Properties

Label 6525.2.a.cd.1.7
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.77820\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.77820 q^{2} +1.16198 q^{4} -2.84862 q^{7} -1.49016 q^{8} +O(q^{10})\) \(q+1.77820 q^{2} +1.16198 q^{4} -2.84862 q^{7} -1.49016 q^{8} -5.35505 q^{11} -2.50643 q^{13} -5.06541 q^{14} -4.97376 q^{16} +6.50704 q^{17} +2.25433 q^{19} -9.52233 q^{22} -0.355939 q^{23} -4.45692 q^{26} -3.31005 q^{28} +1.00000 q^{29} +5.45828 q^{31} -5.86400 q^{32} +11.5708 q^{34} -2.00281 q^{37} +4.00863 q^{38} +5.37258 q^{41} +12.8773 q^{43} -6.22247 q^{44} -0.632929 q^{46} -4.01725 q^{47} +1.11466 q^{49} -2.91242 q^{52} -3.42758 q^{53} +4.24492 q^{56} +1.77820 q^{58} +4.76617 q^{59} -4.29494 q^{61} +9.70588 q^{62} -0.479810 q^{64} -1.09723 q^{67} +7.56105 q^{68} -5.21539 q^{71} -6.78643 q^{73} -3.56138 q^{74} +2.61948 q^{76} +15.2545 q^{77} -1.84943 q^{79} +9.55349 q^{82} +13.7379 q^{83} +22.8984 q^{86} +7.97990 q^{88} +2.56752 q^{89} +7.13987 q^{91} -0.413594 q^{92} -7.14346 q^{94} +2.73855 q^{97} +1.98209 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 2 q^{2} + 10 q^{4} + q^{7} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 2 q^{2} + 10 q^{4} + q^{7} + 9 q^{8} + 2 q^{11} + q^{13} - 3 q^{14} + 4 q^{16} + 12 q^{17} - q^{19} + 3 q^{22} + 16 q^{23} + 6 q^{26} - 4 q^{28} + 9 q^{29} + 5 q^{31} + 20 q^{32} + 3 q^{34} + 30 q^{38} - 10 q^{41} + 3 q^{43} - 13 q^{44} + 4 q^{46} + 26 q^{47} - 8 q^{49} - 9 q^{52} + 22 q^{53} + 22 q^{56} + 2 q^{58} + 4 q^{59} + 7 q^{61} + 28 q^{62} + 9 q^{64} + 5 q^{67} + 39 q^{68} - 10 q^{73} - 34 q^{74} - 2 q^{76} + 34 q^{77} + 10 q^{79} - 8 q^{82} + 46 q^{83} + 28 q^{86} + 2 q^{88} + 4 q^{89} - 21 q^{91} + 20 q^{92} + 5 q^{94} + 7 q^{97} + 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.77820 1.25737 0.628687 0.777658i \(-0.283593\pi\)
0.628687 + 0.777658i \(0.283593\pi\)
\(3\) 0 0
\(4\) 1.16198 0.580990
\(5\) 0 0
\(6\) 0 0
\(7\) −2.84862 −1.07668 −0.538339 0.842728i \(-0.680948\pi\)
−0.538339 + 0.842728i \(0.680948\pi\)
\(8\) −1.49016 −0.526852
\(9\) 0 0
\(10\) 0 0
\(11\) −5.35505 −1.61461 −0.807305 0.590135i \(-0.799075\pi\)
−0.807305 + 0.590135i \(0.799075\pi\)
\(12\) 0 0
\(13\) −2.50643 −0.695158 −0.347579 0.937651i \(-0.612996\pi\)
−0.347579 + 0.937651i \(0.612996\pi\)
\(14\) −5.06541 −1.35379
\(15\) 0 0
\(16\) −4.97376 −1.24344
\(17\) 6.50704 1.57819 0.789095 0.614271i \(-0.210550\pi\)
0.789095 + 0.614271i \(0.210550\pi\)
\(18\) 0 0
\(19\) 2.25433 0.517178 0.258589 0.965987i \(-0.416742\pi\)
0.258589 + 0.965987i \(0.416742\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −9.52233 −2.03017
\(23\) −0.355939 −0.0742184 −0.0371092 0.999311i \(-0.511815\pi\)
−0.0371092 + 0.999311i \(0.511815\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.45692 −0.874074
\(27\) 0 0
\(28\) −3.31005 −0.625540
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 5.45828 0.980335 0.490168 0.871628i \(-0.336936\pi\)
0.490168 + 0.871628i \(0.336936\pi\)
\(32\) −5.86400 −1.03662
\(33\) 0 0
\(34\) 11.5708 1.98438
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00281 −0.329259 −0.164630 0.986355i \(-0.552643\pi\)
−0.164630 + 0.986355i \(0.552643\pi\)
\(38\) 4.00863 0.650286
\(39\) 0 0
\(40\) 0 0
\(41\) 5.37258 0.839055 0.419528 0.907743i \(-0.362196\pi\)
0.419528 + 0.907743i \(0.362196\pi\)
\(42\) 0 0
\(43\) 12.8773 1.96377 0.981886 0.189472i \(-0.0606777\pi\)
0.981886 + 0.189472i \(0.0606777\pi\)
\(44\) −6.22247 −0.938072
\(45\) 0 0
\(46\) −0.632929 −0.0933203
\(47\) −4.01725 −0.585976 −0.292988 0.956116i \(-0.594650\pi\)
−0.292988 + 0.956116i \(0.594650\pi\)
\(48\) 0 0
\(49\) 1.11466 0.159238
\(50\) 0 0
\(51\) 0 0
\(52\) −2.91242 −0.403880
\(53\) −3.42758 −0.470814 −0.235407 0.971897i \(-0.575642\pi\)
−0.235407 + 0.971897i \(0.575642\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.24492 0.567251
\(57\) 0 0
\(58\) 1.77820 0.233489
\(59\) 4.76617 0.620503 0.310251 0.950655i \(-0.399587\pi\)
0.310251 + 0.950655i \(0.399587\pi\)
\(60\) 0 0
\(61\) −4.29494 −0.549911 −0.274955 0.961457i \(-0.588663\pi\)
−0.274955 + 0.961457i \(0.588663\pi\)
\(62\) 9.70588 1.23265
\(63\) 0 0
\(64\) −0.479810 −0.0599762
\(65\) 0 0
\(66\) 0 0
\(67\) −1.09723 −0.134048 −0.0670239 0.997751i \(-0.521350\pi\)
−0.0670239 + 0.997751i \(0.521350\pi\)
\(68\) 7.56105 0.916913
