Properties

Label 6525.2.a.cd.1.9
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.74387\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.74387 q^{2} +5.52881 q^{4} -1.10432 q^{7} +9.68257 q^{8} -0.0961550 q^{11} +1.00817 q^{13} -3.03012 q^{14} +15.5101 q^{16} +1.92647 q^{17} +1.36951 q^{19} -0.263836 q^{22} +1.36474 q^{23} +2.76628 q^{26} -6.10559 q^{28} +1.00000 q^{29} +2.17445 q^{31} +23.1924 q^{32} +5.28599 q^{34} +6.61652 q^{37} +3.75776 q^{38} -5.07876 q^{41} -7.53382 q^{43} -0.531622 q^{44} +3.74467 q^{46} +5.77938 q^{47} -5.78047 q^{49} +5.57396 q^{52} -2.54747 q^{53} -10.6927 q^{56} +2.74387 q^{58} +12.6670 q^{59} +7.29508 q^{61} +5.96640 q^{62} +32.6168 q^{64} -2.77418 q^{67} +10.6511 q^{68} +6.05383 q^{71} +11.5699 q^{73} +18.1549 q^{74} +7.57176 q^{76} +0.106186 q^{77} -3.01211 q^{79} -13.9354 q^{82} -0.455950 q^{83} -20.6718 q^{86} -0.931027 q^{88} -7.57581 q^{89} -1.11334 q^{91} +7.54539 q^{92} +15.8578 q^{94} -10.7828 q^{97} -15.8608 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 2 q^{2} + 10 q^{4} + q^{7} + 9 q^{8} + 2 q^{11} + q^{13} - 3 q^{14} + 4 q^{16} + 12 q^{17} - q^{19} + 3 q^{22} + 16 q^{23} + 6 q^{26} - 4 q^{28} + 9 q^{29} + 5 q^{31} + 20 q^{32} + 3 q^{34} + 30 q^{38}+ \cdots + 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.74387 1.94021 0.970103 0.242692i \(-0.0780304\pi\)
0.970103 + 0.242692i \(0.0780304\pi\)
\(3\) 0 0
\(4\) 5.52881 2.76440
\(5\) 0 0
\(6\) 0 0
\(7\) −1.10432 −0.417395 −0.208697 0.977980i \(-0.566922\pi\)
−0.208697 + 0.977980i \(0.566922\pi\)
\(8\) 9.68257 3.42331
\(9\) 0 0
\(10\) 0 0
\(11\) −0.0961550 −0.0289918 −0.0144959 0.999895i \(-0.504614\pi\)
−0.0144959 + 0.999895i \(0.504614\pi\)
\(12\) 0 0
\(13\) 1.00817 0.279615 0.139808 0.990179i \(-0.455352\pi\)
0.139808 + 0.990179i \(0.455352\pi\)
\(14\) −3.03012 −0.809832
\(15\) 0 0
\(16\) 15.5101 3.87752
\(17\) 1.92647 0.467239 0.233619 0.972328i \(-0.424943\pi\)
0.233619 + 0.972328i \(0.424943\pi\)
\(18\) 0 0
\(19\) 1.36951 0.314187 0.157094 0.987584i \(-0.449788\pi\)
0.157094 + 0.987584i \(0.449788\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.263836 −0.0562501
\(23\) 1.36474 0.284568 0.142284 0.989826i \(-0.454555\pi\)
0.142284 + 0.989826i \(0.454555\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.76628 0.542512
\(27\) 0 0
\(28\) −6.10559 −1.15385
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 2.17445 0.390543 0.195271 0.980749i \(-0.437441\pi\)
0.195271 + 0.980749i \(0.437441\pi\)
\(32\) 23.1924 4.09988
\(33\) 0 0
\(34\) 5.28599 0.906540
\(35\) 0 0
\(36\) 0 0
\(37\) 6.61652 1.08775 0.543875 0.839166i \(-0.316957\pi\)
0.543875 + 0.839166i \(0.316957\pi\)
\(38\) 3.75776 0.609589
\(39\) 0 0
\(40\) 0 0
\(41\) −5.07876 −0.793169 −0.396584 0.917998i \(-0.629805\pi\)
−0.396584 + 0.917998i \(0.629805\pi\)
\(42\) 0 0
\(43\) −7.53382 −1.14890 −0.574448 0.818541i \(-0.694783\pi\)
−0.574448 + 0.818541i \(0.694783\pi\)
\(44\) −0.531622 −0.0801450
\(45\) 0 0
\(46\) 3.74467 0.552121
\(47\) 5.77938 0.843009 0.421504 0.906826i \(-0.361502\pi\)
0.421504 + 0.906826i \(0.361502\pi\)
\(48\) 0 0
\(49\) −5.78047 −0.825782
\(50\) 0 0
\(51\) 0 0
\(52\) 5.57396 0.772970
\(53\) −2.54747 −0.349922 −0.174961 0.984575i \(-0.555980\pi\)
−0.174961 + 0.984575i \(0.555980\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −10.6927 −1.42887
\(57\) 0 0
\(58\) 2.74387 0.360287
\(59\) 12.6670 1.64910 0.824548 0.565792i \(-0.191429\pi\)
0.824548 + 0.565792i \(0.191429\pi\)
\(60\) 0 0
\(61\) 7.29508 0.934040 0.467020 0.884247i \(-0.345328\pi\)
0.467020 + 0.884247i \(0.345328\pi\)
\(62\) 5.96640 0.757734
\(63\) 0 0
\(64\) 32.6168 4.07710
\(65\) 0 0
\(66\) 0 0
\(67\) −2.77418 −0.338920 −0.169460 0.985537i \(-0.554202\pi\)
−0.169460 + 0.985537i \(0.554202\pi\)
\(68\) 10.6511 1.29164
\(69\) 0 0
\(70\) 0 0
\(71\) 6.05383 0.718457 0.359229 0.933250i \(-0.383040\pi\)
0.359229 + 0.933250i \(0.383040\pi\)
\(72\) 0 0
\(73\) 11.5699 1.35415 0.677077 0.735912i \(-0.263246\pi\)
0.677077 + 0.735912i \(0.263246\pi\)
\(74\) 18.1549 2.11046
\(75\) 0 0
\(76\) 7.57176 0.868541
\(77\) 0.106186 0.0121010
\(78\) 0 0
\(79\) −3.01211 −0.338889 −0.169444 0.985540i \(-0.554197\pi\)
−0.169444 + 0.985540i \(0.554197\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −13.9354 −1.53891
