Properties

Label 6525.2.a.ca.1.8
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.07907\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07907 q^{2} +2.32253 q^{4} -0.602349 q^{7} +0.670572 q^{8} +O(q^{10})\) \(q+2.07907 q^{2} +2.32253 q^{4} -0.602349 q^{7} +0.670572 q^{8} +3.75239 q^{11} -3.15004 q^{13} -1.25233 q^{14} -3.25090 q^{16} -5.57575 q^{17} -3.67364 q^{19} +7.80148 q^{22} +5.90758 q^{23} -6.54916 q^{26} -1.39898 q^{28} +1.00000 q^{29} -3.09420 q^{31} -8.10000 q^{32} -11.5924 q^{34} -9.93312 q^{37} -7.63775 q^{38} +0.0283906 q^{41} +5.05112 q^{43} +8.71505 q^{44} +12.2823 q^{46} -2.15340 q^{47} -6.63718 q^{49} -7.31608 q^{52} -11.6728 q^{53} -0.403918 q^{56} +2.07907 q^{58} +9.99216 q^{59} -5.22662 q^{61} -6.43305 q^{62} -10.3387 q^{64} -12.7239 q^{67} -12.9499 q^{68} +5.71593 q^{71} +8.39474 q^{73} -20.6517 q^{74} -8.53214 q^{76} -2.26025 q^{77} +9.33285 q^{79} +0.0590260 q^{82} -13.6956 q^{83} +10.5016 q^{86} +2.51625 q^{88} +10.8845 q^{89} +1.89742 q^{91} +13.7206 q^{92} -4.47707 q^{94} -11.3848 q^{97} -13.7992 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8} + 2 q^{11} - q^{13} - 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} - 3 q^{22} - 16 q^{23} + 6 q^{26} + 4 q^{28} + 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} - 10 q^{41} - 3 q^{43} - 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} + 9 q^{52} - 22 q^{53} + 22 q^{56} - 2 q^{58} + 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} - 5 q^{67} - 39 q^{68} + 10 q^{73} - 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} + 8 q^{82} - 46 q^{83} + 28 q^{86} - 2 q^{88} + 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} - 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07907 1.47012 0.735062 0.677999i \(-0.237153\pi\)
0.735062 + 0.677999i \(0.237153\pi\)
\(3\) 0 0
\(4\) 2.32253 1.16127
\(5\) 0 0
\(6\) 0 0
\(7\) −0.602349 −0.227666 −0.113833 0.993500i \(-0.536313\pi\)
−0.113833 + 0.993500i \(0.536313\pi\)
\(8\) 0.670572 0.237083
\(9\) 0 0
\(10\) 0 0
\(11\) 3.75239 1.13139 0.565694 0.824615i \(-0.308608\pi\)
0.565694 + 0.824615i \(0.308608\pi\)
\(12\) 0 0
\(13\) −3.15004 −0.873664 −0.436832 0.899543i \(-0.643900\pi\)
−0.436832 + 0.899543i \(0.643900\pi\)
\(14\) −1.25233 −0.334698
\(15\) 0 0
\(16\) −3.25090 −0.812726
\(17\) −5.57575 −1.35232 −0.676159 0.736756i \(-0.736357\pi\)
−0.676159 + 0.736756i \(0.736357\pi\)
\(18\) 0 0
\(19\) −3.67364 −0.842790 −0.421395 0.906877i \(-0.638459\pi\)
−0.421395 + 0.906877i \(0.638459\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.80148 1.66328
\(23\) 5.90758 1.23182 0.615908 0.787818i \(-0.288789\pi\)
0.615908 + 0.787818i \(0.288789\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.54916 −1.28440
\(27\) 0 0
\(28\) −1.39898 −0.264381
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −3.09420 −0.555734 −0.277867 0.960620i \(-0.589627\pi\)
−0.277867 + 0.960620i \(0.589627\pi\)
\(32\) −8.10000 −1.43189
\(33\) 0 0
\(34\) −11.5924 −1.98808
\(35\) 0 0
\(36\) 0 0
\(37\) −9.93312 −1.63299 −0.816497 0.577349i \(-0.804087\pi\)
−0.816497 + 0.577349i \(0.804087\pi\)
\(38\) −7.63775 −1.23901
