Properties

Label 6525.2.a.ca.1.9
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.21081\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21081 q^{2} +2.88766 q^{4} +1.31646 q^{7} +1.96245 q^{8} +O(q^{10})\) \(q+2.21081 q^{2} +2.88766 q^{4} +1.31646 q^{7} +1.96245 q^{8} -4.29189 q^{11} +2.97543 q^{13} +2.91044 q^{14} -1.43674 q^{16} -0.642441 q^{17} -5.07923 q^{19} -9.48853 q^{22} -8.84038 q^{23} +6.57809 q^{26} +3.80150 q^{28} +1.00000 q^{29} -6.27016 q^{31} -7.10123 q^{32} -1.42031 q^{34} -0.934054 q^{37} -11.2292 q^{38} -11.0792 q^{41} -2.03981 q^{43} -12.3935 q^{44} -19.5444 q^{46} -9.57178 q^{47} -5.26692 q^{49} +8.59203 q^{52} +13.0891 q^{53} +2.58349 q^{56} +2.21081 q^{58} +2.55069 q^{59} +8.46575 q^{61} -13.8621 q^{62} -12.8260 q^{64} +12.9808 q^{67} -1.85515 q^{68} -5.10419 q^{71} +16.0007 q^{73} -2.06501 q^{74} -14.6671 q^{76} -5.65012 q^{77} -3.30518 q^{79} -24.4939 q^{82} -5.24640 q^{83} -4.50962 q^{86} -8.42260 q^{88} +5.05088 q^{89} +3.91704 q^{91} -25.5280 q^{92} -21.1614 q^{94} +2.04414 q^{97} -11.6441 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8} + 2 q^{11} - q^{13} - 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} - 3 q^{22} - 16 q^{23} + 6 q^{26} + 4 q^{28} + 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} - 10 q^{41} - 3 q^{43} - 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} + 9 q^{52} - 22 q^{53} + 22 q^{56} - 2 q^{58} + 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} - 5 q^{67} - 39 q^{68} + 10 q^{73} - 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} + 8 q^{82} - 46 q^{83} + 28 q^{86} - 2 q^{88} + 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} - 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21081 1.56328 0.781638 0.623733i \(-0.214385\pi\)
0.781638 + 0.623733i \(0.214385\pi\)
\(3\) 0 0
\(4\) 2.88766 1.44383
\(5\) 0 0
\(6\) 0 0
\(7\) 1.31646 0.497576 0.248788 0.968558i \(-0.419968\pi\)
0.248788 + 0.968558i \(0.419968\pi\)
\(8\) 1.96245 0.693830
\(9\) 0 0
\(10\) 0 0
\(11\) −4.29189 −1.29405 −0.647027 0.762467i \(-0.723988\pi\)
−0.647027 + 0.762467i \(0.723988\pi\)
\(12\) 0 0
\(13\) 2.97543 0.825235 0.412617 0.910904i \(-0.364615\pi\)
0.412617 + 0.910904i \(0.364615\pi\)
\(14\) 2.91044 0.777849
\(15\) 0 0
\(16\) −1.43674 −0.359184
\(17\) −0.642441 −0.155815 −0.0779074 0.996961i \(-0.524824\pi\)
−0.0779074 + 0.996961i \(0.524824\pi\)
\(18\) 0 0
\(19\) −5.07923 −1.16525 −0.582627 0.812740i \(-0.697975\pi\)
−0.582627 + 0.812740i \(0.697975\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −9.48853 −2.02296
\(23\) −8.84038 −1.84335 −0.921674 0.387966i \(-0.873178\pi\)
−0.921674 + 0.387966i \(0.873178\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 6.57809 1.29007
\(27\) 0 0
\(28\) 3.80150 0.718416
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −6.27016 −1.12615 −0.563077 0.826404i \(-0.690383\pi\)
−0.563077 + 0.826404i \(0.690383\pi\)
\(32\) −7.10123 −1.25533
\(33\) 0 0
\(34\) −1.42031 −0.243582
\(35\) 0 0
\(36\) 0 0
\(37\) −0.934054 −0.153558 −0.0767788 0.997048i \(-0.524464\pi\)
−0.0767788 + 0.997048i \(0.524464\pi\)
\(38\) −11.2292 −1.82161
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0792 −1.73028 −0.865139 0.501533i \(-0.832770\pi\)
−0.865139 + 0.501533i \(0.832770\pi\)
\(42\) 0 0
\(43\) −2.03981 −0.311068 −0.155534 0.987831i \(-0.549710\pi\)
−0.155534 + 0.987831i \(0.549710\pi\)
\(44\) −12.3935 −1.86839
\(45\) 0 0
\(46\) −19.5444 −2.88166
\(47\) −9.57178 −1.39619 −0.698094 0.716006i \(-0.745968\pi\)
−0.698094 + 0.716006i \(0.745968\pi\)
\(48\) 0 0
\(49\) −5.26692 −0.752418
\(50\) 0 0
\(51\) 0 0
\(52\) 8.59203 1.19150
\(53\) 13.0891 1.79792 0.898960 0.438030i \(-0.144324\pi\)
0.898960 + 0.438030i \(0.144324\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.58349 0.345233
\(57\) 0 0
\(58\) 2.21081 0.290293
\(59\) 2.55069 0.332071 0.166036 0.986120i \(-0.446903\pi\)
0.166036 + 0.986120i \(0.446903\pi\)
\(60\) 0 0
\(61\) 8.46575 1.08393 0.541964 0.840402i \(-0.317681\pi\)
0.541964 + 0.840402i \(0.317681\pi\)
\(62\) −13.8621 −1.76049
\(63\) 0 0
\(64\) −12.8260 −1.60325
\(65\) 0 0
\(66\) 0 0
\(67\) 12.9808 1.58586 0.792930 0.609313i \(-0.208555\pi\)
0.792930 + 0.609313i \(0.208555\pi\)
\(68\) −1.85515 −0.224970
\(69\) 0 0
\(70\) 0 0
\(71\) −5.10419 −0.605756 −0.302878 0.953029i \(-0.597947\pi\)