\(83\) −0.455950 −0.0500470 −0.0250235 0.999687i \(-0.507966\pi\)
−0.0250235 + 0.999687i \(0.507966\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −20.6718 −2.22910
\(87\) 0 0
\(88\) −0.931027 −0.0992478
\(89\) −7.57581 −0.803034 −0.401517 0.915852i \(-0.631517\pi\)
−0.401517 + 0.915852i \(0.631517\pi\)
\(90\) 0 0
\(91\) −1.11334 −0.116710
\(92\) 7.54539 0.786661
\(93\) 0 0
\(94\) 15.8578 1.63561
\(95\) 0 0
\(96\) 0 0
\(97\) −10.7828 −1.09483 −0.547415 0.836862i \(-0.684388\pi\)
−0.547415 + 0.836862i \(0.684388\pi\)
\(98\) −15.8608 −1.60219
\(99\) 0 0
\(100\) 0 0
\(101\) −18.8731 −1.87794 −0.938971 0.343996i \(-0.888219\pi\)
−0.938971 + 0.343996i \(0.888219\pi\)
\(102\) 0 0
\(103\) 12.0872 1.19098 0.595491 0.803362i \(-0.296957\pi\)
0.595491 + 0.803362i \(0.296957\pi\)
\(104\) 9.76166 0.957209
\(105\) 0 0
\(106\) −6.98991 −0.678920
\(107\) −10.8319 −1.04716 −0.523578 0.851977i \(-0.675403\pi\)
−0.523578 + 0.851977i \(0.675403\pi\)
\(108\) 0 0
\(109\) 13.2131 1.26558 0.632790 0.774323i \(-0.281910\pi\)
0.632790 + 0.774323i \(0.281910\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17.1281 −1.61846
\(113\) 2.20594 0.207517 0.103758 0.994603i \(-0.466913\pi\)
0.103758 + 0.994603i \(0.466913\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.52881 0.513337
\(117\) 0 0
\(118\) 34.7564 3.19959
\(119\) −2.12745 −0.195023
\(120\) 0 0
\(121\) −10.9908 −0.999159
\(122\) 20.0167 1.81223
\(123\) 0 0
\(124\) 12.0221 1.07962
\(125\) 0 0
\(126\) 0 0
\(127\) −16.8893 −1.49868 −0.749340 0.662185i \(-0.769629\pi\)
−0.749340 + 0.662185i \(0.769629\pi\)
\(128\) 43.1113 3.81054
\(129\) 0 0
\(130\) 0 0
\(131\) −8.43970 −0.737380 −0.368690 0.929552i \(-0.620194\pi\)
−0.368690 + 0.929552i \(0.620194\pi\)
\(132\) 0 0
\(133\) −1.51238 −0.131140
\(134\) −7.61198 −0.657575
\(135\) 0 0
\(136\) 18.6532 1.59950
\(137\) 8.80002 0.751836 0.375918 0.926653i \(-0.377327\pi\)
0.375918 + 0.926653i \(0.377327\pi\)
\(138\) 0 0
\(139\) 1.93520 0.164142 0.0820709 0.996626i \(-0.473847\pi\)
0.0820709 + 0.996626i \(0.473847\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 16.6109 1.39396
\(143\) −0.0969403 −0.00810656
\(144\) 0 0
\(145\) 0 0
\(146\) 31.7463 2.62734
\(147\) 0 0
\(148\) 36.5815 3.00698
\(149\) 19.4823 1.59605 0.798025 0.602624i \(-0.205878\pi\)
0.798025 + 0.602624i \(0.205878\pi\)
\(150\) 0 0
\(151\) −19.0946 −1.55390 −0.776949 0.629563i \(-0.783234\pi\)
−0.776949 + 0.629563i \(0.783234\pi\)
\(152\) 13.2604 1.07556
\(153\) 0 0
\(154\) 0.291361 0.0234785
\(155\) 0 0
\(156\) 0 0
\(157\) 11.1697 0.891438 0.445719 0.895173i \(-0.352948\pi\)
0.445719 + 0.895173i \(0.352948\pi\)
\(158\) −8.26483 −0.657515
\(159\) 0 0
\(160\) 0 0
\(161\) −1.50711 −0.118777
\(162\) 0 0
\(163\) 6.15583 0.482161 0.241081 0.970505i \(-0.422498\pi\)
0.241081 + 0.970505i \(0.422498\pi\)
\(164\) −28.0795 −2.19264
\(165\) 0 0
\(166\) −1.25106 −0.0971015
\(167\) 14.4540 1.11849 0.559244 0.829003i \(-0.311092\pi\)
0.559244 + 0.829003i \(0.311092\pi\)
\(168\) 0 0
\(169\) −11.9836 −0.921815
\(170\) 0 0
\(171\) 0 0
\(172\) −41.6530 −3.17601
\(173\) 19.0331 1.44706 0.723531 0.690292i \(-0.242518\pi\)
0.723531 + 0.690292i \(0.242518\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.49137 −0.112416
\(177\) 0 0
\(178\) −20.7870 −1.55805
\(179\) −3.15556 −0.235857 −0.117929 0.993022i \(-0.537625\pi\)
−0.117929 + 0.993022i \(0.537625\pi\)
\(180\) 0 0
\(181\) −21.9375 −1.63060 −0.815301 0.579037i \(-0.803429\pi\)
−0.815301 + 0.579037i \(0.803429\pi\)
\(182\) −3.05487 −0.226442
\(183\) 0 0
\(184\) 13.2142 0.974164
\(185\) 0 0
\(186\) 0 0
\(187\) −0.185240 −0.0135461
\(188\) 31.9530 2.33042
\(189\) 0 0
\(190\) 0 0
\(191\) 22.8151 1.65084 0.825422 0.564517i \(-0.190937\pi\)
0.825422 + 0.564517i \(0.190937\pi\)
\(192\) 0 0
\(193\) 7.27135 0.523403 0.261702 0.965149i \(-0.415716\pi\)
0.261702 + 0.965149i \(0.415716\pi\)
\(194\) −29.5866 −2.12420
\(195\) 0 0
\(196\) −31.9591 −2.28279
\(197\) −13.6506 −0.972563 −0.486282 0.873802i \(-0.661647\pi\)
−0.486282 + 0.873802i \(0.661647\pi\)
\(198\) 0 0
\(199\) −9.81861 −0.696023 −0.348011 0.937490i \(-0.613143\pi\)
−0.348011 + 0.937490i \(0.613143\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −51.7852 −3.64360