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0283906 0.00443386 0.00221693 0.999998i \(-0.499294\pi\)
0.00221693 + 0.999998i \(0.499294\pi\)
\(42\) 0 0
\(43\) 5.05112 0.770288 0.385144 0.922856i \(-0.374152\pi\)
0.385144 + 0.922856i \(0.374152\pi\)
\(44\) 8.71505 1.31384
\(45\) 0 0
\(46\) 12.2823 1.81092
\(47\) −2.15340 −0.314105 −0.157053 0.987590i \(-0.550199\pi\)
−0.157053 + 0.987590i \(0.550199\pi\)
\(48\) 0 0
\(49\) −6.63718 −0.948168
\(50\) 0 0
\(51\) 0 0
\(52\) −7.31608 −1.01456
\(53\) −11.6728 −1.60338 −0.801689 0.597742i \(-0.796065\pi\)
−0.801689 + 0.597742i \(0.796065\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.403918 −0.0539758
\(57\) 0 0
\(58\) 2.07907 0.272995
\(59\) 9.99216 1.30087 0.650434 0.759562i \(-0.274587\pi\)
0.650434 + 0.759562i \(0.274587\pi\)
\(60\) 0 0
\(61\) −5.22662 −0.669200 −0.334600 0.942360i \(-0.608601\pi\)
−0.334600 + 0.942360i \(0.608601\pi\)
\(62\) −6.43305 −0.816998
\(63\) 0 0
\(64\) −10.3387 −1.29233
\(65\) 0 0
\(66\) 0 0
\(67\) −12.7239 −1.55447 −0.777237 0.629208i \(-0.783379\pi\)
−0.777237 + 0.629208i \(0.783379\pi\)
\(68\) −12.9499 −1.57040
\(69\) 0 0
\(70\) 0 0
\(71\) 5.71593 0.678356 0.339178 0.940722i \(-0.389851\pi\)
0.339178 + 0.940722i \(0.389851\pi\)
\(72\) 0 0
\(73\) 8.39474 0.982530 0.491265 0.871010i \(-0.336535\pi\)
0.491265 + 0.871010i \(0.336535\pi\)
\(74\) −20.6517 −2.40071
\(75\) 0 0
\(76\) −8.53214 −0.978704
\(77\) −2.26025 −0.257579
\(78\) 0 0
\(79\) 9.33285 1.05003 0.525014 0.851094i \(-0.324060\pi\)
0.525014 + 0.851094i \(0.324060\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0.0590260 0.00651833
\(83\) −13.6956 −1.50328 −0.751642 0.659572i \(-0.770738\pi\)
−0.751642 + 0.659572i \(0.770738\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.5016 1.13242
\(87\) 0 0
\(88\) 2.51625 0.268233
\(89\) 10.8845 1.15376 0.576878 0.816831i \(-0.304271\pi\)
0.576878 + 0.816831i \(0.304271\pi\)
\(90\) 0 0
\(91\) 1.89742 0.198904
\(92\) 13.7206 1.43047
\(93\) 0 0
\(94\) −4.47707 −0.461774
\(95\) 0 0
\(96\) 0 0
\(97\) −11.3848 −1.15595 −0.577974 0.816055i \(-0.696156\pi\)
−0.577974 + 0.816055i \(0.696156\pi\)
\(98\) −13.7992 −1.39393
\(99\) 0 0
\(100\) 0 0
\(101\) −16.9341 −1.68501 −0.842504 0.538691i \(-0.818919\pi\)
−0.842504 + 0.538691i \(0.818919\pi\)
\(102\) 0 0
\(103\) 13.6553 1.34549 0.672747 0.739873i \(-0.265114\pi\)
0.672747 + 0.739873i \(0.265114\pi\)
\(104\) −2.11233 −0.207131
\(105\) 0 0
\(106\) −24.2685 −2.35716
\(107\) −13.9028 −1.34403 −0.672016 0.740537i \(-0.734571\pi\)
−0.672016 + 0.740537i \(0.734571\pi\)
\(108\) 0 0
\(109\) −16.0090 −1.53338 −0.766692 0.642015i \(-0.778099\pi\)
−0.766692 + 0.642015i \(0.778099\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.95818 0.185030
\(113\) 16.2316 1.52694 0.763468 0.645845i \(-0.223495\pi\)
0.763468 + 0.645845i \(0.223495\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.32253 0.215642
\(117\) 0 0
\(118\) 20.7744 1.91244
\(119\) 3.35855 0.307877
\(120\) 0 0
\(121\) 3.08043 0.280039
\(122\) −10.8665 −0.983808
\(123\) 0 0
\(124\) −7.18637 −0.645356
\(125\) 0 0
\(126\) 0 0
\(127\) 2.82607 0.250773 0.125386 0.992108i \(-0.459983\pi\)
0.125386 + 0.992108i \(0.459983\pi\)
\(128\) −5.29482 −0.468000
\(129\) 0 0