−0.302878 + 0.953029i \(0.597947\pi\)
\(72\) 0 0
\(73\) 16.0007 1.87274 0.936372 0.351009i \(-0.114161\pi\)
0.936372 + 0.351009i \(0.114161\pi\)
\(74\) −2.06501 −0.240053
\(75\) 0 0
\(76\) −14.6671 −1.68243
\(77\) −5.65012 −0.643890
\(78\) 0 0
\(79\) −3.30518 −0.371861 −0.185931 0.982563i \(-0.559530\pi\)
−0.185931 + 0.982563i \(0.559530\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −24.4939 −2.70490
\(83\) −5.24640 −0.575867 −0.287934 0.957650i \(-0.592968\pi\)
−0.287934 + 0.957650i \(0.592968\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.50962 −0.486284
\(87\) 0 0
\(88\) −8.42260 −0.897853
\(89\) 5.05088 0.535392 0.267696 0.963503i \(-0.413738\pi\)
0.267696 + 0.963503i \(0.413738\pi\)
\(90\) 0 0
\(91\) 3.91704 0.410617
\(92\) −25.5280 −2.66148
\(93\) 0 0
\(94\) −21.1614 −2.18263
\(95\) 0 0
\(96\) 0 0
\(97\) 2.04414 0.207551 0.103776 0.994601i \(-0.466908\pi\)
0.103776 + 0.994601i \(0.466908\pi\)
\(98\) −11.6441 −1.17624
\(99\) 0 0
\(100\) 0 0
\(101\) 12.4871 1.24251 0.621255 0.783609i \(-0.286623\pi\)
0.621255 + 0.783609i \(0.286623\pi\)
\(102\) 0 0
\(103\) 10.6723 1.05157 0.525785 0.850617i \(-0.323772\pi\)
0.525785 + 0.850617i \(0.323772\pi\)
\(104\) 5.83912 0.572572
\(105\) 0 0
\(106\) 28.9374 2.81065
\(107\) 4.85956 0.469791 0.234896 0.972021i \(-0.424525\pi\)
0.234896 + 0.972021i \(0.424525\pi\)
\(108\) 0 0
\(109\) 15.3415 1.46945 0.734723 0.678367i \(-0.237312\pi\)
0.734723 + 0.678367i \(0.237312\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.89141 −0.178721
\(113\) −4.32180 −0.406560 −0.203280 0.979121i \(-0.565160\pi\)
−0.203280 + 0.979121i \(0.565160\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.88766 0.268113
\(117\) 0 0
\(118\) 5.63908 0.519119
\(119\) −0.845750 −0.0775298
\(120\) 0 0
\(121\) 7.42032 0.674575
\(122\) 18.7161 1.69448
\(123\) 0 0
\(124\) −18.1061 −1.62598
\(125\) 0 0
\(126\) 0 0
\(127\) −21.5809 −1.91500 −0.957498 0.288440i \(-0.906863\pi\)
−0.957498 + 0.288440i \(0.906863\pi\)
\(128\) −14.1533 −1.25098
\(129\) 0 0
\(130\) 0 0
\(131\) −9.25658 −0.808751 −0.404376 0.914593i \(-0.632511\pi\)
−0.404376 + 0.914593i \(0.632511\pi\)
\(132\) 0 0
\(133\) −6.68661 −0.579803
\(134\) 28.6981 2.47914
\(135\) 0 0
\(136\) −1.26076 −0.108109
\(137\) 0.843767 0.0720879 0.0360439 0.999350i \(-0.488524\pi\)
0.0360439 + 0.999350i \(0.488524\pi\)
\(138\) 0 0
\(139\) −13.9777 −1.18557 −0.592785 0.805361i \(-0.701972\pi\)
−0.592785 + 0.805361i \(0.701972\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −11.2844 −0.946964
\(143\) −12.7702 −1.06790
\(144\) 0 0
\(145\) 0 0
\(146\) 35.3745 2.92762
\(147\) 0 0
\(148\) −2.69723 −0.221711
\(149\) −19.6274 −1.60794 −0.803971 0.594669i \(-0.797283\pi\)
−0.803971 + 0.594669i \(0.797283\pi\)
\(150\) 0 0
\(151\) −10.7559 −0.875301 −0.437650 0.899145i \(-0.644189\pi\)
−0.437650 + 0.899145i \(0.644189\pi\)
\(152\) −9.96771 −0.808488
\(153\) 0 0
\(154\) −12.4913 −1.00658
\(155\) 0 0
\(156\) 0 0
\(157\) −23.5513 −1.87960 −0.939800 0.341724i \(-0.888989\pi\)
−0.939800 + 0.341724i \(0.888989\pi\)
\(158\) −7.30710 −0.581322
\(159\) 0 0
\(160\) 0 0
\(161\) −11.6380 −0.917206
\(162\) 0 0
\(163\) −9.50148 −0.744213 −0.372107 0.928190i \(-0.621364\pi\)
−0.372107 + 0.928190i \(0.621364\pi\)
\(164\) −31.9929 −2.49823
\(165\) 0 0
\(166\) −11.5988 −0.900239
\(167\) 1.82786 0.141444 0.0707220 0.997496i \(-0.477470\pi\)
0.0707220 + 0.997496i \(0.477470\pi\)
\(168\) 0 0
\(169\) −4.14683 −0.318987
\(170\) 0 0
\(171\) 0 0
\(172\) −5.89027 −0.449129
\(173\) −5.50734 −0.418715 −0.209358 0.977839i \(-0.567137\pi\)
−0.209358 + 0.977839i \(0.567137\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.16631 0.464803
\(177\) 0 0
\(178\) 11.1665 0.836966
\(179\) −9.36470 −0.699950 −0.349975 0.936759i \(-0.613810\pi\)
−0.349975 + 0.936759i \(0.613810\pi\)
\(180\) 0 0
\(181\) 25.6019 1.90297 0.951487 0.307688i \(-0.0995552\pi\)
0.951487 + 0.307688i \(0.0995552\pi\)
\(182\) 8.65981 0.641908
\(183\) 0 0
\(184\) −17.3488 −1.27897
\(185\) 0 0
\(186\) 0 0
\(187\) 2.75729 0.201633
\(188\) −27.6401 −2.01586
\(189\) 0 0
\(190\) 0 0
\(191\) 12.3658 0.894756 0.447378 0.894345i \(-0.352358\pi\)
0.447378 + 0.894345i \(0.352358\pi\)
\(192\) 0 0
\(193\) 15.7223 1.13172 0.565859 0.824502i \(-0.308545\pi\)
0.565859 + 0.824502i \(0.308545\pi\)