\(203\) −1.10432 −0.0775083
\(204\) 0 0
\(205\) 0 0
\(206\) 33.1655 2.31075
\(207\) 0 0
\(208\) 15.6368 1.08421
\(209\) −0.131685 −0.00910886
\(210\) 0 0
\(211\) −13.3349 −0.918009 −0.459004 0.888434i \(-0.651794\pi\)
−0.459004 + 0.888434i \(0.651794\pi\)
\(212\) −14.0845 −0.967324
\(213\) 0 0
\(214\) −29.7212 −2.03170
\(215\) 0 0
\(216\) 0 0
\(217\) −2.40130 −0.163011
\(218\) 36.2549 2.45549
\(219\) 0 0
\(220\) 0 0
\(221\) 1.94221 0.130647
\(222\) 0 0
\(223\) 8.60466 0.576211 0.288105 0.957599i \(-0.406975\pi\)
0.288105 + 0.957599i \(0.406975\pi\)
\(224\) −25.6120 −1.71127
\(225\) 0 0
\(226\) 6.05279 0.402626
\(227\) −14.6273 −0.970846 −0.485423 0.874279i \(-0.661334\pi\)
−0.485423 + 0.874279i \(0.661334\pi\)
\(228\) 0 0
\(229\) 9.64412 0.637301 0.318651 0.947872i \(-0.396770\pi\)
0.318651 + 0.947872i \(0.396770\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 9.68257 0.635692
\(233\) −17.9885 −1.17847 −0.589233 0.807963i \(-0.700570\pi\)
−0.589233 + 0.807963i \(0.700570\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 70.0331 4.55877
\(237\) 0 0
\(238\) −5.83744 −0.378385
\(239\) 7.74493 0.500978 0.250489 0.968120i \(-0.419409\pi\)
0.250489 + 0.968120i \(0.419409\pi\)
\(240\) 0 0
\(241\) 5.30756 0.341890 0.170945 0.985281i \(-0.445318\pi\)
0.170945 + 0.985281i \(0.445318\pi\)
\(242\) −30.1572 −1.93858
\(243\) 0 0
\(244\) 40.3331 2.58206
\(245\) 0 0
\(246\) 0 0
\(247\) 1.38070 0.0878517
\(248\) 21.0543 1.33695
\(249\) 0 0
\(250\) 0 0
\(251\) −13.0470 −0.823518 −0.411759 0.911293i \(-0.635085\pi\)
−0.411759 + 0.911293i \(0.635085\pi\)
\(252\) 0 0
\(253\) −0.131227 −0.00825015
\(254\) −46.3419 −2.90775
\(255\) 0 0
\(256\) 53.0581 3.31613
\(257\) 15.4865 0.966024 0.483012 0.875614i \(-0.339543\pi\)
0.483012 + 0.875614i \(0.339543\pi\)
\(258\) 0 0
\(259\) −7.30678 −0.454021
\(260\) 0 0
\(261\) 0 0
\(262\) −23.1574 −1.43067
\(263\) 5.90216 0.363943 0.181971 0.983304i \(-0.441752\pi\)
0.181971 + 0.983304i \(0.441752\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.14978 −0.254439
\(267\) 0 0
\(268\) −15.3379 −0.936911
\(269\) −26.1012 −1.59142 −0.795710 0.605678i \(-0.792902\pi\)
−0.795710 + 0.605678i \(0.792902\pi\)
\(270\) 0 0
\(271\) 3.68372 0.223770 0.111885 0.993721i \(-0.464311\pi\)
0.111885 + 0.993721i \(0.464311\pi\)
\(272\) 29.8798 1.81173
\(273\) 0 0
\(274\) 24.1461 1.45872
\(275\) 0 0
\(276\) 0 0
\(277\) −24.6901 −1.48349 −0.741743 0.670684i \(-0.766001\pi\)
−0.741743 + 0.670684i \(0.766001\pi\)
\(278\) 5.30994 0.318469
\(279\) 0 0
\(280\) 0 0
\(281\) −22.8059 −1.36049 −0.680243 0.732986i \(-0.738126\pi\)
−0.680243 + 0.732986i \(0.738126\pi\)
\(282\) 0 0
\(283\) 5.95693 0.354103 0.177051 0.984202i \(-0.443344\pi\)
0.177051 + 0.984202i \(0.443344\pi\)
\(284\) 33.4704 1.98610
\(285\) 0 0
\(286\) −0.265991 −0.0157284
\(287\) 5.60859 0.331065
\(288\) 0 0
\(289\) −13.2887 −0.781688
\(290\) 0 0
\(291\) 0 0
\(292\) 63.9677 3.74343
\(293\) −16.9708 −0.991443 −0.495721 0.868482i \(-0.665096\pi\)
−0.495721 + 0.868482i \(0.665096\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 64.0650 3.72370
\(297\) 0 0
\(298\) 53.4568 3.09667
\(299\) 1.37589 0.0795697
\(300\) 0 0
\(301\) 8.31977 0.479543
\(302\) −52.3931 −3.01488
\(303\) 0 0
\(304\) 21.2412 1.21827
\(305\) 0 0
\(306\) 0 0
\(307\) −2.13874 −0.122064 −0.0610321 0.998136i \(-0.519439\pi\)
−0.0610321 + 0.998136i \(0.519439\pi\)
\(308\) 0.587082 0.0334521
\(309\) 0 0
\(310\) 0 0
\(311\) −13.6680 −0.775044 −0.387522 0.921861i \(-0.626669\pi\)
−0.387522 + 0.921861i \(0.626669\pi\)
\(312\) 0 0
\(313\) 5.07682 0.286959 0.143480 0.989653i \(-0.454171\pi\)
0.143480 + 0.989653i \(0.454171\pi\)
\(314\) 30.6481 1.72957
\(315\) 0 0
\(316\) −16.6534 −0.936825
\(317\) 7.29420 0.409683 0.204842 0.978795i \(-0.434332\pi\)
0.204842 + 0.978795i \(0.434332\pi\)
\(318\) 0 0
\(319\) −0.0961550 −0.00538364
\(320\) 0 0
\(321\) 0 0
\(322\) −4.13532 −0.230452
\(323\) 2.63833 0.146801
\(324\) 0 0
\(325\) 0 0
\(326\) 16.8908 0.935493
\(327\) 0 0
\(328\) −49.1755 −2.71526
\(329\) −6.38230 −0.351867
\(330\) 0 0
\(331\) −15.6728 −0.861454 −0.430727 0.902482i \(-0.641743\pi\)
−0.430727 + 0.902482i \(0.641743\pi\)
\(332\) −2.52086 −0.138350
\(333\) 0 0
\(334\) 39.6600 2.17010
\(335\) 0 0
\(336\) 0 0