\(130\) 0 0
\(131\) −6.34528 −0.554390 −0.277195 0.960814i \(-0.589405\pi\)
−0.277195 + 0.960814i \(0.589405\pi\)
\(132\) 0 0
\(133\) 2.21281 0.191875
\(134\) −26.4539 −2.28527
\(135\) 0 0
\(136\) −3.73894 −0.320612
\(137\) −10.2875 −0.878924 −0.439462 0.898261i \(-0.644831\pi\)
−0.439462 + 0.898261i \(0.644831\pi\)
\(138\) 0 0
\(139\) 0.646440 0.0548303 0.0274152 0.999624i \(-0.491272\pi\)
0.0274152 + 0.999624i \(0.491272\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.8838 0.997268
\(143\) −11.8202 −0.988453
\(144\) 0 0
\(145\) 0 0
\(146\) 17.4533 1.44444
\(147\) 0 0
\(148\) −23.0700 −1.89634
\(149\) −4.56864 −0.374278 −0.187139 0.982333i \(-0.559921\pi\)
−0.187139 + 0.982333i \(0.559921\pi\)
\(150\) 0 0
\(151\) 16.1563 1.31478 0.657391 0.753550i \(-0.271660\pi\)
0.657391 + 0.753550i \(0.271660\pi\)
\(152\) −2.46344 −0.199811
\(153\) 0 0
\(154\) −4.69921 −0.378673
\(155\) 0 0
\(156\) 0 0
\(157\) −1.34956 −0.107706 −0.0538532 0.998549i \(-0.517150\pi\)
−0.0538532 + 0.998549i \(0.517150\pi\)
\(158\) 19.4037 1.54367
\(159\) 0 0
\(160\) 0 0
\(161\) −3.55842 −0.280443
\(162\) 0 0
\(163\) 22.6410 1.77338 0.886691 0.462362i \(-0.152998\pi\)
0.886691 + 0.462362i \(0.152998\pi\)
\(164\) 0.0659381 0.00514890
\(165\) 0 0
\(166\) −28.4740 −2.21001
\(167\) 2.94950 0.228239 0.114120 0.993467i \(-0.463595\pi\)
0.114120 + 0.993467i \(0.463595\pi\)
\(168\) 0 0
\(169\) −3.07724 −0.236711
\(170\) 0 0
\(171\) 0 0
\(172\) 11.7314 0.894510
\(173\) −8.95911 −0.681149 −0.340574 0.940218i \(-0.610622\pi\)
−0.340574 + 0.940218i \(0.610622\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −12.1987 −0.919508
\(177\) 0 0
\(178\) 22.6296 1.69616
\(179\) −3.48533 −0.260506 −0.130253 0.991481i \(-0.541579\pi\)
−0.130253 + 0.991481i \(0.541579\pi\)
\(180\) 0 0
\(181\) −15.3531 −1.14118 −0.570592 0.821234i \(-0.693286\pi\)
−0.570592 + 0.821234i \(0.693286\pi\)
\(182\) 3.94488 0.292414
\(183\) 0 0
\(184\) 3.96146 0.292043
\(185\) 0 0
\(186\) 0 0
\(187\) −20.9224 −1.53000
\(188\) −5.00134 −0.364760
\(189\) 0 0
\(190\) 0 0
\(191\) −0.749204 −0.0542105 −0.0271052 0.999633i \(-0.508629\pi\)
−0.0271052 + 0.999633i \(0.508629\pi\)
\(192\) 0 0
\(193\) −22.5804 −1.62538 −0.812688 0.582700i \(-0.801996\pi\)
−0.812688 + 0.582700i \(0.801996\pi\)
\(194\) −23.6697 −1.69939
\(195\) 0 0
\(196\) −15.4151 −1.10108
\(197\) 11.8996 0.847809 0.423905 0.905707i \(-0.360659\pi\)
0.423905 + 0.905707i \(0.360659\pi\)
\(198\) 0 0
\(199\) 9.59105 0.679891 0.339946 0.940445i \(-0.389591\pi\)
0.339946 + 0.940445i \(0.389591\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −35.2072 −2.47717
\(203\) −0.602349 −0.0422766
\(204\) 0 0
\(205\) 0 0
\(206\) 28.3903 1.97804
\(207\) 0 0
\(208\) 10.2405 0.710049
\(209\) −13.7849 −0.953522
\(210\) 0 0
\(211\) 20.1027 1.38392 0.691962 0.721934i \(-0.256747\pi\)
0.691962 + 0.721934i \(0.256747\pi\)
\(212\) −27.1104 −1.86195
\(213\) 0 0
\(214\) −28.9049 −1.97590
\(215\) 0 0
\(216\) 0 0
\(217\) 1.86378 0.126522
\(218\) −33.2838 −2.25427
\(219\) 0 0
\(220\) 0 0
\(221\) 17.5638 1.18147
\(222\) 0 0
\(223\) −18.0107 −1.20608 −0.603042 0.797710i \(-0.706045\pi\)
−0.603042 + 0.797710i \(0.706045\pi\)