\(194\) 4.51920 0.324459
\(195\) 0 0
\(196\) −15.2091 −1.08636
\(197\) −21.6728 −1.54412 −0.772061 0.635549i \(-0.780774\pi\)
−0.772061 + 0.635549i \(0.780774\pi\)
\(198\) 0 0
\(199\) −1.23732 −0.0877116 −0.0438558 0.999038i \(-0.513964\pi\)
−0.0438558 + 0.999038i \(0.513964\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 27.6065 1.94238
\(203\) 1.31646 0.0923976
\(204\) 0 0
\(205\) 0 0
\(206\) 23.5943 1.64389
\(207\) 0 0
\(208\) −4.27490 −0.296411
\(209\) 21.7995 1.50790
\(210\) 0 0
\(211\) −5.05346 −0.347895 −0.173947 0.984755i \(-0.555652\pi\)
−0.173947 + 0.984755i \(0.555652\pi\)
\(212\) 37.7968 2.59589
\(213\) 0 0
\(214\) 10.7435 0.734413
\(215\) 0 0
\(216\) 0 0
\(217\) −8.25444 −0.560348
\(218\) 33.9170 2.29715
\(219\) 0 0
\(220\) 0 0
\(221\) −1.91154 −0.128584
\(222\) 0 0
\(223\) 16.2248 1.08649 0.543245 0.839574i \(-0.317195\pi\)
0.543245 + 0.839574i \(0.317195\pi\)
\(224\) −9.34851 −0.624624
\(225\) 0 0
\(226\) −9.55465 −0.635566
\(227\) −6.82690 −0.453117 −0.226559 0.973998i \(-0.572747\pi\)
−0.226559 + 0.973998i \(0.572747\pi\)
\(228\) 0 0
\(229\) −5.87121 −0.387980 −0.193990 0.981003i \(-0.562143\pi\)
−0.193990 + 0.981003i \(0.562143\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.96245 0.128841
\(233\) 14.1453 0.926692 0.463346 0.886178i \(-0.346649\pi\)
0.463346 + 0.886178i \(0.346649\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.36553 0.479455
\(237\) 0 0
\(238\) −1.86979 −0.121200
\(239\) 20.6920 1.33845 0.669226 0.743059i \(-0.266626\pi\)
0.669226 + 0.743059i \(0.266626\pi\)
\(240\) 0 0
\(241\) −7.90845 −0.509428 −0.254714 0.967016i \(-0.581981\pi\)
−0.254714 + 0.967016i \(0.581981\pi\)
\(242\) 16.4049 1.05455
\(243\) 0 0
\(244\) 24.4462 1.56501
\(245\) 0 0
\(246\) 0 0
\(247\) −15.1129 −0.961609
\(248\) −12.3049 −0.781359
\(249\) 0 0
\(250\) 0 0
\(251\) −11.8140 −0.745691 −0.372846 0.927893i \(-0.621618\pi\)
−0.372846 + 0.927893i \(0.621618\pi\)
\(252\) 0 0
\(253\) 37.9420 2.38539
\(254\) −47.7112 −2.99367
\(255\) 0 0
\(256\) −5.63818 −0.352386
\(257\) 4.35440 0.271620 0.135810 0.990735i \(-0.456636\pi\)
0.135810 + 0.990735i \(0.456636\pi\)
\(258\) 0 0
\(259\) −1.22965 −0.0764066
\(260\) 0 0
\(261\) 0 0
\(262\) −20.4645 −1.26430
\(263\) −27.6727 −1.70637 −0.853187 0.521605i \(-0.825334\pi\)
−0.853187 + 0.521605i \(0.825334\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −14.7828 −0.906392
\(267\) 0 0
\(268\) 37.4842 2.28971
\(269\) 6.32037 0.385360 0.192680 0.981262i \(-0.438282\pi\)
0.192680 + 0.981262i \(0.438282\pi\)
\(270\) 0 0
\(271\) 4.37191 0.265575 0.132787 0.991145i \(-0.457607\pi\)
0.132787 + 0.991145i \(0.457607\pi\)
\(272\) 0.923018 0.0559662
\(273\) 0 0
\(274\) 1.86540 0.112693
\(275\) 0 0
\(276\) 0 0
\(277\) 4.01638 0.241321 0.120660 0.992694i \(-0.461499\pi\)
0.120660 + 0.992694i \(0.461499\pi\)
\(278\) −30.9019 −1.85337
\(279\) 0 0
\(280\) 0 0
\(281\) 13.6990 0.817215 0.408607 0.912710i \(-0.366015\pi\)
0.408607 + 0.912710i \(0.366015\pi\)
\(282\) 0 0
\(283\) 14.8058 0.880114 0.440057 0.897970i \(-0.354958\pi\)
0.440057 + 0.897970i \(0.354958\pi\)
\(284\) −14.7392 −0.874609
\(285\) 0 0
\(286\) −28.2324 −1.66942
\(287\) −14.5853 −0.860945
\(288\) 0 0
\(289\) −16.5873 −0.975722
\(290\) 0 0
\(291\) 0 0
\(292\) 46.2047 2.70393
\(293\) 16.6890 0.974983 0.487492 0.873128i \(-0.337912\pi\)
0.487492 + 0.873128i \(0.337912\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.83303 −0.106543
\(297\) 0 0
\(298\) −43.3924 −2.51366
\(299\) −26.3039 −1.52119
\(300\) 0 0
\(301\) −2.68533 −0.154780
\(302\) −23.7792 −1.36834
\(303\) 0 0
\(304\) 7.29750 0.418540
\(305\) 0 0
\(306\) 0 0
\(307\) −4.97073 −0.283695 −0.141847 0.989889i \(-0.545304\pi\)
−0.141847 + 0.989889i \(0.545304\pi\)
\(308\) −16.3156 −0.929669
\(309\) 0 0
\(310\) 0 0
\(311\) 21.0786 1.19526 0.597629 0.801773i \(-0.296110\pi\)
0.597629 + 0.801773i \(0.296110\pi\)
\(312\) 0 0
\(313\) −24.3744 −1.37772 −0.688860 0.724894i \(-0.741889\pi\)
−0.688860 + 0.724894i \(0.741889\pi\)
\(314\) −52.0674 −2.93833
\(315\) 0 0
\(316\) −9.54423 −0.536905
\(317\) 13.4102 0.753194 0.376597 0.926377i \(-0.377094\pi\)
0.376597 + 0.926377i \(0.377094\pi\)
\(318\) 0 0
\(319\) −4.29189 −0.240300
\(320\) 0 0
\(321\) 0 0
\(322\) −25.7294 −1.43385
\(323\) 3.26310 0.181564
\(324\) 0 0