\(337\) −27.1038 −1.47644 −0.738219 0.674562i \(-0.764333\pi\)
−0.738219 + 0.674562i \(0.764333\pi\)
\(338\) −32.8814 −1.78851
\(339\) 0 0
\(340\) 0 0
\(341\) −0.209084 −0.0113225
\(342\) 0 0
\(343\) 14.1138 0.762072
\(344\) −72.9467 −3.93302
\(345\) 0 0
\(346\) 52.2243 2.80760
\(347\) −19.8312 −1.06460 −0.532298 0.846557i \(-0.678671\pi\)
−0.532298 + 0.846557i \(0.678671\pi\)
\(348\) 0 0
\(349\) −25.5566 −1.36802 −0.684008 0.729475i \(-0.739765\pi\)
−0.684008 + 0.729475i \(0.739765\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.23007 −0.118863
\(353\) −7.94312 −0.422770 −0.211385 0.977403i \(-0.567797\pi\)
−0.211385 + 0.977403i \(0.567797\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −41.8852 −2.21991
\(357\) 0 0
\(358\) −8.65843 −0.457612
\(359\) 5.79924 0.306072 0.153036 0.988221i \(-0.451095\pi\)
0.153036 + 0.988221i \(0.451095\pi\)
\(360\) 0 0
\(361\) −17.1244 −0.901286
\(362\) −60.1936 −3.16371
\(363\) 0 0
\(364\) −6.15546 −0.322634
\(365\) 0 0
\(366\) 0 0
\(367\) 22.6318 1.18137 0.590686 0.806901i \(-0.298857\pi\)
0.590686 + 0.806901i \(0.298857\pi\)
\(368\) 21.1672 1.10342
\(369\) 0 0
\(370\) 0 0
\(371\) 2.81323 0.146056
\(372\) 0 0
\(373\) −23.3987 −1.21154 −0.605769 0.795641i \(-0.707134\pi\)
−0.605769 + 0.795641i \(0.707134\pi\)
\(374\) −0.508274 −0.0262822
\(375\) 0 0
\(376\) 55.9592 2.88588
\(377\) 1.00817 0.0519233
\(378\) 0 0
\(379\) 27.4252 1.40874 0.704369 0.709834i \(-0.251230\pi\)
0.704369 + 0.709834i \(0.251230\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 62.6016 3.20298
\(383\) −26.7931 −1.36906 −0.684531 0.728984i \(-0.739993\pi\)
−0.684531 + 0.728984i \(0.739993\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.9516 1.01551
\(387\) 0 0
\(388\) −59.6161 −3.02655
\(389\) 25.7792 1.30706 0.653528 0.756902i \(-0.273288\pi\)
0.653528 + 0.756902i \(0.273288\pi\)
\(390\) 0 0
\(391\) 2.62914 0.132961
\(392\) −55.9698 −2.82690
\(393\) 0 0
\(394\) −37.4554 −1.88697
\(395\) 0 0
\(396\) 0 0
\(397\) −21.2065 −1.06432 −0.532161 0.846643i \(-0.678620\pi\)
−0.532161 + 0.846643i \(0.678620\pi\)
\(398\) −26.9410 −1.35043
\(399\) 0 0
\(400\) 0 0
\(401\) 20.5845 1.02794 0.513971 0.857807i \(-0.328174\pi\)
0.513971 + 0.857807i \(0.328174\pi\)
\(402\) 0 0
\(403\) 2.19221 0.109202
\(404\) −104.346 −5.19139
\(405\) 0 0
\(406\) −3.03012 −0.150382
\(407\) −0.636211 −0.0315358
\(408\) 0 0
\(409\) 1.93199 0.0955309 0.0477654 0.998859i \(-0.484790\pi\)
0.0477654 + 0.998859i \(0.484790\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 66.8275 3.29236
\(413\) −13.9884 −0.688324
\(414\) 0 0
\(415\) 0 0
\(416\) 23.3819 1.14639
\(417\) 0 0
\(418\) −0.361327 −0.0176731
\(419\) 5.69653 0.278294 0.139147 0.990272i \(-0.455564\pi\)
0.139147 + 0.990272i \(0.455564\pi\)
\(420\) 0 0
\(421\) −34.1352 −1.66365 −0.831825 0.555038i \(-0.812704\pi\)
−0.831825 + 0.555038i \(0.812704\pi\)
\(422\) −36.5891 −1.78113
\(423\) 0 0
\(424\) −24.6660 −1.19789
\(425\) 0 0
\(426\) 0 0
\(427\) −8.05613 −0.389863
\(428\) −59.8873 −2.89476
\(429\) 0 0
\(430\) 0 0
\(431\) −15.1704 −0.730734 −0.365367 0.930864i \(-0.619056\pi\)
−0.365367 + 0.930864i \(0.619056\pi\)
\(432\) 0 0
\(433\) −6.09226 −0.292775 −0.146388 0.989227i \(-0.546765\pi\)
−0.146388 + 0.989227i \(0.546765\pi\)
\(434\) −6.58883 −0.316274
\(435\) 0 0
\(436\) 73.0524 3.49857
\(437\) 1.86903 0.0894077
\(438\) 0 0
\(439\) −4.42241 −0.211070 −0.105535 0.994416i \(-0.533655\pi\)
−0.105535 + 0.994416i \(0.533655\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.32917 0.253483
\(443\) −10.1506 −0.482268 −0.241134 0.970492i \(-0.577519\pi\)
−0.241134 + 0.970492i \(0.577519\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23.6101 1.11797
\(447\) 0 0
\(448\) −36.0195 −1.70176
\(449\) 15.6656 0.739307 0.369653 0.929170i \(-0.379476\pi\)
0.369653 + 0.929170i \(0.379476\pi\)
\(450\) 0 0
\(451\) 0.488348 0.0229954
\(452\) 12.1962 0.573660
\(453\) 0 0
\(454\) −40.1353 −1.88364
\(455\) 0 0
\(456\) 0 0
\(457\) 29.3357 1.37226 0.686132 0.727477i \(-0.259307\pi\)
0.686132 + 0.727477i \(0.259307\pi\)
\(458\) 26.4622 1.23650
\(459\) 0 0
\(460\) 0 0
\(461\) −0.433920 −0.0202097 −0.0101048 0.999949i \(-0.503217\pi\)
−0.0101048 + 0.999949i \(0.503217\pi\)
\(462\) 0 0