\(69\) 0 0
\(70\) 0 0
\(71\) −5.21539 −0.618953 −0.309476 0.950907i \(-0.600154\pi\)
−0.309476 + 0.950907i \(0.600154\pi\)
\(72\) 0 0
\(73\) −6.78643 −0.794291 −0.397146 0.917756i \(-0.629999\pi\)
−0.397146 + 0.917756i \(0.629999\pi\)
\(74\) −3.56138 −0.414002
\(75\) 0 0
\(76\) 2.61948 0.300475
\(77\) 15.2545 1.73842
\(78\) 0 0
\(79\) −1.84943 −0.208077 −0.104038 0.994573i \(-0.533176\pi\)
−0.104038 + 0.994573i \(0.533176\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.55349 1.05501
\(83\) 13.7379 1.50793 0.753963 0.656917i \(-0.228140\pi\)
0.753963 + 0.656917i \(0.228140\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 22.8984 2.46920
\(87\) 0 0
\(88\) 7.97990 0.850660
\(89\) 2.56752 0.272157 0.136078 0.990698i \(-0.456550\pi\)
0.136078 + 0.990698i \(0.456550\pi\)
\(90\) 0 0
\(91\) 7.13987 0.748462
\(92\) −0.413594 −0.0431202
\(93\) 0 0
\(94\) −7.14346 −0.736792
\(95\) 0 0
\(96\) 0 0
\(97\) 2.73855 0.278057 0.139029 0.990288i \(-0.455602\pi\)
0.139029 + 0.990288i \(0.455602\pi\)
\(98\) 1.98209 0.200221
\(99\) 0 0
\(100\) 0 0
\(101\) 5.73985 0.571137 0.285568 0.958358i \(-0.407818\pi\)
0.285568 + 0.958358i \(0.407818\pi\)
\(102\) 0 0
\(103\) 15.7896 1.55579 0.777895 0.628394i \(-0.216287\pi\)
0.777895 + 0.628394i \(0.216287\pi\)
\(104\) 3.73499 0.366246
\(105\) 0 0
\(106\) −6.09491 −0.591990
\(107\) 16.5642 1.60132 0.800661 0.599118i \(-0.204482\pi\)
0.800661 + 0.599118i \(0.204482\pi\)
\(108\) 0 0
\(109\) 9.32556 0.893226 0.446613 0.894727i \(-0.352630\pi\)
0.446613 + 0.894727i \(0.352630\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 14.1684 1.33879
\(113\) 14.1979 1.33563 0.667815 0.744327i \(-0.267230\pi\)
0.667815 + 0.744327i \(0.267230\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.16198 0.107887
\(117\) 0 0
\(118\) 8.47518 0.780204
\(119\) −18.5361 −1.69920
\(120\) 0 0
\(121\) 17.6766 1.60696
\(122\) −7.63724 −0.691444
\(123\) 0 0
\(124\) 6.34241 0.569565
\(125\) 0 0
\(126\) 0 0
\(127\) −5.36218 −0.475816 −0.237908 0.971288i \(-0.576462\pi\)
−0.237908 + 0.971288i \(0.576462\pi\)
\(128\) 10.8748 0.961205
\(129\) 0 0
\(130\) 0 0
\(131\) −10.8431 −0.947370 −0.473685 0.880694i \(-0.657076\pi\)
−0.473685 + 0.880694i \(0.657076\pi\)
\(132\) 0 0
\(133\) −6.42173 −0.556835
\(134\) −1.95109 −0.168548
\(135\) 0 0
\(136\) −9.69656 −0.831473
\(137\) 7.41637 0.633623 0.316812 0.948489i \(-0.397388\pi\)
0.316812 + 0.948489i \(0.397388\pi\)
\(138\) 0 0
\(139\) 19.6639 1.66787 0.833937 0.551859i \(-0.186082\pi\)
0.833937 + 0.551859i \(0.186082\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.27398 −0.778255
\(143\) 13.4221 1.12241
\(144\) 0 0
\(145\) 0 0
\(146\) −12.0676 −0.998722
\(147\) 0 0
\(148\) −2.32722 −0.191296
\(149\) −14.4485 −1.18367 −0.591834 0.806060i \(-0.701596\pi\)
−0.591834 + 0.806060i \(0.701596\pi\)
\(150\) 0 0
\(151\) 6.69220 0.544604 0.272302 0.962212i \(-0.412215\pi\)
0.272302 + 0.962212i \(0.412215\pi\)
\(152\) −3.35931 −0.272476
\(153\) 0 0
\(154\) 27.1256 2.18584
\(155\) 0 0
\(156\) 0 0
\(157\) −17.5789 −1.40295 −0.701473 0.712696i \(-0.747474\pi\)
−0.701473 + 0.712696i \(0.747474\pi\)
\(158\) −3.28864 −0.261630
\(159\) 0 0
\(160\) 0 0
\(161\) 1.01394 0.0799094
\(162\) 0 0
\(163\) 19.6576 1.53971 0.769853 0.638222i \(-0.220330\pi\)
0.769853 + 0.638222i \(0.220330\pi\)
\(164\) 6.24283 0.487483
\(165\) 0 0
\(166\) 24.4286 1.89603
\(167\) −12.2841 −0.950569 −0.475285 0.879832i \(-0.657655\pi\)
−0.475285 + 0.879832i \(0.657655\pi\)
\(168\) 0 0
\(169\) −6.71782 −0.516755
\(170\) 0 0
\(171\) 0 0
\(172\) 14.9632 1.14093
\(173\) −12.9440 −0.984118 −0.492059 0.870562i \(-0.663756\pi\)
−0.492059 + 0.870562i \(0.663756\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 26.6348 2.00767
\(177\) 0 0
\(178\) 4.56555 0.342203
\(179\) 6.01888 0.449872 0.224936 0.974374i \(-0.427783\pi\)
0.224936 + 0.974374i \(0.427783\pi\)
\(180\) 0 0
\(181\) −19.8734 −1.47718 −0.738591 0.674154i \(-0.764508\pi\)
−0.738591 + 0.674154i \(0.764508\pi\)
\(182\) 12.6961 0.941097
\(183\) 0 0
\(184\) 0.530407 0.0391021
\(185\) 0 0
\(186\) 0 0
\(187\) −34.8456 −2.54816
\(188\) −4.66797 −0.340446
\(189\) 0 0
\(190\) 0 0
\(191\) −3.04577 −0.220384 −0.110192 0.993910i \(-0.535147\pi\)
−0.110192 + 0.993910i \(0.535147\pi\)
\(192\) 0 0
\(193\) 21.3408 1.53615 0.768073 0.640362i \(-0.221216\pi\)