\(224\) 4.87902 0.325993
\(225\) 0 0
\(226\) 33.7466 2.24479
\(227\) −18.0809 −1.20007 −0.600035 0.799974i \(-0.704847\pi\)
−0.600035 + 0.799974i \(0.704847\pi\)
\(228\) 0 0
\(229\) −8.34926 −0.551734 −0.275867 0.961196i \(-0.588965\pi\)
−0.275867 + 0.961196i \(0.588965\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.670572 0.0440252
\(233\) −0.184490 −0.0120864 −0.00604319 0.999982i \(-0.501924\pi\)
−0.00604319 + 0.999982i \(0.501924\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 23.2071 1.51066
\(237\) 0 0
\(238\) 6.98265 0.452618
\(239\) 8.03156 0.519519 0.259759 0.965673i \(-0.416357\pi\)
0.259759 + 0.965673i \(0.416357\pi\)
\(240\) 0 0
\(241\) 10.8545 0.699200 0.349600 0.936899i \(-0.386317\pi\)
0.349600 + 0.936899i \(0.386317\pi\)
\(242\) 6.40442 0.411692
\(243\) 0 0
\(244\) −12.1390 −0.777121
\(245\) 0 0
\(246\) 0 0
\(247\) 11.5721 0.736315
\(248\) −2.07488 −0.131755
\(249\) 0 0
\(250\) 0 0
\(251\) −8.32044 −0.525182 −0.262591 0.964907i \(-0.584577\pi\)
−0.262591 + 0.964907i \(0.584577\pi\)
\(252\) 0 0
\(253\) 22.1675 1.39366
\(254\) 5.87559 0.368668
\(255\) 0 0
\(256\) 9.66903 0.604315
\(257\) 28.0860 1.75195 0.875977 0.482352i \(-0.160217\pi\)
0.875977 + 0.482352i \(0.160217\pi\)
\(258\) 0 0
\(259\) 5.98320 0.371778
\(260\) 0 0
\(261\) 0 0
\(262\) −13.1923 −0.815022
\(263\) −6.69144 −0.412612 −0.206306 0.978488i \(-0.566144\pi\)
−0.206306 + 0.978488i \(0.566144\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 4.60059 0.282080
\(267\) 0 0
\(268\) −29.5517 −1.80516
\(269\) −6.80593 −0.414965 −0.207482 0.978239i \(-0.566527\pi\)
−0.207482 + 0.978239i \(0.566527\pi\)
\(270\) 0 0
\(271\) 16.0776 0.976643 0.488322 0.872664i \(-0.337609\pi\)
0.488322 + 0.872664i \(0.337609\pi\)
\(272\) 18.1262 1.09906
\(273\) 0 0
\(274\) −21.3885 −1.29213
\(275\) 0 0
\(276\) 0 0
\(277\) 7.67018 0.460856 0.230428 0.973089i \(-0.425987\pi\)
0.230428 + 0.973089i \(0.425987\pi\)
\(278\) 1.34399 0.0806074
\(279\) 0 0
\(280\) 0 0
\(281\) 0.255777 0.0152584 0.00762919 0.999971i \(-0.497572\pi\)
0.00762919 + 0.999971i \(0.497572\pi\)
\(282\) 0 0
\(283\) 0.918149 0.0545783 0.0272892 0.999628i \(-0.491313\pi\)
0.0272892 + 0.999628i \(0.491313\pi\)
\(284\) 13.2754 0.787753
\(285\) 0 0
\(286\) −24.5750 −1.45315
\(287\) −0.0171010 −0.00100944
\(288\) 0 0
\(289\) 14.0890 0.828764
\(290\) 0 0
\(291\) 0 0
\(292\) 19.4971 1.14098
\(293\) 3.52768 0.206089 0.103045 0.994677i \(-0.467142\pi\)
0.103045 + 0.994677i \(0.467142\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.66087 −0.387155
\(297\) 0 0
\(298\) −9.49853 −0.550235
\(299\) −18.6091 −1.07619
\(300\) 0 0
\(301\) −3.04253 −0.175369
\(302\) 33.5901 1.93289
\(303\) 0 0
\(304\) 11.9426 0.684957
\(305\) 0 0
\(306\) 0 0
\(307\) −11.2224 −0.640494 −0.320247 0.947334i \(-0.603766\pi\)
−0.320247 + 0.947334i \(0.603766\pi\)
\(308\) −5.24950 −0.299118
\(309\) 0 0
\(310\) 0 0
\(311\) 33.3035 1.88847 0.944234 0.329274i \(-0.106804\pi\)
0.944234 + 0.329274i \(0.106804\pi\)
\(312\) 0 0
\(313\) 2.90172 0.164015 0.0820073 0.996632i \(-0.473867\pi\)
0.0820073 + 0.996632i \(0.473867\pi\)
\(314\) −2.80583 −0.158342
\(315\) 0 0
\(316\) 21.6759 1.21936