\(463\) −9.63020 −0.447553 −0.223777 0.974640i \(-0.571839\pi\)
−0.223777 + 0.974640i \(0.571839\pi\)
\(464\) 15.5101 0.720037
\(465\) 0 0
\(466\) −49.3581 −2.28647
\(467\) 13.4944 0.624447 0.312223 0.950009i \(-0.398926\pi\)
0.312223 + 0.950009i \(0.398926\pi\)
\(468\) 0 0
\(469\) 3.06359 0.141463
\(470\) 0 0
\(471\) 0 0
\(472\) 122.649 5.64536
\(473\) 0.724414 0.0333086
\(474\) 0 0
\(475\) 0 0
\(476\) −11.7623 −0.539122
\(477\) 0 0
\(478\) 21.2510 0.972000
\(479\) 7.97389 0.364336 0.182168 0.983267i \(-0.441688\pi\)
0.182168 + 0.983267i \(0.441688\pi\)
\(480\) 0 0
\(481\) 6.67057 0.304152
\(482\) 14.5632 0.663337
\(483\) 0 0
\(484\) −60.7657 −2.76208
\(485\) 0 0
\(486\) 0 0
\(487\) 1.61623 0.0732385 0.0366192 0.999329i \(-0.488341\pi\)
0.0366192 + 0.999329i \(0.488341\pi\)
\(488\) 70.6352 3.19750
\(489\) 0 0
\(490\) 0 0
\(491\) −10.0585 −0.453932 −0.226966 0.973903i \(-0.572881\pi\)
−0.226966 + 0.973903i \(0.572881\pi\)
\(492\) 0 0
\(493\) 1.92647 0.0867641
\(494\) 3.78845 0.170450
\(495\) 0 0
\(496\) 33.7259 1.51434
\(497\) −6.68538 −0.299880
\(498\) 0 0
\(499\) 20.3154 0.909440 0.454720 0.890634i \(-0.349739\pi\)
0.454720 + 0.890634i \(0.349739\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −35.7992 −1.59780
\(503\) 40.7407 1.81654 0.908270 0.418385i \(-0.137404\pi\)
0.908270 + 0.418385i \(0.137404\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.360068 −0.0160070
\(507\) 0 0
\(508\) −93.3775 −4.14296
\(509\) 35.8671 1.58978 0.794891 0.606752i \(-0.207528\pi\)
0.794891 + 0.606752i \(0.207528\pi\)
\(510\) 0 0
\(511\) −12.7769 −0.565217
\(512\) 59.3618 2.62344
\(513\) 0 0
\(514\) 42.4930 1.87429
\(515\) 0 0
\(516\) 0 0
\(517\) −0.555716 −0.0244403
\(518\) −20.0488 −0.880895
\(519\) 0 0
\(520\) 0 0
\(521\) 10.6032 0.464534 0.232267 0.972652i \(-0.425386\pi\)
0.232267 + 0.972652i \(0.425386\pi\)
\(522\) 0 0
\(523\) 20.6859 0.904530 0.452265 0.891884i \(-0.350616\pi\)
0.452265 + 0.891884i \(0.350616\pi\)
\(524\) −46.6615 −2.03842
\(525\) 0 0
\(526\) 16.1947 0.706124
\(527\) 4.18902 0.182477
\(528\) 0 0
\(529\) −21.1375 −0.919021
\(530\) 0 0
\(531\) 0 0
\(532\) −8.36167 −0.362524
\(533\) −5.12024 −0.221782
\(534\) 0 0
\(535\) 0 0
\(536\) −26.8612 −1.16023
\(537\) 0 0
\(538\) −71.6183 −3.08768
\(539\) 0.555821 0.0239409
\(540\) 0 0
\(541\) 1.77636 0.0763715 0.0381857 0.999271i \(-0.487842\pi\)
0.0381857 + 0.999271i \(0.487842\pi\)
\(542\) 10.1076 0.434160
\(543\) 0 0
\(544\) 44.6797 1.91563
\(545\) 0 0
\(546\) 0 0
\(547\) −39.7930 −1.70143 −0.850713 0.525630i \(-0.823830\pi\)
−0.850713 + 0.525630i \(0.823830\pi\)
\(548\) 48.6536 2.07838
\(549\) 0 0
\(550\) 0 0
\(551\) 1.36951 0.0583431
\(552\) 0 0
\(553\) 3.32634 0.141450
\(554\) −67.7464 −2.87827
\(555\) 0 0
\(556\) 10.6994 0.453754
\(557\) 10.6253 0.450206 0.225103 0.974335i \(-0.427728\pi\)
0.225103 + 0.974335i \(0.427728\pi\)
\(558\) 0 0
\(559\) −7.59535 −0.321249
\(560\) 0 0
\(561\) 0 0
\(562\) −62.5764 −2.63963
\(563\) 24.7572 1.04339 0.521696 0.853132i \(-0.325300\pi\)
0.521696 + 0.853132i \(0.325300\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.3450 0.687033
\(567\) 0 0
\(568\) 58.6166 2.45950
\(569\) −33.7414 −1.41451 −0.707257 0.706957i \(-0.750067\pi\)
−0.707257 + 0.706957i \(0.750067\pi\)
\(570\) 0 0
\(571\) −12.2259 −0.511639 −0.255819 0.966725i \(-0.582345\pi\)
−0.255819 + 0.966725i \(0.582345\pi\)
\(572\) −0.535964 −0.0224098
\(573\) 0 0
\(574\) 15.3892 0.642334
\(575\) 0 0
\(576\) 0 0
\(577\) 22.9772 0.956555 0.478278 0.878209i \(-0.341261\pi\)
0.478278 + 0.878209i \(0.341261\pi\)
\(578\) −36.4624 −1.51664
\(579\) 0 0
\(580\) 0 0
\(581\) 0.503516 0.0208893
\(582\) 0 0
\(583\) 0.244952 0.0101449
\(584\) 112.026 4.63568
\(585\) 0 0
\(586\) −46.5655 −1.92360
\(587\) 41.5985 1.71695 0.858477 0.512851i \(-0.171411\pi\)
0.858477 + 0.512851i \(0.171411\pi\)
\(588\) 0 0
\(589\) 2.97793 0.122704
\(590\) 0 0
\(591\) 0 0
\(592\) 102.623 4.21777
\(593\) 4.89980 0.201211 0.100605 0.994926i \(-0.467922\pi\)
0.100605 + 0.994926i \(0.467922\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 107.714 4.41212
\(597\) 0 0
\(598\) 3.77525 0.154382
\(599\) −24.3309 −0.994133 −0.497066 0.867713i \(-0.665589\pi\)
−0.497066 + 0.867713i \(0.665589\pi\)
\(600\) 0 0
\(601\) −35.2493 −1.43785 −0.718923 0.695089i \(-0.755365\pi\)