0.768073 + 0.640362i \(0.221216\pi\)
\(194\) 4.86967 0.349622
\(195\) 0 0
\(196\) 1.29522 0.0925154
\(197\) −10.0730 −0.717670 −0.358835 0.933401i \(-0.616826\pi\)
−0.358835 + 0.933401i \(0.616826\pi\)
\(198\) 0 0
\(199\) −4.22842 −0.299744 −0.149872 0.988705i \(-0.547886\pi\)
−0.149872 + 0.988705i \(0.547886\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.2066 0.718133
\(203\) −2.84862 −0.199934
\(204\) 0 0
\(205\) 0 0
\(206\) 28.0769 1.95621
\(207\) 0 0
\(208\) 12.4664 0.864388
\(209\) −12.0720 −0.835040
\(210\) 0 0
\(211\) 28.2252 1.94310 0.971550 0.236834i \(-0.0761098\pi\)
0.971550 + 0.236834i \(0.0761098\pi\)
\(212\) −3.98278 −0.273539
\(213\) 0 0
\(214\) 29.4544 2.01346
\(215\) 0 0
\(216\) 0 0
\(217\) −15.5486 −1.05551
\(218\) 16.5827 1.12312
\(219\) 0 0
\(220\) 0 0
\(221\) −16.3094 −1.09709
\(222\) 0 0
\(223\) −8.48452 −0.568165 −0.284083 0.958800i \(-0.591689\pi\)
−0.284083 + 0.958800i \(0.591689\pi\)
\(224\) 16.7043 1.11610
\(225\) 0 0
\(226\) 25.2467 1.67939
\(227\) −14.7872 −0.981460 −0.490730 0.871312i \(-0.663270\pi\)
−0.490730 + 0.871312i \(0.663270\pi\)
\(228\) 0 0
\(229\) −21.0993 −1.39428 −0.697141 0.716934i \(-0.745545\pi\)
−0.697141 + 0.716934i \(0.745545\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.49016 −0.0978340
\(233\) 26.0762 1.70831 0.854155 0.520018i \(-0.174075\pi\)
0.854155 + 0.520018i \(0.174075\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5.53820 0.360506
\(237\) 0 0
\(238\) −32.9609 −2.13653
\(239\) 8.17070 0.528519 0.264259 0.964452i \(-0.414872\pi\)
0.264259 + 0.964452i \(0.414872\pi\)
\(240\) 0 0
\(241\) −10.5741 −0.681135 −0.340568 0.940220i \(-0.610619\pi\)
−0.340568 + 0.940220i \(0.610619\pi\)
\(242\) 31.4324 2.02055
\(243\) 0 0
\(244\) −4.99064 −0.319493
\(245\) 0 0
\(246\) 0 0
\(247\) −5.65031 −0.359520
\(248\) −8.13372 −0.516492
\(249\) 0 0
\(250\) 0 0
\(251\) 21.3791 1.34944 0.674720 0.738074i \(-0.264264\pi\)
0.674720 + 0.738074i \(0.264264\pi\)
\(252\) 0 0
\(253\) 1.90607 0.119834
\(254\) −9.53500 −0.598279
\(255\) 0 0
\(256\) 20.2971 1.26857
\(257\) −6.90806 −0.430913 −0.215456 0.976513i \(-0.569124\pi\)
−0.215456 + 0.976513i \(0.569124\pi\)
\(258\) 0 0
\(259\) 5.70524 0.354506
\(260\) 0 0
\(261\) 0 0
\(262\) −19.2812 −1.19120
\(263\) 2.36575 0.145878 0.0729391 0.997336i \(-0.476762\pi\)
0.0729391 + 0.997336i \(0.476762\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −11.4191 −0.700150
\(267\) 0 0
\(268\) −1.27496 −0.0778805
\(269\) 13.0500 0.795670 0.397835 0.917457i \(-0.369762\pi\)
0.397835 + 0.917457i \(0.369762\pi\)
\(270\) 0 0
\(271\) −24.2733 −1.47450 −0.737250 0.675620i \(-0.763876\pi\)
−0.737250 + 0.675620i \(0.763876\pi\)
\(272\) −32.3645 −1.96239
\(273\) 0 0
\(274\) 13.1878 0.796701
\(275\) 0 0
\(276\) 0 0
\(277\) 0.0846766 0.00508773 0.00254386 0.999997i \(-0.499190\pi\)
0.00254386 + 0.999997i \(0.499190\pi\)
\(278\) 34.9663 2.09714
\(279\) 0 0
\(280\) 0 0
\(281\) 8.18399 0.488216 0.244108 0.969748i \(-0.421505\pi\)
0.244108 + 0.969748i \(0.421505\pi\)
\(282\) 0 0
\(283\) 10.6021 0.630227 0.315114 0.949054i \(-0.397957\pi\)
0.315114 + 0.949054i \(0.397957\pi\)
\(284\) −6.06018 −0.359605
\(285\) 0 0
\(286\) 23.8670 1.41129
\(287\) −15.3045 −0.903393
\(288\) 0 0
\(289\) 25.3416 1.49068
\(290\) 0 0
\(291\) 0 0
\(292\) −7.88570 −0.461475
\(293\) 26.2617 1.53422 0.767112 0.641513i \(-0.221693\pi\)
0.767112 + 0.641513i \(0.221693\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.98451 0.173471
\(297\) 0 0
\(298\) −25.6923 −1.48831
\(299\) 0.892136 0.0515935
\(300\) 0 0
\(301\) −36.6826 −2.11435
\(302\) 11.9000 0.684771
\(303\) 0 0
\(304\) −11.2125 −0.643080
\(305\) 0 0
\(306\) 0 0
\(307\) 20.8923 1.19239 0.596193 0.802841i \(-0.296679\pi\)
0.596193 + 0.802841i \(0.296679\pi\)
\(308\) 17.7255 1.01000
\(309\) 0 0
\(310\) 0 0
\(311\) −5.25221 −0.297826 −0.148913 0.988850i \(-0.547577\pi\)
−0.148913 + 0.988850i \(0.547577\pi\)
\(312\) 0 0
\(313\) −32.0146 −1.80957 −0.904787 0.425865i \(-0.859970\pi\)
−0.904787 + 0.425865i \(0.859970\pi\)
\(314\) −31.2587 −1.76403
\(315\) 0 0
\(316\) −2.14900 −0.120891
\(317\) 22.1715 1.24527 0.622637 0.782511i \(-0.286061\pi\)
0.622637 + 0.782511i \(0.286061\pi\)
\(318\) 0 0
\(319\) −5.35505 −0.299825
\(320\) 0 0
\(321\) 0 0
\(322\) 1.80298 0.100476
\(323\) 14.6690 0.816205
