650i \(-0.622675\pi\)
−0.375924 + 0.926650i \(0.622675\pi\)
\(998\) −19.8030 −0.626853
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ce.1.8 12
3.2 odd 2 6525.2.a.cf.1.5 12
5.2 odd 4 1305.2.c.k.784.8 yes 12
5.3 odd 4 1305.2.c.k.784.5 12
5.4 even 2 inner 6525.2.a.ce.1.5 12
15.2 even 4 1305.2.c.l.784.5 yes 12
15.8 even 4 1305.2.c.l.784.8 yes 12
15.14 odd 2 6525.2.a.cf.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.5 12 5.3 odd 4
1305.2.c.k.784.8 yes 12 5.2 odd 4
1305.2.c.l.784.5 yes 12 15.2 even 4
1305.2.c.l.784.8 yes 12 15.8 even 4
6525.2.a.ce.1.5 12 5.4 even 2 inner
6525.2.a.ce.1.8 12 1.1 even 1 trivial
6525.2.a.cf.1.5 12 3.2 odd 2
6525.2.a.cf.1.8 12 15.14 odd 2