\(317\) 14.4137 0.809552 0.404776 0.914416i \(-0.367349\pi\)
0.404776 + 0.914416i \(0.367349\pi\)
\(318\) 0 0
\(319\) 3.75239 0.210093
\(320\) 0 0
\(321\) 0 0
\(322\) −7.39821 −0.412286
\(323\) 20.4833 1.13972
\(324\) 0 0
\(325\) 0 0
\(326\) 47.0723 2.60709
\(327\) 0 0
\(328\) 0.0190379 0.00105119
\(329\) 1.29710 0.0715112
\(330\) 0 0
\(331\) −4.56720 −0.251036 −0.125518 0.992091i \(-0.540059\pi\)
−0.125518 + 0.992091i \(0.540059\pi\)
\(332\) −31.8084 −1.74571
\(333\) 0 0
\(334\) 6.13222 0.335540
\(335\) 0 0
\(336\) 0 0
\(337\) −9.05419 −0.493213 −0.246607 0.969116i \(-0.579316\pi\)
−0.246607 + 0.969116i \(0.579316\pi\)
\(338\) −6.39781 −0.347995
\(339\) 0 0
\(340\) 0 0
\(341\) −11.6106 −0.628751
\(342\) 0 0
\(343\) 8.21433 0.443532
\(344\) 3.38714 0.182622
\(345\) 0 0
\(346\) −18.6266 −1.00137
\(347\) 4.08659 0.219380 0.109690 0.993966i \(-0.465014\pi\)
0.109690 + 0.993966i \(0.465014\pi\)
\(348\) 0 0
\(349\) −34.4132 −1.84209 −0.921047 0.389451i \(-0.872665\pi\)
−0.921047 + 0.389451i \(0.872665\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −30.3944 −1.62002
\(353\) −15.4658 −0.823162 −0.411581 0.911373i \(-0.635023\pi\)
−0.411581 + 0.911373i \(0.635023\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 25.2796 1.33982
\(357\) 0 0
\(358\) −7.24625 −0.382976
\(359\) 12.3787 0.653323 0.326662 0.945141i \(-0.394076\pi\)
0.326662 + 0.945141i \(0.394076\pi\)
\(360\) 0 0
\(361\) −5.50440 −0.289705
\(362\) −31.9201 −1.67768
\(363\) 0 0
\(364\) 4.40683 0.230981
\(365\) 0 0
\(366\) 0 0
\(367\) 30.9404 1.61508 0.807539 0.589815i \(-0.200799\pi\)
0.807539 + 0.589815i \(0.200799\pi\)
\(368\) −19.2050 −1.00113
\(369\) 0 0
\(370\) 0 0
\(371\) 7.03107 0.365035
\(372\) 0 0
\(373\) 34.6136 1.79222 0.896112 0.443828i \(-0.146380\pi\)
0.896112 + 0.443828i \(0.146380\pi\)
\(374\) −43.4991 −2.24929
\(375\) 0 0
\(376\) −1.44401 −0.0744691
\(377\) −3.15004 −0.162235
\(378\) 0 0
\(379\) −7.78953 −0.400122 −0.200061 0.979783i \(-0.564114\pi\)
−0.200061 + 0.979783i \(0.564114\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.55765 −0.0796962
\(383\) −26.3868 −1.34830 −0.674152 0.738592i \(-0.735491\pi\)
−0.674152 + 0.738592i \(0.735491\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −46.9463 −2.38950
\(387\) 0 0
\(388\) −26.4415 −1.34236
\(389\) −31.7173 −1.60813 −0.804065 0.594541i \(-0.797334\pi\)
−0.804065 + 0.594541i \(0.797334\pi\)
\(390\) 0 0
\(391\) −32.9392 −1.66581
\(392\) −4.45070 −0.224795
\(393\) 0 0
\(394\) 24.7400 1.24639
\(395\) 0 0
\(396\) 0 0
\(397\) −26.2946 −1.31969 −0.659845 0.751402i \(-0.729378\pi\)
−0.659845 + 0.751402i \(0.729378\pi\)
\(398\) 19.9405 0.999525
\(399\) 0 0
\(400\) 0 0
\(401\) −23.3208 −1.16459 −0.582294 0.812979i \(-0.697845\pi\)
−0.582294 + 0.812979i \(0.697845\pi\)
\(402\) 0 0
\(403\) 9.74684 0.485525
\(404\) −39.3301 −1.95674
\(405\) 0 0
\(406\) −1.25233 −0.0621519
\(407\) −37.2729 −1.84755
\(408\) 0 0
\(409\) −14.8687 −0.735210 −0.367605 0.929982i \(-0.619822\pi\)
−0.367605 + 0.929982i \(0.619822\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 31.7148 1.56248
\(413\) −6.01877 −0.296164
\(414\) 0 0
\(415\) 0 0
\(416\) 25.5153 1.25099
\(417\) 0 0
\(418\) −28.6598 −1.40180