\(325\) 0 0
\(326\) −21.0059 −1.16341
\(327\) 0 0
\(328\) −21.7423 −1.20052
\(329\) −12.6009 −0.694710
\(330\) 0 0
\(331\) 23.4187 1.28721 0.643603 0.765360i \(-0.277439\pi\)
0.643603 + 0.765360i \(0.277439\pi\)
\(332\) −15.1498 −0.831455
\(333\) 0 0
\(334\) 4.04104 0.221116
\(335\) 0 0
\(336\) 0 0
\(337\) −22.7865 −1.24126 −0.620631 0.784103i \(-0.713123\pi\)
−0.620631 + 0.784103i \(0.713123\pi\)
\(338\) −9.16784 −0.498665
\(339\) 0 0
\(340\) 0 0
\(341\) 26.9108 1.45730
\(342\) 0 0
\(343\) −16.1490 −0.871962
\(344\) −4.00301 −0.215828
\(345\) 0 0
\(346\) −12.1757 −0.654567
\(347\) −4.98513 −0.267616 −0.133808 0.991007i \(-0.542721\pi\)
−0.133808 + 0.991007i \(0.542721\pi\)
\(348\) 0 0
\(349\) 25.6783 1.37453 0.687264 0.726407i \(-0.258811\pi\)
0.687264 + 0.726407i \(0.258811\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 30.4777 1.62447
\(353\) −20.3160 −1.08131 −0.540656 0.841244i \(-0.681824\pi\)
−0.540656 + 0.841244i \(0.681824\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 14.5852 0.773016
\(357\) 0 0
\(358\) −20.7035 −1.09422
\(359\) 9.68907 0.511370 0.255685 0.966760i \(-0.417699\pi\)
0.255685 + 0.966760i \(0.417699\pi\)
\(360\) 0 0
\(361\) 6.79854 0.357818
\(362\) 56.6008 2.97487
\(363\) 0 0
\(364\) 11.3111 0.592862
\(365\) 0 0
\(366\) 0 0
\(367\) −9.16319 −0.478315 −0.239157 0.970981i \(-0.576871\pi\)
−0.239157 + 0.970981i \(0.576871\pi\)
\(368\) 12.7013 0.662101
\(369\) 0 0
\(370\) 0 0
\(371\) 17.2313 0.894603
\(372\) 0 0
\(373\) 13.5773 0.703007 0.351504 0.936186i \(-0.385670\pi\)
0.351504 + 0.936186i \(0.385670\pi\)
\(374\) 6.09582 0.315208
\(375\) 0 0
\(376\) −18.7841 −0.968717
\(377\) 2.97543 0.153242
\(378\) 0 0
\(379\) 0.0601424 0.00308931 0.00154465 0.999999i \(-0.499508\pi\)
0.00154465 + 0.999999i \(0.499508\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 27.3383 1.39875
\(383\) 9.71642 0.496486 0.248243 0.968698i \(-0.420147\pi\)
0.248243 + 0.968698i \(0.420147\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 34.7590 1.76919
\(387\) 0 0
\(388\) 5.90279 0.299669
\(389\) −5.68991 −0.288490 −0.144245 0.989542i \(-0.546075\pi\)
−0.144245 + 0.989542i \(0.546075\pi\)
\(390\) 0 0
\(391\) 5.67943 0.287221
\(392\) −10.3361 −0.522050
\(393\) 0 0
\(394\) −47.9143 −2.41389
\(395\) 0 0
\(396\) 0 0
\(397\) −6.80729 −0.341648 −0.170824 0.985302i \(-0.554643\pi\)
−0.170824 + 0.985302i \(0.554643\pi\)
\(398\) −2.73548 −0.137117
\(399\) 0 0
\(400\) 0 0
\(401\) −11.7255 −0.585543 −0.292771 0.956182i \(-0.594578\pi\)
−0.292771 + 0.956182i \(0.594578\pi\)
\(402\) 0 0
\(403\) −18.6564 −0.929342
\(404\) 36.0584 1.79397
\(405\) 0 0
\(406\) 2.91044 0.144443
\(407\) 4.00886 0.198712
\(408\) 0 0
\(409\) −22.2665 −1.10101 −0.550505 0.834832i \(-0.685565\pi\)
−0.550505 + 0.834832i \(0.685565\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 30.8179 1.51829
\(413\) 3.35789 0.165231
\(414\) 0 0
\(415\) 0 0
\(416\) −21.1292 −1.03594
\(417\) 0 0
\(418\) 48.1944 2.35727
\(419\) 28.2149 1.37839 0.689194 0.724577i \(-0.257965\pi\)
0.689194 + 0.724577i \(0.257965\pi\)
\(420\) 0 0
\(421\) −34.5167 −1.68224 −0.841121 0.540847i \(-0.818104\pi\)
−0.841121 + 0.540847i \(0.818104\pi\)
\(422\) −11.1722 −0.543855
\(423\) 0 0
\(424\) 25.6866 1.24745
\(425\) 0 0
\(426\) 0 0
\(427\) 11.1449 0.539337
\(428\) 14.0328 0.678299
\(429\) 0 0
\(430\) 0 0
\(431\) −23.0678 −1.11114 −0.555568 0.831471i \(-0.687499\pi\)
−0.555568 + 0.831471i \(0.687499\pi\)
\(432\) 0 0
\(433\) 17.8519 0.857908 0.428954 0.903326i \(-0.358882\pi\)
0.428954 + 0.903326i \(0.358882\pi\)
\(434\) −18.2490 −0.875978
\(435\) 0 0
\(436\) 44.3010 2.12163
\(437\) 44.9023 2.14797
\(438\) 0 0
\(439\) −3.31655 −0.158290 −0.0791452 0.996863i \(-0.525219\pi\)
−0.0791452 + 0.996863i \(0.525219\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4.22604 −0.201012
\(443\) −29.8818 −1.41973 −0.709863 0.704340i \(-0.751243\pi\)
−0.709863 + 0.704340i \(0.751243\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 35.8698 1.69848
\(447\) 0 0
\(448\) −16.8849 −0.797738
\(449\) −8.89198 −0.419639 −0.209819 0.977740i \(-0.567288\pi\)
−0.209819 + 0.977740i \(0.567288\pi\)
\(450\) 0 0
\(451\) 47.5506 2.23907
\(452\) −12.4799 −0.587004
\(453\) 0 0
\(454\) −15.0929 −0.708347
\(455\) 0 0
\(456\) 0 0
\(457\) 19.8853 0.930194 0.465097 0.885260i \(-0.346019\pi\)