−0.718923 + 0.695089i \(0.755365\pi\)
\(602\) 22.8283 0.930414
\(603\) 0 0
\(604\) −105.570 −4.29560
\(605\) 0 0
\(606\) 0 0
\(607\) −46.7359 −1.89695 −0.948476 0.316850i \(-0.897375\pi\)
−0.948476 + 0.316850i \(0.897375\pi\)
\(608\) 31.7623 1.28813
\(609\) 0 0
\(610\) 0 0
\(611\) 5.82658 0.235718
\(612\) 0 0
\(613\) −0.159393 −0.00643782 −0.00321891 0.999995i \(-0.501025\pi\)
−0.00321891 + 0.999995i \(0.501025\pi\)
\(614\) −5.86841 −0.236830
\(615\) 0 0
\(616\) 1.02815 0.0414255
\(617\) −18.5015 −0.744841 −0.372421 0.928064i \(-0.621472\pi\)
−0.372421 + 0.928064i \(0.621472\pi\)
\(618\) 0 0
\(619\) −36.4393 −1.46462 −0.732310 0.680971i \(-0.761558\pi\)
−0.732310 + 0.680971i \(0.761558\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −37.5033 −1.50375
\(623\) 8.36614 0.335182
\(624\) 0 0
\(625\) 0 0
\(626\) 13.9301 0.556760
\(627\) 0 0
\(628\) 61.7550 2.46429
\(629\) 12.7466 0.508239
\(630\) 0 0
\(631\) −33.2812 −1.32490 −0.662451 0.749105i \(-0.730484\pi\)
−0.662451 + 0.749105i \(0.730484\pi\)
\(632\) −29.1650 −1.16012
\(633\) 0 0
\(634\) 20.0143 0.794870
\(635\) 0 0
\(636\) 0 0
\(637\) −5.82769 −0.230901
\(638\) −0.263836 −0.0104454
\(639\) 0 0
\(640\) 0 0
\(641\) −14.8916 −0.588185 −0.294092 0.955777i \(-0.595017\pi\)
−0.294092 + 0.955777i \(0.595017\pi\)
\(642\) 0 0
\(643\) 27.7299 1.09356 0.546779 0.837277i \(-0.315854\pi\)
0.546779 + 0.837277i \(0.315854\pi\)
\(644\) −8.33254 −0.328348
\(645\) 0 0
\(646\) 7.23922 0.284823
\(647\) 30.9301 1.21599 0.607994 0.793942i \(-0.291974\pi\)
0.607994 + 0.793942i \(0.291974\pi\)
\(648\) 0 0
\(649\) −1.21799 −0.0478103
\(650\) 0 0
\(651\) 0 0
\(652\) 34.0344 1.33289
\(653\) 25.0243 0.979278 0.489639 0.871925i \(-0.337129\pi\)
0.489639 + 0.871925i \(0.337129\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −78.7720 −3.07553
\(657\) 0 0
\(658\) −17.5122 −0.682696
\(659\) −20.2013 −0.786930 −0.393465 0.919340i \(-0.628724\pi\)
−0.393465 + 0.919340i \(0.628724\pi\)
\(660\) 0 0
\(661\) −14.2973 −0.556099 −0.278049 0.960567i \(-0.589688\pi\)
−0.278049 + 0.960567i \(0.589688\pi\)
\(662\) −43.0040 −1.67140
\(663\) 0 0
\(664\) −4.41476 −0.171326
\(665\) 0 0
\(666\) 0 0
\(667\) 1.36474 0.0528430
\(668\) 79.9136 3.09195
\(669\) 0 0
\(670\) 0 0
\(671\) −0.701459 −0.0270795
\(672\) 0 0
\(673\) 33.6661 1.29773 0.648867 0.760902i \(-0.275243\pi\)
0.648867 + 0.760902i \(0.275243\pi\)
\(674\) −74.3692 −2.86459
\(675\) 0 0
\(676\) −66.2550 −2.54827
\(677\) 8.78111 0.337486 0.168743 0.985660i \(-0.446029\pi\)
0.168743 + 0.985660i \(0.446029\pi\)
\(678\) 0 0
\(679\) 11.9077 0.456976
\(680\) 0 0
\(681\) 0 0
\(682\) −0.573699 −0.0219681
\(683\) 37.3359 1.42862 0.714310 0.699830i \(-0.246741\pi\)
0.714310 + 0.699830i \(0.246741\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 38.7263 1.47858
\(687\) 0 0
\(688\) −116.850 −4.45487
\(689\) −2.56828 −0.0978435
\(690\) 0 0
\(691\) 38.7767 1.47513 0.737567 0.675274i \(-0.235975\pi\)
0.737567 + 0.675274i \(0.235975\pi\)
\(692\) 105.230 4.00026
\(693\) 0 0
\(694\) −54.4142 −2.06554
\(695\) 0 0
\(696\) 0 0
\(697\) −9.78410 −0.370599
\(698\) −70.1240 −2.65423
\(699\) 0 0
\(700\) 0 0
\(701\) −20.8879 −0.788924 −0.394462 0.918912i \(-0.629069\pi\)
−0.394462 + 0.918912i \(0.629069\pi\)
\(702\) 0 0
\(703\) 9.06140 0.341757
\(704\) −3.13627 −0.118203
\(705\) 0 0
\(706\) −21.7949 −0.820261
\(707\) 20.8420 0.783843
\(708\) 0 0
\(709\) −9.72205 −0.365119 −0.182560 0.983195i \(-0.558438\pi\)
−0.182560 + 0.983195i \(0.558438\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −73.3533 −2.74903
\(713\) 2.96756 0.111136
\(714\) 0 0
\(715\) 0 0
\(716\) −17.4465 −0.652005
\(717\) 0 0
\(718\) 15.9124 0.593844
\(719\) 45.2454 1.68737 0.843684 0.536841i \(-0.180382\pi\)
0.843684 + 0.536841i \(0.180382\pi\)
\(720\) 0 0
\(721\) −13.3481 −0.497110
\(722\) −46.9872 −1.74868
\(723\) 0 0
\(724\) −121.288 −4.50764
\(725\) 0 0
\(726\) 0 0
\(727\) 19.4957 0.723054 0.361527 0.932362i \(-0.382256\pi\)
0.361527 + 0.932362i \(0.382256\pi\)
\(728\) −10.7800 −0.399534
\(729\) 0 0
\(730\) 0 0
\(731\) −14.5137 −0.536809
\(732\) 0 0
\(733\) 35.7113 1.31903 0.659513 0.751693i \(-0.270762\pi\)
0.659513 + 0.751693i \(0.270762\pi\)
\(734\) 62.0988 2.29211
\(735\) 0 0