\(324\) 0 0
\(325\) 0 0
\(326\) 34.9551 1.93599
\(327\) 0 0
\(328\) −8.00602 −0.442058
\(329\) 11.4436 0.630908
\(330\) 0 0
\(331\) −31.8652 −1.75147 −0.875734 0.482794i \(-0.839622\pi\)
−0.875734 + 0.482794i \(0.839622\pi\)
\(332\) 15.9631 0.876090
\(333\) 0 0
\(334\) −21.8435 −1.19522
\(335\) 0 0
\(336\) 0 0
\(337\) −4.68105 −0.254993 −0.127496 0.991839i \(-0.540694\pi\)
−0.127496 + 0.991839i \(0.540694\pi\)
\(338\) −11.9456 −0.649755
\(339\) 0 0
\(340\) 0 0
\(341\) −29.2294 −1.58286
\(342\) 0 0
\(343\) 16.7651 0.905231
\(344\) −19.1893 −1.03462
\(345\) 0 0
\(346\) −23.0170 −1.23740
\(347\) −10.0153 −0.537650 −0.268825 0.963189i \(-0.586635\pi\)
−0.268825 + 0.963189i \(0.586635\pi\)
\(348\) 0 0
\(349\) 14.9709 0.801376 0.400688 0.916215i \(-0.368771\pi\)
0.400688 + 0.916215i \(0.368771\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 31.4020 1.67373
\(353\) −12.0450 −0.641092 −0.320546 0.947233i \(-0.603866\pi\)
−0.320546 + 0.947233i \(0.603866\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.98341 0.158120
\(357\) 0 0
\(358\) 10.7027 0.565658
\(359\) −4.72615 −0.249436 −0.124718 0.992192i \(-0.539803\pi\)
−0.124718 + 0.992192i \(0.539803\pi\)
\(360\) 0 0
\(361\) −13.9180 −0.732527
\(362\) −35.3389 −1.85737
\(363\) 0 0
\(364\) 8.29639 0.434849
\(365\) 0 0
\(366\) 0 0
\(367\) −11.9598 −0.624295 −0.312148 0.950034i \(-0.601048\pi\)
−0.312148 + 0.950034i \(0.601048\pi\)
\(368\) 1.77036 0.0922862
\(369\) 0 0
\(370\) 0 0
\(371\) 9.76389 0.506916
\(372\) 0 0
\(373\) −8.31719 −0.430648 −0.215324 0.976543i \(-0.569081\pi\)
−0.215324 + 0.976543i \(0.569081\pi\)
\(374\) −61.9622 −3.20399
\(375\) 0 0
\(376\) 5.98636 0.308723
\(377\) −2.50643 −0.129088
\(378\) 0 0
\(379\) −24.5715 −1.26215 −0.631075 0.775721i \(-0.717386\pi\)
−0.631075 + 0.775721i \(0.717386\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5.41598 −0.277106
\(383\) 34.0260 1.73865 0.869325 0.494241i \(-0.164554\pi\)
0.869325 + 0.494241i \(0.164554\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 37.9482 1.93151
\(387\) 0 0
\(388\) 3.18214 0.161549
\(389\) −25.3691 −1.28626 −0.643131 0.765756i \(-0.722365\pi\)
−0.643131 + 0.765756i \(0.722365\pi\)
\(390\) 0 0
\(391\) −2.31611 −0.117131
\(392\) −1.66103 −0.0838947
\(393\) 0 0
\(394\) −17.9117 −0.902379
\(395\) 0 0
\(396\) 0 0
\(397\) 16.7222 0.839265 0.419632 0.907694i \(-0.362159\pi\)
0.419632 + 0.907694i \(0.362159\pi\)
\(398\) −7.51895 −0.376891
\(399\) 0 0
\(400\) 0 0
\(401\) −8.01416 −0.400208 −0.200104 0.979775i \(-0.564128\pi\)
−0.200104 + 0.979775i \(0.564128\pi\)
\(402\) 0 0
\(403\) −13.6808 −0.681488
\(404\) 6.66960 0.331825
\(405\) 0 0
\(406\) −5.06541 −0.251392
\(407\) 10.7251 0.531625
\(408\) 0 0
\(409\) −19.4335 −0.960924 −0.480462 0.877016i \(-0.659531\pi\)
−0.480462 + 0.877016i \(0.659531\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 18.3471 0.903899
\(413\) −13.5770 −0.668082
\(414\) 0 0
\(415\) 0 0
\(416\) 14.6977 0.720613
\(417\) 0 0
\(418\) −21.4664 −1.04996
\(419\) 6.92370 0.338245 0.169122 0.985595i \(-0.445907\pi\)
0.169122 + 0.985595i \(0.445907\pi\)
\(420\) 0 0
\(421\) −12.9872 −0.632956 −0.316478 0.948600i \(-0.602500\pi\)
−0.316478 + 0.948600i \(0.602500\pi\)
\(422\) 50.1899 2.44320
\(423\) 0 0
\(424\) 5.10766 0.248050
\(425\) 0 0
\(426\) 0 0
\(427\) 12.2347 0.592077
\(428\) 19.2473 0.930352
\(429\) 0 0
\(430\) 0 0
\(431\) 39.6752 1.91109 0.955543 0.294851i \(-0.0952701\pi\)
0.955543 + 0.294851i \(0.0952701\pi\)
\(432\) 0 0
\(433\) 4.93087 0.236962 0.118481 0.992956i \(-0.462197\pi\)
0.118481 + 0.992956i \(0.462197\pi\)
\(434\) −27.6484 −1.32717
\(435\) 0 0
\(436\) 10.8361 0.518956
\(437\) −0.802403 −0.0383841
\(438\) 0 0
\(439\) 22.1458 1.05696 0.528481 0.848945i \(-0.322762\pi\)
0.528481 + 0.848945i \(0.322762\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −29.0014 −1.37945
\(443\) 1.21156 0.0575631 0.0287815 0.999586i \(-0.490837\pi\)
0.0287815 + 0.999586i \(0.490837\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −15.0871 −0.714396
\(447\) 0 0
\(448\) 1.36680 0.0645751
\(449\) −5.22771 −0.246711 −0.123355 0.992363i \(-0.539365\pi\)
−0.123355 + 0.992363i \(0.539365\pi\)
\(450\) 0 0
\(451\) −28.7704 −1.35475
\(452\) 16.4977 0.775988
\(453\) 0 0
\(454\) −26.2945 −1.23406
\(455\) 0 0
\(456\) 0 0