0.465097 + 0.885260i \(0.346019\pi\)
\(458\) −12.9801 −0.606520
\(459\) 0 0
\(460\) 0 0
\(461\) 13.5776 0.632372 0.316186 0.948697i \(-0.397598\pi\)
0.316186 + 0.948697i \(0.397598\pi\)
\(462\) 0 0
\(463\) −29.7645 −1.38328 −0.691638 0.722244i \(-0.743111\pi\)
−0.691638 + 0.722244i \(0.743111\pi\)
\(464\) −1.43674 −0.0666988
\(465\) 0 0
\(466\) 31.2726 1.44867
\(467\) −6.56767 −0.303915 −0.151958 0.988387i \(-0.548558\pi\)
−0.151958 + 0.988387i \(0.548558\pi\)
\(468\) 0 0
\(469\) 17.0888 0.789086
\(470\) 0 0
\(471\) 0 0
\(472\) 5.00559 0.230401
\(473\) 8.75463 0.402538
\(474\) 0 0
\(475\) 0 0
\(476\) −2.44224 −0.111940
\(477\) 0 0
\(478\) 45.7459 2.09237
\(479\) −36.9147 −1.68668 −0.843338 0.537383i \(-0.819413\pi\)
−0.843338 + 0.537383i \(0.819413\pi\)
\(480\) 0 0
\(481\) −2.77921 −0.126721
\(482\) −17.4840 −0.796376
\(483\) 0 0
\(484\) 21.4274 0.973972
\(485\) 0 0
\(486\) 0 0
\(487\) −24.4257 −1.10684 −0.553418 0.832904i \(-0.686677\pi\)
−0.553418 + 0.832904i \(0.686677\pi\)
\(488\) 16.6136 0.752062
\(489\) 0 0
\(490\) 0 0
\(491\) 0.828059 0.0373698 0.0186849 0.999825i \(-0.494052\pi\)
0.0186849 + 0.999825i \(0.494052\pi\)
\(492\) 0 0
\(493\) −0.642441 −0.0289341
\(494\) −33.4116 −1.50326
\(495\) 0 0
\(496\) 9.00856 0.404496
\(497\) −6.71948 −0.301410
\(498\) 0 0
\(499\) 32.7413 1.46570 0.732850 0.680390i \(-0.238189\pi\)
0.732850 + 0.680390i \(0.238189\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −26.1184 −1.16572
\(503\) −3.04972 −0.135980 −0.0679901 0.997686i \(-0.521659\pi\)
−0.0679901 + 0.997686i \(0.521659\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 83.8823 3.72902
\(507\) 0 0
\(508\) −62.3183 −2.76493
\(509\) −11.2666 −0.499384 −0.249692 0.968325i \(-0.580329\pi\)
−0.249692 + 0.968325i \(0.580329\pi\)
\(510\) 0 0
\(511\) 21.0644 0.931833
\(512\) 15.8416 0.700107
\(513\) 0 0
\(514\) 9.62673 0.424617
\(515\) 0 0
\(516\) 0 0
\(517\) 41.0810 1.80674
\(518\) −2.71851 −0.119445
\(519\) 0 0
\(520\) 0 0
\(521\) 1.39366 0.0610573 0.0305287 0.999534i \(-0.490281\pi\)
0.0305287 + 0.999534i \(0.490281\pi\)
\(522\) 0 0
\(523\) 10.6212 0.464434 0.232217 0.972664i \(-0.425402\pi\)
0.232217 + 0.972664i \(0.425402\pi\)
\(524\) −26.7299 −1.16770
\(525\) 0 0
\(526\) −61.1791 −2.66753
\(527\) 4.02821 0.175472
\(528\) 0 0
\(529\) 55.1524 2.39793
\(530\) 0 0
\(531\) 0 0
\(532\) −19.3087 −0.837137
\(533\) −32.9653 −1.42789
\(534\) 0 0
\(535\) 0 0
\(536\) 25.4742 1.10032
\(537\) 0 0
\(538\) 13.9731 0.602424
\(539\) 22.6051 0.973669
\(540\) 0 0
\(541\) 31.1071 1.33740 0.668698 0.743534i \(-0.266852\pi\)
0.668698 + 0.743534i \(0.266852\pi\)
\(542\) 9.66544 0.415166
\(543\) 0 0
\(544\) 4.56212 0.195599
\(545\) 0 0
\(546\) 0 0
\(547\) 17.0828 0.730408 0.365204 0.930927i \(-0.380999\pi\)
0.365204 + 0.930927i \(0.380999\pi\)
\(548\) 2.43651 0.104083
\(549\) 0 0
\(550\) 0 0
\(551\) −5.07923 −0.216382
\(552\) 0 0
\(553\) −4.35114 −0.185029
\(554\) 8.87942 0.377251
\(555\) 0 0
\(556\) −40.3628 −1.71176
\(557\) 15.1831 0.643329 0.321665 0.946854i \(-0.395758\pi\)
0.321665 + 0.946854i \(0.395758\pi\)
\(558\) 0 0
\(559\) −6.06930 −0.256704
\(560\) 0 0
\(561\) 0 0
\(562\) 30.2859 1.27753
\(563\) 34.9344 1.47231 0.736154 0.676814i \(-0.236640\pi\)
0.736154 + 0.676814i \(0.236640\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 32.7328 1.37586
\(567\) 0 0
\(568\) −10.0167 −0.420291
\(569\) 2.51836 0.105575 0.0527875 0.998606i \(-0.483189\pi\)
0.0527875 + 0.998606i \(0.483189\pi\)
\(570\) 0 0
\(571\) 18.9130 0.791485 0.395742 0.918362i \(-0.370487\pi\)
0.395742 + 0.918362i \(0.370487\pi\)
\(572\) −36.8760 −1.54186
\(573\) 0 0
\(574\) −32.2453 −1.34589
\(575\) 0 0
\(576\) 0 0
\(577\) 4.64049 0.193186 0.0965930 0.995324i \(-0.469205\pi\)
0.0965930 + 0.995324i \(0.469205\pi\)
\(578\) −36.6712 −1.52532
\(579\) 0 0
\(580\) 0 0
\(581\) −6.90669 −0.286538
\(582\) 0 0
\(583\) −56.1768 −2.32661
\(584\) 31.4006 1.29937
\(585\) 0 0
\(586\) 36.8962 1.52417
\(587\) −25.7669 −1.06351 −0.531756 0.846897i \(-0.678468\pi\)
−0.531756 + 0.846897i \(0.678468\pi\)
\(588\) 0 0
\(589\) 31.8476 1.31226
\(590\) 0 0
\(591\) 0 0
\(592\) 1.34199 0.0551554
\(593\) 3.02524 0.124232 0.0621158 0.998069i \(-0.480215\pi\)
0.0621158 + 0.998069i \(0.480215\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −56.6774 −2.32160