\(419\) −10.6506 −0.520314 −0.260157 0.965566i \(-0.583774\pi\)
−0.260157 + 0.965566i \(0.583774\pi\)
\(420\) 0 0
\(421\) 21.0394 1.02540 0.512698 0.858569i \(-0.328646\pi\)
0.512698 + 0.858569i \(0.328646\pi\)
\(422\) 41.7948 2.03454
\(423\) 0 0
\(424\) −7.82743 −0.380133
\(425\) 0 0
\(426\) 0 0
\(427\) 3.14825 0.152354
\(428\) −32.2897 −1.56078
\(429\) 0 0
\(430\) 0 0
\(431\) 32.3891 1.56013 0.780064 0.625699i \(-0.215186\pi\)
0.780064 + 0.625699i \(0.215186\pi\)
\(432\) 0 0
\(433\) −31.7159 −1.52417 −0.762084 0.647479i \(-0.775824\pi\)
−0.762084 + 0.647479i \(0.775824\pi\)
\(434\) 3.87494 0.186003
\(435\) 0 0
\(436\) −37.1815 −1.78067
\(437\) −21.7023 −1.03816
\(438\) 0 0
\(439\) 34.4377 1.64362 0.821810 0.569761i \(-0.192964\pi\)
0.821810 + 0.569761i \(0.192964\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 36.5165 1.73691
\(443\) −11.7927 −0.560287 −0.280144 0.959958i \(-0.590382\pi\)
−0.280144 + 0.959958i \(0.590382\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −37.4454 −1.77309
\(447\) 0 0
\(448\) 6.22748 0.294221
\(449\) −1.55151 −0.0732205 −0.0366102 0.999330i \(-0.511656\pi\)
−0.0366102 + 0.999330i \(0.511656\pi\)
\(450\) 0 0
\(451\) 0.106532 0.00501642
\(452\) 37.6984 1.77318
\(453\) 0 0
\(454\) −37.5914 −1.76425
\(455\) 0 0
\(456\) 0 0
\(457\) 12.5511 0.587114 0.293557 0.955942i \(-0.405161\pi\)
0.293557 + 0.955942i \(0.405161\pi\)
\(458\) −17.3587 −0.811118
\(459\) 0 0
\(460\) 0 0
\(461\) 21.2069 0.987705 0.493853 0.869546i \(-0.335588\pi\)
0.493853 + 0.869546i \(0.335588\pi\)
\(462\) 0 0
\(463\) 20.0687 0.932674 0.466337 0.884607i \(-0.345573\pi\)
0.466337 + 0.884607i \(0.345573\pi\)
\(464\) −3.25090 −0.150919
\(465\) 0 0
\(466\) −0.383569 −0.0177685
\(467\) −25.5687 −1.18318 −0.591590 0.806239i \(-0.701499\pi\)
−0.591590 + 0.806239i \(0.701499\pi\)
\(468\) 0 0
\(469\) 7.66423 0.353901
\(470\) 0 0
\(471\) 0 0
\(472\) 6.70047 0.308414
\(473\) 18.9538 0.871495
\(474\) 0 0
\(475\) 0 0
\(476\) 7.80034 0.357528
\(477\) 0 0
\(478\) 16.6982 0.763757
\(479\) −11.3166 −0.517069 −0.258534 0.966002i \(-0.583239\pi\)
−0.258534 + 0.966002i \(0.583239\pi\)
\(480\) 0 0
\(481\) 31.2897 1.42669
\(482\) 22.5673 1.02791
\(483\) 0 0
\(484\) 7.15439 0.325200
\(485\) 0 0
\(486\) 0 0
\(487\) −3.19292 −0.144685 −0.0723426 0.997380i \(-0.523047\pi\)
−0.0723426 + 0.997380i \(0.523047\pi\)
\(488\) −3.50483 −0.158656
\(489\) 0 0
\(490\) 0 0
\(491\) −39.9490 −1.80287 −0.901436 0.432912i \(-0.857486\pi\)
−0.901436 + 0.432912i \(0.857486\pi\)
\(492\) 0 0
\(493\) −5.57575 −0.251119
\(494\) 24.0592 1.08248
\(495\) 0 0
\(496\) 10.0589 0.451659
\(497\) −3.44298 −0.154439
\(498\) 0 0
\(499\) 32.5068 1.45520 0.727601 0.686000i \(-0.240635\pi\)
0.727601 + 0.686000i \(0.240635\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −17.2988 −0.772083
\(503\) 6.24593 0.278492 0.139246 0.990258i \(-0.455532\pi\)
0.139246 + 0.990258i \(0.455532\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 46.0879 2.04886
\(507\) 0 0
\(508\) 6.56364 0.291214
\(509\) −5.13547 −0.227626 −0.113813 0.993502i \(-0.536306\pi\)
−0.113813 + 0.993502i \(0.536306\pi\)
\(510\) 0 0
\(511\) −5.05656 −0.223689
\(512\) 30.6922 1.35642
\(513\) 0 0