\(736\) 31.6517 1.16670
\(737\) 0.266751 0.00982590
\(738\) 0 0
\(739\) −39.8367 −1.46542 −0.732708 0.680543i \(-0.761744\pi\)
−0.732708 + 0.680543i \(0.761744\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7.71912 0.283378
\(743\) −21.7579 −0.798218 −0.399109 0.916903i \(-0.630681\pi\)
−0.399109 + 0.916903i \(0.630681\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −64.2028 −2.35063
\(747\) 0 0
\(748\) −1.02416 −0.0374469
\(749\) 11.9619 0.437078
\(750\) 0 0
\(751\) −36.0557 −1.31569 −0.657846 0.753152i \(-0.728532\pi\)
−0.657846 + 0.753152i \(0.728532\pi\)
\(752\) 89.6386 3.26878
\(753\) 0 0
\(754\) 2.76628 0.100742
\(755\) 0 0
\(756\) 0 0
\(757\) −7.57942 −0.275479 −0.137739 0.990469i \(-0.543984\pi\)
−0.137739 + 0.990469i \(0.543984\pi\)
\(758\) 75.2512 2.73325
\(759\) 0 0
\(760\) 0 0
\(761\) −17.3466 −0.628814 −0.314407 0.949288i \(-0.601806\pi\)
−0.314407 + 0.949288i \(0.601806\pi\)
\(762\) 0 0
\(763\) −14.5915 −0.528247
\(764\) 126.140 4.56360
\(765\) 0 0
\(766\) −73.5166 −2.65626
\(767\) 12.7704 0.461113
\(768\) 0 0
\(769\) 13.7054 0.494228 0.247114 0.968986i \(-0.420518\pi\)
0.247114 + 0.968986i \(0.420518\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 40.2019 1.44690
\(773\) −15.1545 −0.545069 −0.272534 0.962146i \(-0.587862\pi\)
−0.272534 + 0.962146i \(0.587862\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −104.405 −3.74794
\(777\) 0 0
\(778\) 70.7346 2.53596
\(779\) −6.95542 −0.249204
\(780\) 0 0
\(781\) −0.582105 −0.0208294
\(782\) 7.21401 0.257972
\(783\) 0 0
\(784\) −89.6556 −3.20198
\(785\) 0 0
\(786\) 0 0
\(787\) −30.7331 −1.09552 −0.547759 0.836636i \(-0.684519\pi\)
−0.547759 + 0.836636i \(0.684519\pi\)
\(788\) −75.4714 −2.68856
\(789\) 0 0
\(790\) 0 0
\(791\) −2.43606 −0.0866165
\(792\) 0 0
\(793\) 7.35467 0.261172
\(794\) −58.1877 −2.06500
\(795\) 0 0
\(796\) −54.2852 −1.92409
\(797\) 20.4224 0.723399 0.361699 0.932295i \(-0.382197\pi\)
0.361699 + 0.932295i \(0.382197\pi\)
\(798\) 0 0
\(799\) 11.1338 0.393886
\(800\) 0 0
\(801\) 0 0
\(802\) 56.4812 1.99442
\(803\) −1.11250 −0.0392594
\(804\) 0 0
\(805\) 0 0
\(806\) 6.01514 0.211874
\(807\) 0 0
\(808\) −182.740 −6.42877
\(809\) 41.0932 1.44476 0.722380 0.691497i \(-0.243048\pi\)
0.722380 + 0.691497i \(0.243048\pi\)
\(810\) 0 0
\(811\) 11.0882 0.389360 0.194680 0.980867i \(-0.437633\pi\)
0.194680 + 0.980867i \(0.437633\pi\)
\(812\) −6.10559 −0.214264
\(813\) 0 0
\(814\) −1.74568 −0.0611860
\(815\) 0 0
\(816\) 0 0
\(817\) −10.3176 −0.360969
\(818\) 5.30113 0.185350
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4735 0.400427 0.200213 0.979752i \(-0.435836\pi\)
0.200213 + 0.979752i \(0.435836\pi\)
\(822\) 0 0
\(823\) −12.7083 −0.442985 −0.221492 0.975162i \(-0.571093\pi\)
−0.221492 + 0.975162i \(0.571093\pi\)
\(824\) 117.035 4.07710
\(825\) 0 0
\(826\) −38.3823 −1.33549
\(827\) 13.3335 0.463650 0.231825 0.972757i \(-0.425530\pi\)
0.231825 + 0.972757i \(0.425530\pi\)
\(828\) 0 0
\(829\) −26.2252 −0.910838 −0.455419 0.890277i \(-0.650510\pi\)
−0.455419 + 0.890277i \(0.650510\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 32.8832 1.14002
\(833\) −11.1359 −0.385837
\(834\) 0 0
\(835\) 0 0
\(836\) −0.728062 −0.0251806
\(837\) 0 0
\(838\) 15.6305 0.539947
\(839\) −12.8865 −0.444891 −0.222446 0.974945i \(-0.571404\pi\)
−0.222446 + 0.974945i \(0.571404\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −93.6625 −3.22782
\(843\) 0 0
\(844\) −73.7258 −2.53775
\(845\) 0 0
\(846\) 0 0
\(847\) 12.1373 0.417044
\(848\) −39.5114 −1.35683
\(849\) 0 0
\(850\) 0 0
\(851\) 9.02984 0.309539
\(852\) 0 0
\(853\) 17.3965 0.595645 0.297822 0.954621i \(-0.403740\pi\)
0.297822 + 0.954621i \(0.403740\pi\)
\(854\) −22.1049 −0.756416
\(855\) 0 0
\(856\) −104.880 −3.58474
\(857\) −5.74494 −0.196243 −0.0981217 0.995174i \(-0.531283\pi\)
−0.0981217 + 0.995174i \(0.531283\pi\)
\(858\) 0 0
\(859\) −36.5326 −1.24648 −0.623238 0.782032i \(-0.714183\pi\)
−0.623238 + 0.782032i \(0.714183\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −41.6256 −1.41777
\(863\) −5.99556 −0.204091 −0.102046 0.994780i \(-0.532539\pi\)
−0.102046 + 0.994780i \(0.532539\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.7163 −0.568044
\(867\) 0 0
\(868\) −13.2763 −0.450627
\(869\) 0.289629 0.00982500