\(457\) −16.9064 −0.790849 −0.395425 0.918498i \(-0.629403\pi\)
−0.395425 + 0.918498i \(0.629403\pi\)
\(458\) −37.5187 −1.75313
\(459\) 0 0
\(460\) 0 0
\(461\) 7.79634 0.363112 0.181556 0.983381i \(-0.441887\pi\)
0.181556 + 0.983381i \(0.441887\pi\)
\(462\) 0 0
\(463\) 22.3232 1.03745 0.518724 0.854942i \(-0.326407\pi\)
0.518724 + 0.854942i \(0.326407\pi\)
\(464\) −4.97376 −0.230901
\(465\) 0 0
\(466\) 46.3686 2.14799
\(467\) 8.19178 0.379070 0.189535 0.981874i \(-0.439302\pi\)
0.189535 + 0.981874i \(0.439302\pi\)
\(468\) 0 0
\(469\) 3.12559 0.144327
\(470\) 0 0
\(471\) 0 0
\(472\) −7.10237 −0.326913
\(473\) −68.9587 −3.17072
\(474\) 0 0
\(475\) 0 0
\(476\) −21.5386 −0.987220
\(477\) 0 0
\(478\) 14.5291 0.664546
\(479\) −17.4830 −0.798817 −0.399409 0.916773i \(-0.630785\pi\)
−0.399409 + 0.916773i \(0.630785\pi\)
\(480\) 0 0
\(481\) 5.01989 0.228887
\(482\) −18.8028 −0.856442
\(483\) 0 0
\(484\) 20.5398 0.933630
\(485\) 0 0
\(486\) 0 0
\(487\) 23.2620 1.05410 0.527051 0.849833i \(-0.323298\pi\)
0.527051 + 0.849833i \(0.323298\pi\)
\(488\) 6.40016 0.289722
\(489\) 0 0
\(490\) 0 0
\(491\) −34.4941 −1.55670 −0.778348 0.627833i \(-0.783942\pi\)
−0.778348 + 0.627833i \(0.783942\pi\)
\(492\) 0 0
\(493\) 6.50704 0.293062
\(494\) −10.0474 −0.452052
\(495\) 0 0
\(496\) −27.1482 −1.21899
\(497\) 14.8567 0.666413
\(498\) 0 0
\(499\) 12.8752 0.576372 0.288186 0.957574i \(-0.406948\pi\)
0.288186 + 0.957574i \(0.406948\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 38.0163 1.69675
\(503\) 6.19856 0.276380 0.138190 0.990406i \(-0.455872\pi\)
0.138190 + 0.990406i \(0.455872\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.38937 0.150676
\(507\) 0 0
\(508\) −6.23074 −0.276444
\(509\) 29.6558 1.31447 0.657235 0.753686i \(-0.271726\pi\)
0.657235 + 0.753686i \(0.271726\pi\)
\(510\) 0 0
\(511\) 19.3320 0.855197
\(512\) 14.3427 0.633863
\(513\) 0 0
\(514\) −12.2839 −0.541819
\(515\) 0 0
\(516\) 0 0
\(517\) 21.5126 0.946123
\(518\) 10.1450 0.445747
\(519\) 0 0
\(520\) 0 0
\(521\) 31.2676 1.36986 0.684929 0.728610i \(-0.259833\pi\)
0.684929 + 0.728610i \(0.259833\pi\)
\(522\) 0 0
\(523\) 18.7657 0.820567 0.410284 0.911958i \(-0.365430\pi\)
0.410284 + 0.911958i \(0.365430\pi\)
\(524\) −12.5995 −0.550413
\(525\) 0 0
\(526\) 4.20676 0.183423
\(527\) 35.5172 1.54716
\(528\) 0 0
\(529\) −22.8733 −0.994492
\(530\) 0 0
\(531\) 0 0
\(532\) −7.46192 −0.323515
\(533\) −13.4660 −0.583276
\(534\) 0 0
\(535\) 0 0
\(536\) 1.63505 0.0706234
\(537\) 0 0
\(538\) 23.2054 1.00045
\(539\) −5.96908 −0.257106
\(540\) 0 0
\(541\) −32.7471 −1.40791 −0.703955 0.710245i \(-0.748584\pi\)
−0.703955 + 0.710245i \(0.748584\pi\)
\(542\) −43.1627 −1.85400
\(543\) 0 0
\(544\) −38.1573 −1.63598
\(545\) 0 0
\(546\) 0 0
\(547\) 41.0014 1.75309 0.876547 0.481316i \(-0.159841\pi\)
0.876547 + 0.481316i \(0.159841\pi\)
\(548\) 8.61767 0.368129
\(549\) 0 0
\(550\) 0 0
\(551\) 2.25433 0.0960375
\(552\) 0 0
\(553\) 5.26832 0.224032
\(554\) 0.150572 0.00639718
\(555\) 0 0
\(556\) 22.8491 0.969018
\(557\) 32.8805 1.39319 0.696596 0.717463i \(-0.254697\pi\)
0.696596 + 0.717463i \(0.254697\pi\)
\(558\) 0 0
\(559\) −32.2761 −1.36513
\(560\) 0 0
\(561\) 0 0
\(562\) 14.5527 0.613870
\(563\) 19.8934 0.838407 0.419204 0.907892i \(-0.362309\pi\)
0.419204 + 0.907892i \(0.362309\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 18.8525 0.792432
\(567\) 0 0
\(568\) 7.77178 0.326097
\(569\) 1.72158 0.0721724 0.0360862 0.999349i \(-0.488511\pi\)
0.0360862 + 0.999349i \(0.488511\pi\)
\(570\) 0 0
\(571\) 26.4954 1.10880 0.554399 0.832251i \(-0.312948\pi\)
0.554399 + 0.832251i \(0.312948\pi\)
\(572\) 15.5962 0.652108
\(573\) 0 0
\(574\) −27.2143 −1.13590
\(575\) 0 0
\(576\) 0 0
\(577\) −40.8791 −1.70182 −0.850909 0.525314i \(-0.823948\pi\)
−0.850909 + 0.525314i \(0.823948\pi\)
\(578\) 45.0623 1.87435
\(579\) 0 0
\(580\) 0 0
\(581\) −39.1340 −1.62355
\(582\) 0 0
\(583\) 18.3549 0.760181
\(584\) 10.1129 0.418474
\(585\) 0 0
\(586\) 46.6984 1.92909
\(587\) 40.0943 1.65487 0.827434 0.561563i \(-0.189800\pi\)
0.827434 + 0.561563i \(0.189800\pi\)
\(588\) 0 0
\(589\) 12.3047 0.507008
\(590\) 0 0
\(591\) 0 0
\(592\) 9.96148 0.409414
\(593\) 7.94061 0.326082 0.163041 0.986619i \(-0.447870\pi\)
0.163041 + 0.986619i \(0.447870\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.7889 −0.687700
\(597\) 0 0