\(597\) 0 0
\(598\) −58.1529 −2.37805
\(599\) −0.521774 −0.0213191 −0.0106596 0.999943i \(-0.503393\pi\)
−0.0106596 + 0.999943i \(0.503393\pi\)
\(600\) 0 0
\(601\) −34.7237 −1.41641 −0.708204 0.706008i \(-0.750494\pi\)
−0.708204 + 0.706008i \(0.750494\pi\)
\(602\) −5.93674 −0.241964
\(603\) 0 0
\(604\) −31.0593 −1.26379
\(605\) 0 0
\(606\) 0 0
\(607\) −14.0480 −0.570190 −0.285095 0.958499i \(-0.592025\pi\)
−0.285095 + 0.958499i \(0.592025\pi\)
\(608\) 36.0688 1.46278
\(609\) 0 0
\(610\) 0 0
\(611\) −28.4801 −1.15218
\(612\) 0 0
\(613\) 15.3819 0.621269 0.310635 0.950529i \(-0.399458\pi\)
0.310635 + 0.950529i \(0.399458\pi\)
\(614\) −10.9893 −0.443493
\(615\) 0 0
\(616\) −11.0880 −0.446750
\(617\) −15.6734 −0.630988 −0.315494 0.948928i \(-0.602170\pi\)
−0.315494 + 0.948928i \(0.602170\pi\)
\(618\) 0 0
\(619\) 36.1380 1.45251 0.726254 0.687427i \(-0.241260\pi\)
0.726254 + 0.687427i \(0.241260\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 46.6007 1.86852
\(623\) 6.64930 0.266399
\(624\) 0 0
\(625\) 0 0
\(626\) −53.8870 −2.15376
\(627\) 0 0
\(628\) −68.0083 −2.71383
\(629\) 0.600075 0.0239265
\(630\) 0 0
\(631\) −5.20523 −0.207217 −0.103608 0.994618i \(-0.533039\pi\)
−0.103608 + 0.994618i \(0.533039\pi\)
\(632\) −6.48623 −0.258008
\(633\) 0 0
\(634\) 29.6474 1.17745
\(635\) 0 0
\(636\) 0 0
\(637\) −15.6714 −0.620921
\(638\) −9.48853 −0.375655
\(639\) 0 0
\(640\) 0 0
\(641\) −28.6342 −1.13098 −0.565492 0.824754i \(-0.691314\pi\)
−0.565492 + 0.824754i \(0.691314\pi\)
\(642\) 0 0
\(643\) −35.6717 −1.40676 −0.703378 0.710816i \(-0.748326\pi\)
−0.703378 + 0.710816i \(0.748326\pi\)
\(644\) −33.6067 −1.32429
\(645\) 0 0
\(646\) 7.21409 0.283834
\(647\) −6.14445 −0.241563 −0.120782 0.992679i \(-0.538540\pi\)
−0.120782 + 0.992679i \(0.538540\pi\)
\(648\) 0 0
\(649\) −10.9473 −0.429718
\(650\) 0 0
\(651\) 0 0
\(652\) −27.4371 −1.07452
\(653\) −8.62982 −0.337711 −0.168855 0.985641i \(-0.554007\pi\)
−0.168855 + 0.985641i \(0.554007\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 15.9178 0.621488
\(657\) 0 0
\(658\) −27.8581 −1.08602
\(659\) 35.4336 1.38030 0.690148 0.723668i \(-0.257545\pi\)
0.690148 + 0.723668i \(0.257545\pi\)
\(660\) 0 0
\(661\) 12.7938 0.497622 0.248811 0.968552i \(-0.419960\pi\)
0.248811 + 0.968552i \(0.419960\pi\)
\(662\) 51.7741 2.01226
\(663\) 0 0
\(664\) −10.2958 −0.399554
\(665\) 0 0
\(666\) 0 0
\(667\) −8.84038 −0.342301
\(668\) 5.27824 0.204221
\(669\) 0 0
\(670\) 0 0
\(671\) −36.3341 −1.40266
\(672\) 0 0
\(673\) 39.0602 1.50566 0.752830 0.658215i \(-0.228688\pi\)
0.752830 + 0.658215i \(0.228688\pi\)
\(674\) −50.3766 −1.94043
\(675\) 0 0
\(676\) −11.9747 −0.460564
\(677\) −51.8790 −1.99387 −0.996936 0.0782187i \(-0.975077\pi\)
−0.996936 + 0.0782187i \(0.975077\pi\)
\(678\) 0 0
\(679\) 2.69104 0.103272
\(680\) 0 0
\(681\) 0 0
\(682\) 59.4946 2.27817
\(683\) −27.2220 −1.04162 −0.520811 0.853672i \(-0.674370\pi\)
−0.520811 + 0.853672i \(0.674370\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −35.7022 −1.36312
\(687\) 0 0
\(688\) 2.93066 0.111730
\(689\) 38.9455 1.48371
\(690\) 0 0
\(691\) 21.7474 0.827309 0.413655 0.910434i \(-0.364252\pi\)
0.413655 + 0.910434i \(0.364252\pi\)
\(692\) −15.9033 −0.604554
\(693\) 0 0
\(694\) −11.0212 −0.418357
\(695\) 0 0
\(696\) 0 0
\(697\) 7.11772 0.269603
\(698\) 56.7698 2.14877
\(699\) 0 0
\(700\) 0 0
\(701\) −35.4994 −1.34079 −0.670397 0.742003i \(-0.733876\pi\)
−0.670397 + 0.742003i \(0.733876\pi\)
\(702\) 0 0
\(703\) 4.74427 0.178934
\(704\) 55.0477 2.07469
\(705\) 0 0
\(706\) −44.9148 −1.69039
\(707\) 16.4388 0.618243
\(708\) 0 0
\(709\) 33.4325 1.25558 0.627792 0.778381i \(-0.283959\pi\)
0.627792 + 0.778381i \(0.283959\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 9.91208 0.371471
\(713\) 55.4306 2.07589
\(714\) 0 0
\(715\) 0 0
\(716\) −27.0421 −1.01061
\(717\) 0 0
\(718\) 21.4207 0.799412
\(719\) −44.5343 −1.66085 −0.830425 0.557130i \(-0.811902\pi\)
−0.830425 + 0.557130i \(0.811902\pi\)
\(720\) 0 0
\(721\) 14.0497 0.523237
\(722\) 15.0302 0.559368
\(723\) 0 0
\(724\) 73.9296 2.74757
\(725\) 0 0
\(726\) 0 0
\(727\) −15.6700 −0.581170 −0.290585 0.956849i \(-0.593850\pi\)
−0.290585 + 0.956849i \(0.593850\pi\)
\(728\) 7.68698 0.284898
\(729\) 0 0
\(730\) 0 0
\(731\) 1.31046 0.0484689
\(732\) 0 0
