Properties

Label 6525.2.a.cb
Level $6525$
Weight $2$
Character orbit 6525.a
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - \beta_{4} q^{7} + ( - \beta_{3} - \beta_{2} - 1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - \beta_{4} q^{7} + ( - \beta_{3} - \beta_{2} - 1) q^{8} + ( - \beta_{5} + \beta_{4}) q^{11} + \beta_{5} q^{13} + ( - \beta_{6} + 2 \beta_{4} + \beta_{3} + \cdots + 1) q^{14}+ \cdots + ( - 2 \beta_{8} + \beta_{5} + 4 \beta_{4} + \cdots - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} + q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} + q^{7} - 9 q^{8} - 2 q^{11} + q^{13} + 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} + 3 q^{22} - 16 q^{23} - 6 q^{26} - 4 q^{28} - 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} + 10 q^{41} + 3 q^{43} + 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} - 9 q^{52} - 22 q^{53} - 22 q^{56} + 2 q^{58} - 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} + 5 q^{67} - 39 q^{68} - 10 q^{73} + 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} - 8 q^{82} - 46 q^{83} - 28 q^{86} + 2 q^{88} - 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} + 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{8} - 3\nu^{7} - 19\nu^{6} + 26\nu^{5} + 44\nu^{4} - 75\nu^{3} + 5\nu^{2} + 76\nu - 25 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2\nu^{8} + 3\nu^{7} + 19\nu^{6} - 13\nu^{5} - 57\nu^{4} - 29\nu^{3} + 47\nu^{2} + 106\nu + 25 ) / 13 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{8} - 11\nu^{7} - 22\nu^{6} + 104\nu^{5} + 27\nu^{4} - 288\nu^{3} + 53\nu^{2} + 192\nu - 31 ) / 13 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{8} + 6\nu^{7} + 51\nu^{6} - 65\nu^{5} - 192\nu^{4} + 189\nu^{3} + 185\nu^{2} - 87\nu - 2 ) / 13 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{8} - 8\nu^{7} - 3\nu^{6} + 91\nu^{5} - 43\nu^{4} - 304\nu^{3} + 178\nu^{2} + 259\nu - 71 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{8} + \beta_{6} + \beta_{5} + \beta_{3} + 7\beta_{2} + \beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{8} + \beta_{6} + 2\beta_{5} + \beta_{4} + 9\beta_{3} + 11\beta_{2} + 19\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -9\beta_{8} + \beta_{7} + 9\beta_{6} + 10\beta_{5} + 3\beta_{4} + 14\beta_{3} + 49\beta_{2} + 10\beta _1 + 78 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -13\beta_{8} + \beta_{7} + 11\beta_{6} + 24\beta_{5} + 16\beta_{4} + 71\beta_{3} + 97\beta_{2} + 98\beta _1 + 89 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -70\beta_{8} + 11\beta_{7} + 67\beta_{6} + 83\beta_{5} + 46\beta_{4} + 138\beta_{3} + 349\beta_{2} + 85\beta _1 + 479 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.74387
2.18077
1.77820
1.23642
0.200649
−0.747618
−1.10241
−2.07907
−2.21081
−2.74387 0 5.52881 0 0 −1.10432 −9.68257 0 0
1.2 −2.18077 0 2.75577 0 0 4.62113 −1.64817 0 0
1.3 −1.77820 0 1.16198 0 0 −2.84862 1.49016 0 0
1.4 −1.23642 0 −0.471260 0 0 −3.27673 3.05552 0 0