\(598\) 1.58639 0.0648724
\(599\) 37.2143 1.52054 0.760268 0.649609i \(-0.225068\pi\)
0.760268 + 0.649609i \(0.225068\pi\)
\(600\) 0 0
\(601\) −9.87927 −0.402984 −0.201492 0.979490i \(-0.564579\pi\)
−0.201492 + 0.979490i \(0.564579\pi\)
\(602\) −65.2289 −2.65853
\(603\) 0 0
\(604\) 7.77621 0.316409
\(605\) 0 0
\(606\) 0 0
\(607\) 3.95850 0.160670 0.0803352 0.996768i \(-0.474401\pi\)
0.0803352 + 0.996768i \(0.474401\pi\)
\(608\) −13.2194 −0.536116
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0690 0.407346
\(612\) 0 0
\(613\) −19.8179 −0.800436 −0.400218 0.916420i \(-0.631066\pi\)
−0.400218 + 0.916420i \(0.631066\pi\)
\(614\) 37.1506 1.49927
\(615\) 0 0
\(616\) −22.7317 −0.915888
\(617\) −8.70648 −0.350510 −0.175255 0.984523i \(-0.556075\pi\)
−0.175255 + 0.984523i \(0.556075\pi\)
\(618\) 0 0
\(619\) −18.3012 −0.735589 −0.367794 0.929907i \(-0.619887\pi\)
−0.367794 + 0.929907i \(0.619887\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.33946 −0.374478
\(623\) −7.31390 −0.293025
\(624\) 0 0
\(625\) 0 0
\(626\) −56.9283 −2.27531
\(627\) 0 0
\(628\) −20.4263 −0.815098
\(629\) −13.0323 −0.519633
\(630\) 0 0
\(631\) −48.9315 −1.94793 −0.973966 0.226693i \(-0.927209\pi\)
−0.973966 + 0.226693i \(0.927209\pi\)
\(632\) 2.75595 0.109626
\(633\) 0 0
\(634\) 39.4252 1.56578
\(635\) 0 0
\(636\) 0 0
\(637\) −2.79382 −0.110695
\(638\) −9.52233 −0.376993
\(639\) 0 0
\(640\) 0 0
\(641\) 5.22083 0.206210 0.103105 0.994670i \(-0.467122\pi\)
0.103105 + 0.994670i \(0.467122\pi\)
\(642\) 0 0
\(643\) −25.8165 −1.01810 −0.509051 0.860736i \(-0.670004\pi\)
−0.509051 + 0.860736i \(0.670004\pi\)
\(644\) 1.17817 0.0464266
\(645\) 0 0
\(646\) 26.0844 1.02628
\(647\) 1.68358 0.0661885 0.0330943 0.999452i \(-0.489464\pi\)
0.0330943 + 0.999452i \(0.489464\pi\)
\(648\) 0 0
\(649\) −25.5231 −1.00187
\(650\) 0 0
\(651\) 0 0
\(652\) 22.8418 0.894553
\(653\) 26.5807 1.04018 0.520091 0.854111i \(-0.325898\pi\)
0.520091 + 0.854111i \(0.325898\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −26.7219 −1.04332
\(657\) 0 0
\(658\) 20.3490 0.793288
\(659\) 5.88644 0.229303 0.114652 0.993406i \(-0.463425\pi\)
0.114652 + 0.993406i \(0.463425\pi\)
\(660\) 0 0
\(661\) 21.3474 0.830319 0.415160 0.909749i \(-0.363726\pi\)
0.415160 + 0.909749i \(0.363726\pi\)
\(662\) −56.6625 −2.20225
\(663\) 0 0
\(664\) −20.4717 −0.794454
\(665\) 0 0
\(666\) 0 0
\(667\) −0.355939 −0.0137820
\(668\) −14.2738 −0.552271
\(669\) 0 0
\(670\) 0 0
\(671\) 22.9996 0.887891
\(672\) 0 0
\(673\) −20.3306 −0.783688 −0.391844 0.920032i \(-0.628163\pi\)
−0.391844 + 0.920032i \(0.628163\pi\)
\(674\) −8.32382 −0.320622
\(675\) 0 0
\(676\) −7.80597 −0.300230
\(677\) 27.0573 1.03990 0.519949 0.854197i \(-0.325951\pi\)
0.519949 + 0.854197i \(0.325951\pi\)
\(678\) 0 0
\(679\) −7.80110 −0.299379
\(680\) 0 0
\(681\) 0 0
\(682\) −51.9755 −1.99025
\(683\) 14.8635 0.568737 0.284369 0.958715i \(-0.408216\pi\)
0.284369 + 0.958715i \(0.408216\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 29.8117 1.13821
\(687\) 0 0
\(688\) −64.0487 −2.44183
\(689\) 8.59099 0.327291
\(690\) 0 0
\(691\) −3.66787 −0.139532 −0.0697662 0.997563i \(-0.522225\pi\)
−0.0697662 + 0.997563i \(0.522225\pi\)
\(692\) −15.0407 −0.571763
\(693\) 0 0
\(694\) −17.8092 −0.676028
\(695\) 0 0
\(696\) 0 0
\(697\) 34.9596 1.32419
\(698\) 26.6212 1.00763
\(699\) 0 0
\(700\) 0 0
\(701\) −39.0313 −1.47419 −0.737097 0.675787i \(-0.763804\pi\)
−0.737097 + 0.675787i \(0.763804\pi\)
\(702\) 0 0
\(703\) −4.51498 −0.170286
\(704\) 2.56941 0.0968382
\(705\) 0 0
\(706\) −21.4184 −0.806092
\(707\) −16.3507 −0.614931
\(708\) 0 0
\(709\) −36.9135 −1.38632 −0.693158 0.720785i \(-0.743781\pi\)
−0.693158 + 0.720785i \(0.743781\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −3.82602 −0.143386
\(713\) −1.94281 −0.0727589
\(714\) 0 0
\(715\) 0 0
\(716\) 6.99382 0.261371
\(717\) 0 0
\(718\) −8.40401 −0.313635
\(719\) 41.9646 1.56502 0.782508 0.622640i \(-0.213940\pi\)
0.782508 + 0.622640i \(0.213940\pi\)
\(720\) 0 0
\(721\) −44.9785 −1.67509
\(722\) −24.7489 −0.921060
\(723\) 0 0
\(724\) −23.0926 −0.858228
\(725\) 0 0
\(726\) 0 0
\(727\) −37.0774 −1.37513 −0.687563 0.726125i \(-0.741320\pi\)
−0.687563 + 0.726125i \(0.741320\pi\)
\(728\) −10.6396 −0.394329
\(729\) 0 0
\(730\) 0 0
\(731\) 83.7932 3.09920
\(732\) 0 0