\(870\) 0 0
\(871\) −2.79684 −0.0947673
\(872\) 127.936 4.33247
\(873\) 0 0
\(874\) 5.12836 0.173469
\(875\) 0 0
\(876\) 0 0
\(877\) 10.7265 0.362209 0.181105 0.983464i \(-0.442033\pi\)
0.181105 + 0.983464i \(0.442033\pi\)
\(878\) −12.1345 −0.409519
\(879\) 0 0
\(880\) 0 0
\(881\) −35.4683 −1.19496 −0.597479 0.801885i \(-0.703831\pi\)
−0.597479 + 0.801885i \(0.703831\pi\)
\(882\) 0 0
\(883\) −31.2074 −1.05021 −0.525106 0.851037i \(-0.675974\pi\)
−0.525106 + 0.851037i \(0.675974\pi\)
\(884\) 10.7381 0.361162
\(885\) 0 0
\(886\) −27.8518 −0.935700
\(887\) −36.5271 −1.22646 −0.613230 0.789904i \(-0.710130\pi\)
−0.613230 + 0.789904i \(0.710130\pi\)
\(888\) 0 0
\(889\) 18.6512 0.625542
\(890\) 0 0
\(891\) 0 0
\(892\) 47.5735 1.59288
\(893\) 7.91492 0.264863
\(894\) 0 0
\(895\) 0 0
\(896\) −47.6088 −1.59050
\(897\) 0 0
\(898\) 42.9844 1.43441
\(899\) 2.17445 0.0725220
\(900\) 0 0
\(901\) −4.90763 −0.163497
\(902\) 1.33996 0.0446158
\(903\) 0 0
\(904\) 21.3591 0.710394
\(905\) 0 0
\(906\) 0 0
\(907\) 26.6054 0.883416 0.441708 0.897159i \(-0.354373\pi\)
0.441708 + 0.897159i \(0.354373\pi\)
\(908\) −80.8713 −2.68381
\(909\) 0 0
\(910\) 0 0
\(911\) 29.9283 0.991567 0.495784 0.868446i \(-0.334881\pi\)
0.495784 + 0.868446i \(0.334881\pi\)
\(912\) 0 0
\(913\) 0.0438418 0.00145095
\(914\) 80.4932 2.66248
\(915\) 0 0
\(916\) 53.3204 1.76176
\(917\) 9.32015 0.307779
\(918\) 0 0
\(919\) −2.30814 −0.0761385 −0.0380693 0.999275i \(-0.512121\pi\)
−0.0380693 + 0.999275i \(0.512121\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.19062 −0.0392109
\(923\) 6.10327 0.200892
\(924\) 0 0
\(925\) 0 0
\(926\) −26.4240 −0.868346
\(927\) 0 0
\(928\) 23.1924 0.761329
\(929\) 13.6997 0.449473 0.224737 0.974420i \(-0.427848\pi\)
0.224737 + 0.974420i \(0.427848\pi\)
\(930\) 0 0
\(931\) −7.91642 −0.259450
\(932\) −99.4549 −3.25775
\(933\) 0 0
\(934\) 37.0269 1.21156
\(935\) 0 0
\(936\) 0 0
\(937\) −44.5601 −1.45572 −0.727858 0.685728i \(-0.759484\pi\)
−0.727858 + 0.685728i \(0.759484\pi\)
\(938\) 8.40608 0.274468
\(939\) 0 0
\(940\) 0 0
\(941\) −59.0327 −1.92441 −0.962206 0.272324i \(-0.912208\pi\)
−0.962206 + 0.272324i \(0.912208\pi\)
\(942\) 0 0
\(943\) −6.93119 −0.225711
\(944\) 196.465 6.39440
\(945\) 0 0
\(946\) 1.98770 0.0646256
\(947\) 40.4627 1.31486 0.657431 0.753515i \(-0.271643\pi\)
0.657431 + 0.753515i \(0.271643\pi\)
\(948\) 0 0
\(949\) 11.6644 0.378642
\(950\) 0 0
\(951\) 0 0
\(952\) −20.5992 −0.667624
\(953\) −50.2692 −1.62838 −0.814190 0.580599i \(-0.802818\pi\)
−0.814190 + 0.580599i \(0.802818\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 42.8202 1.38490
\(957\) 0 0
\(958\) 21.8793 0.706888
\(959\) −9.71806 −0.313813
\(960\) 0 0
\(961\) −26.2718 −0.847476
\(962\) 18.3031 0.590117
\(963\) 0 0
\(964\) 29.3444 0.945121
\(965\) 0 0
\(966\) 0 0
\(967\) 24.4422 0.786009 0.393004 0.919537i \(-0.371436\pi\)
0.393004 + 0.919537i \(0.371436\pi\)
\(968\) −106.419 −3.42043
\(969\) 0 0
\(970\) 0 0
\(971\) 47.1924 1.51447 0.757237 0.653140i \(-0.226549\pi\)
0.757237 + 0.653140i \(0.226549\pi\)
\(972\) 0 0
\(973\) −2.13709 −0.0685120
\(974\) 4.43473 0.142098
\(975\) 0 0
\(976\) 113.147 3.62176
\(977\) 55.7755 1.78442 0.892209 0.451623i \(-0.149155\pi\)
0.892209 + 0.451623i \(0.149155\pi\)
\(978\) 0 0
\(979\) 0.728451 0.0232814
\(980\) 0 0
\(981\) 0 0
\(982\) −27.5991 −0.880722
\(983\) 44.1469 1.40807 0.704033 0.710167i \(-0.251381\pi\)
0.704033 + 0.710167i \(0.251381\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.28599 0.168340
\(987\) 0 0
\(988\) 7.63361 0.242857
\(989\) −10.2817 −0.326939
\(990\) 0 0
\(991\) −25.7068 −0.816605 −0.408302 0.912847i \(-0.633879\pi\)
−0.408302 + 0.912847i \(0.633879\pi\)
\(992\) 50.4308 1.60118
\(993\) 0 0
\(994\) −18.3438 −0.581830
\(995\) 0 0
\(996\) 0 0
\(997\) 5.14864 0.163059 0.0815296 0.996671i \(-0.474019\pi\)
0.0815296 + 0.996671i \(0.474019\pi\)
\(998\) 55.7426 1.76450
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.cd.1.9 yes 9
3.2 odd 2 6525.2.a.cb.1.1 yes 9
5.4 even 2 6525.2.a.ca.1.1 9
15.14 odd 2 6525.2.a.cc.1.9 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.1 9 5.4 even 2
6525.2.a.cb.1.1 yes 9 3.2 odd 2
6525.2.a.cc.1.9 yes 9 15.14 odd 2
6525.2.a.cd.1.9 yes 9 1.1 even 1 trivial