\(514\) 58.3927 2.57559
\(515\) 0 0
\(516\) 0 0
\(517\) −8.08039 −0.355375
\(518\) 12.4395 0.546560
\(519\) 0 0
\(520\) 0 0
\(521\) 6.01802 0.263654 0.131827 0.991273i \(-0.457916\pi\)
0.131827 + 0.991273i \(0.457916\pi\)
\(522\) 0 0
\(523\) −23.4215 −1.02415 −0.512075 0.858940i \(-0.671123\pi\)
−0.512075 + 0.858940i \(0.671123\pi\)
\(524\) −14.7371 −0.643795
\(525\) 0 0
\(526\) −13.9120 −0.606591
\(527\) 17.2525 0.751529
\(528\) 0 0
\(529\) 11.8995 0.517369
\(530\) 0 0
\(531\) 0 0
\(532\) 5.13933 0.222818
\(533\) −0.0894315 −0.00387371
\(534\) 0 0
\(535\) 0 0
\(536\) −8.53230 −0.368539
\(537\) 0 0
\(538\) −14.1500 −0.610050
\(539\) −24.9053 −1.07275
\(540\) 0 0
\(541\) 42.0863 1.80943 0.904715 0.426017i \(-0.140084\pi\)
0.904715 + 0.426017i \(0.140084\pi\)
\(542\) 33.4264 1.43579
\(543\) 0 0
\(544\) 45.1636 1.93637
\(545\) 0 0
\(546\) 0 0
\(547\) 15.6945 0.671046 0.335523 0.942032i \(-0.391087\pi\)
0.335523 + 0.942032i \(0.391087\pi\)
\(548\) −23.8932 −1.02067
\(549\) 0 0
\(550\) 0 0
\(551\) −3.67364 −0.156502
\(552\) 0 0
\(553\) −5.62163 −0.239056
\(554\) 15.9468 0.677517
\(555\) 0 0
\(556\) 1.50138 0.0636726
\(557\) 6.74754 0.285902 0.142951 0.989730i \(-0.454341\pi\)
0.142951 + 0.989730i \(0.454341\pi\)
\(558\) 0 0
\(559\) −15.9112 −0.672973
\(560\) 0 0
\(561\) 0 0
\(562\) 0.531779 0.0224317
\(563\) −12.4598 −0.525117 −0.262558 0.964916i \(-0.584566\pi\)
−0.262558 + 0.964916i \(0.584566\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.90890 0.0802369
\(567\) 0 0
\(568\) 3.83294 0.160827
\(569\) 40.8410 1.71214 0.856072 0.516856i \(-0.172898\pi\)
0.856072 + 0.516856i \(0.172898\pi\)
\(570\) 0 0
\(571\) −11.7126 −0.490157 −0.245078 0.969503i \(-0.578814\pi\)
−0.245078 + 0.969503i \(0.578814\pi\)
\(572\) −27.4528 −1.14786
\(573\) 0 0
\(574\) −0.0355542 −0.00148401
\(575\) 0 0
\(576\) 0 0
\(577\) −11.6090 −0.483288 −0.241644 0.970365i \(-0.577687\pi\)
−0.241644 + 0.970365i \(0.577687\pi\)
\(578\) 29.2920 1.21839
\(579\) 0 0
\(580\) 0 0
\(581\) 8.24950 0.342247
\(582\) 0 0
\(583\) −43.8007 −1.81404
\(584\) 5.62928 0.232941
\(585\) 0 0
\(586\) 7.33430 0.302977
\(587\) 9.69989 0.400357 0.200179 0.979759i \(-0.435848\pi\)
0.200179 + 0.979759i \(0.435848\pi\)
\(588\) 0 0
\(589\) 11.3669 0.468367
\(590\) 0 0
\(591\) 0 0
\(592\) 32.2916 1.32718
\(593\) 1.61655 0.0663837 0.0331919 0.999449i \(-0.489433\pi\)
0.0331919 + 0.999449i \(0.489433\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.6108 −0.434636
\(597\) 0 0
\(598\) −38.6897 −1.58214
\(599\) 16.8939 0.690265 0.345132 0.938554i \(-0.387834\pi\)
0.345132 + 0.938554i \(0.387834\pi\)
\(600\) 0 0
\(601\) 29.6603 1.20987 0.604934 0.796275i \(-0.293199\pi\)
0.604934 + 0.796275i \(0.293199\pi\)
\(602\) −6.32564 −0.257814
\(603\) 0 0
\(604\) 37.5236 1.52681
\(605\) 0 0
\(606\) 0 0
\(607\) −14.7374 −0.598172 −0.299086 0.954226i \(-0.596682\pi\)
−0.299086 + 0.954226i \(0.596682\pi\)
\(608\) 29.7564 1.20678
\(609\) 0 0
\(610\) 0 0
\(611\) 6.78329 0.274423
\(612\) 0 0
\(613\) 15.9688 0.644975 0.322488 0.946574i \(-0.395481\pi\)
0.322488 + 0.946574i \(0.395481\pi\)
\(614\) −23.3321 −0.941607
\(615\) 0 0
\(616\) −1.51566 −0.0610676