\(733\) 6.29483 0.232505 0.116252 0.993220i \(-0.462912\pi\)
0.116252 + 0.993220i \(0.462912\pi\)
\(734\) −21.2668 −0.784973
\(735\) 0 0
\(736\) 2.08723 0.0769361
\(737\) 5.87572 0.216435
\(738\) 0 0
\(739\) −34.6989 −1.27642 −0.638210 0.769862i \(-0.720325\pi\)
−0.638210 + 0.769862i \(0.720325\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 17.3621 0.637383
\(743\) 10.8648 0.398590 0.199295 0.979940i \(-0.436135\pi\)
0.199295 + 0.979940i \(0.436135\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −14.7896 −0.541485
\(747\) 0 0
\(748\) −40.4898 −1.48046
\(749\) −47.1852 −1.72411
\(750\) 0 0
\(751\) 6.02497 0.219854 0.109927 0.993940i \(-0.464938\pi\)
0.109927 + 0.993940i \(0.464938\pi\)
\(752\) 19.9809 0.728627
\(753\) 0 0
\(754\) −4.45692 −0.162311
\(755\) 0 0
\(756\) 0 0
\(757\) 34.1212 1.24016 0.620078 0.784540i \(-0.287101\pi\)
0.620078 + 0.784540i \(0.287101\pi\)
\(758\) −43.6929 −1.58700
\(759\) 0 0
\(760\) 0 0
\(761\) 14.0126 0.507956 0.253978 0.967210i \(-0.418261\pi\)
0.253978 + 0.967210i \(0.418261\pi\)
\(762\) 0 0
\(763\) −26.5650 −0.961718
\(764\) −3.53913 −0.128041
\(765\) 0 0
\(766\) 60.5050 2.18613
\(767\) −11.9461 −0.431347
\(768\) 0 0
\(769\) 34.0766 1.22883 0.614417 0.788982i \(-0.289391\pi\)
0.614417 + 0.788982i \(0.289391\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.7976 0.892486
\(773\) −14.3678 −0.516773 −0.258386 0.966042i \(-0.583191\pi\)
−0.258386 + 0.966042i \(0.583191\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.08088 −0.146495
\(777\) 0 0
\(778\) −45.1112 −1.61731
\(779\) 12.1115 0.433941
\(780\) 0 0
\(781\) 27.9287 0.999367
\(782\) −4.11850 −0.147277
\(783\) 0 0
\(784\) −5.54407 −0.198002
\(785\) 0 0
\(786\) 0 0
\(787\) −1.65976 −0.0591642 −0.0295821 0.999562i \(-0.509418\pi\)
−0.0295821 + 0.999562i \(0.509418\pi\)
\(788\) −11.7046 −0.416959
\(789\) 0 0
\(790\) 0 0
\(791\) −40.4446 −1.43804
\(792\) 0 0
\(793\) 10.7650 0.382275
\(794\) 29.7354 1.05527
\(795\) 0 0
\(796\) −4.91334 −0.174149
\(797\) −8.57389 −0.303703 −0.151851 0.988403i \(-0.548523\pi\)
−0.151851 + 0.988403i \(0.548523\pi\)
\(798\) 0 0
\(799\) −26.1404 −0.924782
\(800\) 0 0
\(801\) 0 0
\(802\) −14.2507 −0.503211
\(803\) 36.3417 1.28247
\(804\) 0 0
\(805\) 0 0
\(806\) −24.3271 −0.856886
\(807\) 0 0
\(808\) −8.55332 −0.300905
\(809\) 44.3986 1.56097 0.780485 0.625175i \(-0.214972\pi\)
0.780485 + 0.625175i \(0.214972\pi\)
\(810\) 0 0
\(811\) −13.2677 −0.465892 −0.232946 0.972490i \(-0.574837\pi\)
−0.232946 + 0.972490i \(0.574837\pi\)
\(812\) −3.31005 −0.116160
\(813\) 0 0
\(814\) 19.0714 0.668451
\(815\) 0 0
\(816\) 0 0
\(817\) 29.0297 1.01562
\(818\) −34.5565 −1.20824
\(819\) 0 0
\(820\) 0 0
\(821\) 18.5405 0.647069 0.323534 0.946216i \(-0.395129\pi\)
0.323534 + 0.946216i \(0.395129\pi\)
\(822\) 0 0
\(823\) 4.42801 0.154351 0.0771753 0.997018i \(-0.475410\pi\)
0.0771753 + 0.997018i \(0.475410\pi\)
\(824\) −23.5290 −0.819672
\(825\) 0 0
\(826\) −24.1426 −0.840029
\(827\) 26.1067 0.907819 0.453910 0.891048i \(-0.350029\pi\)
0.453910 + 0.891048i \(0.350029\pi\)
\(828\) 0 0
\(829\) −25.1458 −0.873350 −0.436675 0.899619i \(-0.643844\pi\)
−0.436675 + 0.899619i \(0.643844\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.20261 0.0416930
\(833\) 7.25316 0.251307
\(834\) 0 0
\(835\) 0 0
\(836\) −14.0275 −0.485150
\(837\) 0 0
\(838\) 12.3117 0.425300
\(839\) 31.3784 1.08330 0.541651 0.840603i \(-0.317799\pi\)
0.541651 + 0.840603i \(0.317799\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −23.0937 −0.795863
\(843\) 0 0
\(844\) 32.7971 1.12892
\(845\) 0 0
\(846\) 0 0
\(847\) −50.3540 −1.73018
\(848\) 17.0480 0.585430
\(849\) 0 0
\(850\) 0 0
\(851\) 0.712877 0.0244371
\(852\) 0 0
\(853\) 36.1547 1.23791 0.618956 0.785425i \(-0.287556\pi\)
0.618956 + 0.785425i \(0.287556\pi\)
\(854\) 21.7556 0.744463
\(855\) 0 0
\(856\) −24.6834 −0.843660
\(857\) 20.2270 0.690943 0.345471 0.938429i \(-0.387719\pi\)
0.345471 + 0.938429i \(0.387719\pi\)
\(858\) 0 0
\(859\) 29.8005 1.01678 0.508390 0.861127i \(-0.330241\pi\)
0.508390 + 0.861127i \(0.330241\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 70.5502 2.40295
\(863\) −35.7369 −1.21650 −0.608248 0.793747i \(-0.708128\pi\)
−0.608248 + 0.793747i \(0.708128\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 8.76805 0.297951
\(867\) 0 0