\(733\) −29.7350 −1.09829 −0.549143 0.835728i \(-0.685046\pi\)
−0.549143 + 0.835728i \(0.685046\pi\)
\(734\) −20.2580 −0.747738
\(735\) 0 0
\(736\) 62.7776 2.31401
\(737\) −55.7123 −2.05219
\(738\) 0 0
\(739\) 42.9178 1.57876 0.789379 0.613906i \(-0.210403\pi\)
0.789379 + 0.613906i \(0.210403\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 38.0950 1.39851
\(743\) −10.9064 −0.400117 −0.200058 0.979784i \(-0.564113\pi\)
−0.200058 + 0.979784i \(0.564113\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 30.0168 1.09899
\(747\) 0 0
\(748\) 7.96211 0.291124
\(749\) 6.39743 0.233757
\(750\) 0 0
\(751\) 47.2977 1.72592 0.862960 0.505273i \(-0.168608\pi\)
0.862960 + 0.505273i \(0.168608\pi\)
\(752\) 13.7521 0.501488
\(753\) 0 0
\(754\) 6.57809 0.239560
\(755\) 0 0
\(756\) 0 0
\(757\) −33.3406 −1.21179 −0.605893 0.795546i \(-0.707184\pi\)
−0.605893 + 0.795546i \(0.707184\pi\)
\(758\) 0.132963 0.00482944
\(759\) 0 0
\(760\) 0 0
\(761\) 45.9707 1.66644 0.833219 0.552944i \(-0.186496\pi\)
0.833219 + 0.552944i \(0.186496\pi\)
\(762\) 0 0
\(763\) 20.1965 0.731162
\(764\) 35.7082 1.29188
\(765\) 0 0
\(766\) 21.4811 0.776144
\(767\) 7.58939 0.274037
\(768\) 0 0
\(769\) −9.21048 −0.332138 −0.166069 0.986114i \(-0.553108\pi\)
−0.166069 + 0.986114i \(0.553108\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 45.4007 1.63401
\(773\) −28.6595 −1.03081 −0.515405 0.856947i \(-0.672358\pi\)
−0.515405 + 0.856947i \(0.672358\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 4.01152 0.144005
\(777\) 0 0
\(778\) −12.5793 −0.450989
\(779\) 56.2737 2.01621
\(780\) 0 0
\(781\) 21.9066 0.783881
\(782\) 12.5561 0.449005
\(783\) 0 0
\(784\) 7.56718 0.270256
\(785\) 0 0
\(786\) 0 0
\(787\) −20.8195 −0.742136 −0.371068 0.928606i \(-0.621008\pi\)
−0.371068 + 0.928606i \(0.621008\pi\)
\(788\) −62.5837 −2.22945
\(789\) 0 0
\(790\) 0 0
\(791\) −5.68948 −0.202295
\(792\) 0 0
\(793\) 25.1892 0.894496
\(794\) −15.0496 −0.534090
\(795\) 0 0
\(796\) −3.57298 −0.126641
\(797\) −44.8656 −1.58922 −0.794610 0.607120i \(-0.792325\pi\)
−0.794610 + 0.607120i \(0.792325\pi\)
\(798\) 0 0
\(799\) 6.14931 0.217547
\(800\) 0 0
\(801\) 0 0
\(802\) −25.9228 −0.915365
\(803\) −68.6734 −2.42343
\(804\) 0 0
\(805\) 0 0
\(806\) −41.2457 −1.45282
\(807\) 0 0
\(808\) 24.5052 0.862090
\(809\) 26.6975 0.938633 0.469317 0.883030i \(-0.344500\pi\)
0.469317 + 0.883030i \(0.344500\pi\)
\(810\) 0 0
\(811\) −21.6414 −0.759934 −0.379967 0.925000i \(-0.624065\pi\)
−0.379967 + 0.925000i \(0.624065\pi\)
\(812\) 3.80150 0.133406
\(813\) 0 0
\(814\) 8.86281 0.310641
\(815\) 0 0
\(816\) 0 0
\(817\) 10.3606 0.362473
\(818\) −49.2270 −1.72118
\(819\) 0 0
\(820\) 0 0
\(821\) −36.0374 −1.25771 −0.628857 0.777521i \(-0.716477\pi\)
−0.628857 + 0.777521i \(0.716477\pi\)
\(822\) 0 0
\(823\) 23.4577 0.817684 0.408842 0.912605i \(-0.365933\pi\)
0.408842 + 0.912605i \(0.365933\pi\)
\(824\) 20.9438 0.729611
\(825\) 0 0
\(826\) 7.42364 0.258301
\(827\) 14.7623 0.513334 0.256667 0.966500i \(-0.417376\pi\)
0.256667 + 0.966500i \(0.417376\pi\)
\(828\) 0 0
\(829\) 5.63801 0.195816 0.0979081 0.995195i \(-0.468785\pi\)
0.0979081 + 0.995195i \(0.468785\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −38.1628 −1.32306
\(833\) 3.38369 0.117238
\(834\) 0 0
\(835\) 0 0
\(836\) 62.9495 2.17715
\(837\) 0 0
\(838\) 62.3776 2.15480
\(839\) 56.4632 1.94932 0.974662 0.223681i \(-0.0718073\pi\)
0.974662 + 0.223681i \(0.0718073\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −76.3098 −2.62981
\(843\) 0 0
\(844\) −14.5927 −0.502301
\(845\) 0 0
\(846\) 0 0
\(847\) 9.76858 0.335652
\(848\) −18.8055 −0.645784
\(849\) 0 0
\(850\) 0 0
\(851\) 8.25740 0.283060
\(852\) 0 0
\(853\) −38.2731 −1.31045 −0.655223 0.755436i \(-0.727425\pi\)
−0.655223 + 0.755436i \(0.727425\pi\)
\(854\) 24.6391 0.843133
\(855\) 0 0
\(856\) 9.53663 0.325955
\(857\) −47.5891 −1.62561 −0.812806 0.582534i \(-0.802061\pi\)
−0.812806 + 0.582534i \(0.802061\pi\)
\(858\) 0 0
\(859\) −19.4348 −0.663108 −0.331554 0.943436i \(-0.607573\pi\)
−0.331554 + 0.943436i \(0.607573\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −50.9984 −1.73701
\(863\) −24.3695 −0.829546 −0.414773 0.909925i \(-0.636139\pi\)
−0.414773 + 0.909925i \(0.636139\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 39.4671 1.34115