1.5 −0.200649 0 −1.95974 0 0 0.775135 0.794517 0 0
1.6 0.747618 0 −1.44107 0 0 3.28783 −2.57260 0 0
1.7 1.10241 0 −0.784687 0 0 0.259703 −3.06987 0 0
1.8 2.07907 0 2.32253 0 0 0.602349 0.670572 0 0
1.9 2.21081 0 2.88766 0 0 −1.31646 1.96245 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6525.2.a.cb yes 9
3.b odd 2 1 6525.2.a.cd yes 9
5.b even 2 1 6525.2.a.cc yes 9
15.d odd 2 1 6525.2.a.ca 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6525.2.a.ca 9 15.d odd 2 1
6525.2.a.cb yes 9 1.a even 1 1 trivial
6525.2.a.cc yes 9 5.b even 2 1
6525.2.a.cd yes 9 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6525))\):

\( T_{2}^{9} + 2T_{2}^{8} - 12T_{2}^{7} - 21T_{2}^{6} + 48T_{2}^{5} + 68T_{2}^{4} - 73T_{2}^{3} - 66T_{2}^{2} + 40T_{2} + 10 \) Copy content Toggle raw display
\( T_{7}^{9} - T_{7}^{8} - 27T_{7}^{7} + 3T_{7}^{6} + 199T_{7}^{5} + 89T_{7}^{4} - 270T_{7}^{3} - 50T_{7}^{2} + 125T_{7} - 25 \) Copy content Toggle raw display
\( T_{11}^{9} + 2 T_{11}^{8} - 48 T_{11}^{7} - 124 T_{11}^{6} + 635 T_{11}^{5} + 2064 T_{11}^{4} + \cdots + 600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} + 2 T^{8} + \cdots + 10 \) Copy content Toggle raw display
$3$ \( T^{9} \) Copy content Toggle raw display
$5$ \( T^{9} \) Copy content Toggle raw display
$7$ \( T^{9} - T^{8} + \cdots - 25 \) Copy content Toggle raw display
$11$ \( T^{9} + 2 T^{8} + \cdots + 600 \) Copy content Toggle raw display
$13$ \( T^{9} - T^{8} + \cdots + 5885 \) Copy content Toggle raw display
$17$ \( T^{9} + 12 T^{8} + \cdots + 1070 \) Copy content Toggle raw display
$19$ \( T^{9} + T^{8} + \cdots - 164800 \) Copy content Toggle raw display
$23$ \( T^{9} + 16 T^{8} + \cdots - 640 \) Copy content Toggle raw display
$29$ \( (T + 1)^{9} \) Copy content Toggle raw display
$31$ \( T^{9} - 5 T^{8} + \cdots + 320 \) Copy content Toggle raw display
$37$ \( T^{9} - 148 T^{7} + \cdots + 11520 \) Copy content Toggle raw display
$41$ \( T^{9} - 10 T^{8} + \cdots - 28800 \) Copy content Toggle raw display
$43$ \( T^{9} - 3 T^{8} + \cdots + 1275840 \) Copy content Toggle raw display
$47$ \( T^{9} + 26 T^{8} + \cdots + 4977120 \) Copy content Toggle raw display
$53$ \( T^{9} + 22 T^{8} + \cdots - 3780480 \) Copy content Toggle raw display
$59$ \( T^{9} + 4 T^{8} + \cdots + 28656000 \) Copy content Toggle raw display
$61$ \( T^{9} - 7 T^{8} + \cdots + 46656 \) Copy content Toggle raw display
$67$ \( T^{9} - 5 T^{8} + \cdots + 2311495 \) Copy content Toggle raw display
$71$ \( T^{9} - 322 T^{7} + \cdots - 73200000 \) Copy content Toggle raw display
$73$ \( T^{9} + 10 T^{8} + \cdots - 29099520 \) Copy content Toggle raw display
$79$ \( T^{9} - 10 T^{8} + \cdots + 18312192 \) Copy content Toggle raw display
$83$ \( T^{9} + 46 T^{8} + \cdots - 1287680 \) Copy content Toggle raw display
$89$ \( T^{9} + 4 T^{8} + \cdots - 1503000 \) Copy content Toggle raw display
$97$ \( T^{9} - 7 T^{8} + \cdots + 88640 \) Copy content Toggle raw display
show more
show less