\(868\) −18.0671 −0.613239
\(869\) 9.90378 0.335963
\(870\) 0 0
\(871\) 2.75013 0.0931845
\(872\) −13.8966 −0.470598
\(873\) 0 0
\(874\) −1.42683 −0.0482632
\(875\) 0 0
\(876\) 0 0
\(877\) 0.626314 0.0211491 0.0105746 0.999944i \(-0.496634\pi\)
0.0105746 + 0.999944i \(0.496634\pi\)
\(878\) 39.3796 1.32900
\(879\) 0 0
\(880\) 0 0
\(881\) −6.65299 −0.224145 −0.112072 0.993700i \(-0.535749\pi\)
−0.112072 + 0.993700i \(0.535749\pi\)
\(882\) 0 0
\(883\) −1.03215 −0.0347345 −0.0173673 0.999849i \(-0.505528\pi\)
−0.0173673 + 0.999849i \(0.505528\pi\)
\(884\) −18.9512 −0.637399
\(885\) 0 0
\(886\) 2.15440 0.0723783
\(887\) 55.8755 1.87611 0.938057 0.346480i \(-0.112623\pi\)
0.938057 + 0.346480i \(0.112623\pi\)
\(888\) 0 0
\(889\) 15.2748 0.512301
\(890\) 0 0
\(891\) 0 0
\(892\) −9.85884 −0.330098
\(893\) −9.05620 −0.303054
\(894\) 0 0
\(895\) 0 0
\(896\) −30.9782 −1.03491
\(897\) 0 0
\(898\) −9.29588 −0.310208
\(899\) 5.45828 0.182044
\(900\) 0 0
\(901\) −22.3034 −0.743035
\(902\) −51.1595 −1.70342
\(903\) 0 0
\(904\) −21.1572 −0.703679
\(905\) 0 0
\(906\) 0 0
\(907\) 23.0687 0.765982 0.382991 0.923752i \(-0.374894\pi\)
0.382991 + 0.923752i \(0.374894\pi\)
\(908\) −17.1824 −0.570219
\(909\) 0 0
\(910\) 0 0
\(911\) −52.8451 −1.75084 −0.875418 0.483367i \(-0.839414\pi\)
−0.875418 + 0.483367i \(0.839414\pi\)
\(912\) 0 0
\(913\) −73.5670 −2.43471
\(914\) −30.0629 −0.994393
\(915\) 0 0
\(916\) −24.5170 −0.810064
\(917\) 30.8881 1.02001
\(918\) 0 0
\(919\) −49.6417 −1.63753 −0.818765 0.574129i \(-0.805341\pi\)
−0.818765 + 0.574129i \(0.805341\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 13.8634 0.456567
\(923\) 13.0720 0.430270
\(924\) 0 0
\(925\) 0 0
\(926\) 39.6951 1.30446
\(927\) 0 0
\(928\) −5.86400 −0.192495
\(929\) −10.7335 −0.352153 −0.176077 0.984376i \(-0.556341\pi\)
−0.176077 + 0.984376i \(0.556341\pi\)
\(930\) 0 0
\(931\) 2.51281 0.0823542
\(932\) 30.3001 0.992512
\(933\) 0 0
\(934\) 14.5666 0.476633
\(935\) 0 0
\(936\) 0 0
\(937\) −11.4028 −0.372513 −0.186256 0.982501i \(-0.559635\pi\)
−0.186256 + 0.982501i \(0.559635\pi\)
\(938\) 5.55792 0.181472
\(939\) 0 0
\(940\) 0 0
\(941\) −26.5670 −0.866060 −0.433030 0.901380i \(-0.642556\pi\)
−0.433030 + 0.901380i \(0.642556\pi\)
\(942\) 0 0
\(943\) −1.91231 −0.0622734
\(944\) −23.7058 −0.771558
\(945\) 0 0
\(946\) −122.622 −3.98679
\(947\) 15.3658 0.499322 0.249661 0.968333i \(-0.419681\pi\)
0.249661 + 0.968333i \(0.419681\pi\)
\(948\) 0 0
\(949\) 17.0097 0.552158
\(950\) 0 0
\(951\) 0 0
\(952\) 27.6218 0.895229
\(953\) 12.7062 0.411596 0.205798 0.978595i \(-0.434021\pi\)
0.205798 + 0.978595i \(0.434021\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 9.49419 0.307064
\(957\) 0 0
\(958\) −31.0881 −1.00441
\(959\) −21.1264 −0.682209
\(960\) 0 0
\(961\) −1.20722 −0.0389426
\(962\) 8.92634 0.287797
\(963\) 0 0
\(964\) −12.2869 −0.395733
\(965\) 0 0
\(966\) 0 0
\(967\) 15.8218 0.508795 0.254398 0.967100i \(-0.418123\pi\)
0.254398 + 0.967100i \(0.418123\pi\)
\(968\) −26.3410 −0.846632
\(969\) 0 0
\(970\) 0 0
\(971\) −47.8287 −1.53490 −0.767448 0.641111i \(-0.778474\pi\)
−0.767448 + 0.641111i \(0.778474\pi\)
\(972\) 0 0
\(973\) −56.0152 −1.79577
\(974\) 41.3644 1.32540
\(975\) 0 0
\(976\) 21.3620 0.683781
\(977\) 46.2147 1.47854 0.739270 0.673409i \(-0.235171\pi\)
0.739270 + 0.673409i \(0.235171\pi\)
\(978\) 0 0
\(979\) −13.7492 −0.439426
\(980\) 0 0
\(981\) 0 0
\(982\) −61.3372 −1.95735
\(983\) 40.2132 1.28260 0.641301 0.767289i \(-0.278395\pi\)
0.641301 + 0.767289i \(0.278395\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 11.5708 0.368489
\(987\) 0 0
\(988\) −6.56555 −0.208878
\(989\) −4.58354 −0.145748
\(990\) 0 0
\(991\) −8.54051 −0.271298 −0.135649 0.990757i \(-0.543312\pi\)
−0.135649 + 0.990757i \(0.543312\pi\)
\(992\) −32.0073 −1.01623
\(993\) 0 0
\(994\) 26.4181 0.837931
\(995\) 0 0
\(996\) 0 0
\(997\) 26.7017 0.845651 0.422825 0.906211i \(-0.361038\pi\)
0.422825 + 0.906211i \(0.361038\pi\)
\(998\) 22.8946 0.724715
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.cd.1.7 yes 9
3.2 odd 2 6525.2.a.cb.1.3 yes 9
5.4 even 2 6525.2.a.ca.1.3 9
15.14 odd 2 6525.2.a.cc.1.7 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.3 9 5.4 even 2
6525.2.a.cb.1.3 yes 9 3.2 odd 2
6525.2.a.cc.1.7 yes 9 15.14 odd 2
6525.2.a.cd.1.7 yes 9 1.1 even 1 trivial