\(867\) 0 0
\(868\) −23.8360 −0.809047
\(869\) 14.1855 0.481209
\(870\) 0 0
\(871\) 38.6235 1.30871
\(872\) 30.1068 1.01955
\(873\) 0 0
\(874\) 99.2703 3.35787
\(875\) 0 0
\(876\) 0 0
\(877\) −23.4009 −0.790193 −0.395097 0.918640i \(-0.629289\pi\)
−0.395097 + 0.918640i \(0.629289\pi\)
\(878\) −7.33225 −0.247451
\(879\) 0 0
\(880\) 0 0
\(881\) −49.1434 −1.65568 −0.827841 0.560963i \(-0.810431\pi\)
−0.827841 + 0.560963i \(0.810431\pi\)
\(882\) 0 0
\(883\) 42.0245 1.41424 0.707118 0.707095i \(-0.249995\pi\)
0.707118 + 0.707095i \(0.249995\pi\)
\(884\) −5.51987 −0.185653
\(885\) 0 0
\(886\) −66.0628 −2.21942
\(887\) −38.7280 −1.30036 −0.650179 0.759781i \(-0.725306\pi\)
−0.650179 + 0.759781i \(0.725306\pi\)
\(888\) 0 0
\(889\) −28.4105 −0.952857
\(890\) 0 0
\(891\) 0 0
\(892\) 46.8516 1.56871
\(893\) 48.6173 1.62691
\(894\) 0 0
\(895\) 0 0
\(896\) −18.6323 −0.622460
\(897\) 0 0
\(898\) −19.6584 −0.656011
\(899\) −6.27016 −0.209122
\(900\) 0 0
\(901\) −8.40895 −0.280143
\(902\) 105.125 3.50029
\(903\) 0 0
\(904\) −8.48129 −0.282084
\(905\) 0 0
\(906\) 0 0
\(907\) −22.7366 −0.754956 −0.377478 0.926019i \(-0.623209\pi\)
−0.377478 + 0.926019i \(0.623209\pi\)
\(908\) −19.7138 −0.654224
\(909\) 0 0
\(910\) 0 0
\(911\) −5.74791 −0.190437 −0.0952183 0.995456i \(-0.530355\pi\)
−0.0952183 + 0.995456i \(0.530355\pi\)
\(912\) 0 0
\(913\) 22.5170 0.745203
\(914\) 43.9625 1.45415
\(915\) 0 0
\(916\) −16.9541 −0.560178
\(917\) −12.1859 −0.402415
\(918\) 0 0
\(919\) 52.1835 1.72137 0.860687 0.509135i \(-0.170035\pi\)
0.860687 + 0.509135i \(0.170035\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30.0175 0.988572
\(923\) −15.1871 −0.499891
\(924\) 0 0
\(925\) 0 0
\(926\) −65.8036 −2.16244
\(927\) 0 0
\(928\) −7.10123 −0.233109
\(929\) 4.61899 0.151544 0.0757721 0.997125i \(-0.475858\pi\)
0.0757721 + 0.997125i \(0.475858\pi\)
\(930\) 0 0
\(931\) 26.7519 0.876758
\(932\) 40.8469 1.33799
\(933\) 0 0
\(934\) −14.5198 −0.475104
\(935\) 0 0
\(936\) 0 0
\(937\) 22.8991 0.748082 0.374041 0.927412i \(-0.377972\pi\)
0.374041 + 0.927412i \(0.377972\pi\)
\(938\) 37.7800 1.23356
\(939\) 0 0
\(940\) 0 0
\(941\) −24.1297 −0.786604 −0.393302 0.919409i \(-0.628667\pi\)
−0.393302 + 0.919409i \(0.628667\pi\)
\(942\) 0 0
\(943\) 97.9442 3.18950
\(944\) −3.66466 −0.119275
\(945\) 0 0
\(946\) 19.3548 0.629278
\(947\) 13.6427 0.443329 0.221665 0.975123i \(-0.428851\pi\)
0.221665 + 0.975123i \(0.428851\pi\)
\(948\) 0 0
\(949\) 47.6090 1.54545
\(950\) 0 0
\(951\) 0 0
\(952\) −1.65974 −0.0537925
\(953\) 45.3303 1.46839 0.734196 0.678937i \(-0.237559\pi\)
0.734196 + 0.678937i \(0.237559\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 59.7514 1.93250
\(957\) 0 0
\(958\) −81.6113 −2.63674
\(959\) 1.11079 0.0358692
\(960\) 0 0
\(961\) 8.31492 0.268223
\(962\) −6.14429 −0.198100
\(963\) 0 0
\(964\) −22.8369 −0.735528
\(965\) 0 0
\(966\) 0 0
\(967\) 45.2638 1.45558 0.727792 0.685798i \(-0.240547\pi\)
0.727792 + 0.685798i \(0.240547\pi\)
\(968\) 14.5620 0.468040
\(969\) 0 0
\(970\) 0 0
\(971\) 47.1089 1.51180 0.755899 0.654688i \(-0.227200\pi\)
0.755899 + 0.654688i \(0.227200\pi\)
\(972\) 0 0
\(973\) −18.4011 −0.589912
\(974\) −54.0006 −1.73029
\(975\) 0 0
\(976\) −12.1630 −0.389330
\(977\) −2.89922 −0.0927542 −0.0463771 0.998924i \(-0.514768\pi\)
−0.0463771 + 0.998924i \(0.514768\pi\)
\(978\) 0 0
\(979\) −21.6778 −0.692826
\(980\) 0 0
\(981\) 0 0
\(982\) 1.83068 0.0584193
\(983\) 37.0610 1.18206 0.591031 0.806649i \(-0.298721\pi\)
0.591031 + 0.806649i \(0.298721\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.42031 −0.0452320
\(987\) 0 0
\(988\) −43.6408 −1.38840
\(989\) 18.0327 0.573406
\(990\) 0 0
\(991\) 17.4669 0.554854 0.277427 0.960747i \(-0.410518\pi\)
0.277427 + 0.960747i \(0.410518\pi\)
\(992\) 44.5259 1.41370
\(993\) 0 0
\(994\) −14.8555 −0.471187
\(995\) 0 0
\(996\) 0 0
\(997\) 19.4726 0.616703 0.308352 0.951272i \(-0.400223\pi\)
0.308352 + 0.951272i \(0.400223\pi\)
\(998\) 72.3846 2.29129
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ca.1.9 9
3.2 odd 2 6525.2.a.cc.1.1 yes 9
5.4 even 2 6525.2.a.cd.1.1 yes 9
15.14 odd 2 6525.2.a.cb.1.9 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.9 9 1.1 even 1 trivial
6525.2.a.cb.1.9 yes 9 15.14 odd 2
6525.2.a.cc.1.1 yes 9 3.2 odd 2
6525.2.a.cd.1.1 yes 9 5.4 even 2