\(617\) −8.94217 −0.359998 −0.179999 0.983667i \(-0.557609\pi\)
−0.179999 + 0.983667i \(0.557609\pi\)
\(618\) 0 0
\(619\) 10.3149 0.414590 0.207295 0.978279i \(-0.433534\pi\)
0.207295 + 0.978279i \(0.433534\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 69.2404 2.77629
\(623\) −6.55627 −0.262671
\(624\) 0 0
\(625\) 0 0
\(626\) 6.03287 0.241122
\(627\) 0 0
\(628\) −3.13440 −0.125076
\(629\) 55.3846 2.20833
\(630\) 0 0
\(631\) 14.0815 0.560577 0.280288 0.959916i \(-0.409570\pi\)
0.280288 + 0.959916i \(0.409570\pi\)
\(632\) 6.25835 0.248944
\(633\) 0 0
\(634\) 29.9670 1.19014
\(635\) 0 0
\(636\) 0 0
\(637\) 20.9074 0.828380
\(638\) 7.80148 0.308864
\(639\) 0 0
\(640\) 0 0
\(641\) −10.8916 −0.430193 −0.215097 0.976593i \(-0.569007\pi\)
−0.215097 + 0.976593i \(0.569007\pi\)
\(642\) 0 0
\(643\) 35.4722 1.39889 0.699443 0.714689i \(-0.253432\pi\)
0.699443 + 0.714689i \(0.253432\pi\)
\(644\) −8.26456 −0.325669
\(645\) 0 0
\(646\) 42.5862 1.67553
\(647\) −32.7006 −1.28559 −0.642796 0.766037i \(-0.722226\pi\)
−0.642796 + 0.766037i \(0.722226\pi\)
\(648\) 0 0
\(649\) 37.4945 1.47179
\(650\) 0 0
\(651\) 0 0
\(652\) 52.5846 2.05937
\(653\) 12.2635 0.479908 0.239954 0.970784i \(-0.422868\pi\)
0.239954 + 0.970784i \(0.422868\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.0922950 −0.00360351
\(657\) 0 0
\(658\) 2.69676 0.105130
\(659\) 23.6010 0.919364 0.459682 0.888084i \(-0.347963\pi\)
0.459682 + 0.888084i \(0.347963\pi\)
\(660\) 0 0
\(661\) 20.9083 0.813237 0.406618 0.913598i \(-0.366708\pi\)
0.406618 + 0.913598i \(0.366708\pi\)
\(662\) −9.49553 −0.369054
\(663\) 0 0
\(664\) −9.18386 −0.356403
\(665\) 0 0
\(666\) 0 0
\(667\) 5.90758 0.228742
\(668\) 6.85031 0.265047
\(669\) 0 0
\(670\) 0 0
\(671\) −19.6123 −0.757125
\(672\) 0 0
\(673\) 10.0198 0.386234 0.193117 0.981176i \(-0.438140\pi\)
0.193117 + 0.981176i \(0.438140\pi\)
\(674\) −18.8243 −0.725085
\(675\) 0 0
\(676\) −7.14700 −0.274885
\(677\) 9.48674 0.364605 0.182303 0.983242i \(-0.441645\pi\)
0.182303 + 0.983242i \(0.441645\pi\)
\(678\) 0 0
\(679\) 6.85760 0.263170
\(680\) 0 0
\(681\) 0 0
\(682\) −24.1393 −0.924342
\(683\) −2.04161 −0.0781201 −0.0390600 0.999237i \(-0.512436\pi\)
−0.0390600 + 0.999237i \(0.512436\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 17.0782 0.652048
\(687\) 0 0
\(688\) −16.4207 −0.626033
\(689\) 36.7697 1.40081
\(690\) 0 0
\(691\) 33.7822 1.28513 0.642567 0.766229i \(-0.277869\pi\)
0.642567 + 0.766229i \(0.277869\pi\)
\(692\) −20.8078 −0.790996
\(693\) 0 0
\(694\) 8.49631 0.322515
\(695\) 0 0
\(696\) 0 0
\(697\) −0.158299 −0.00599599
\(698\) −71.5474 −2.70811
\(699\) 0 0
\(700\) 0 0
\(701\) −34.0512 −1.28610 −0.643048 0.765826i \(-0.722330\pi\)
−0.643048 + 0.765826i \(0.722330\pi\)
\(702\) 0 0
\(703\) 36.4907 1.37627
\(704\) −38.7947 −1.46213
\(705\) 0 0
\(706\) −32.1545 −1.21015
\(707\) 10.2002 0.383619
\(708\) 0 0
\(709\) 21.4032 0.803814 0.401907 0.915680i \(-0.368347\pi\)
0.401907 + 0.915680i \(0.368347\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.29884 0.273536
\(713\) −18.2792 −0.684562
\(714\) 0 0
\(715\) 0 0
\(716\) −8.09480 −0.302517
\(717\) 0 0
\(718\) 25.7362 0.960467
\(719\) −6.12025 −0.228247 −0.114123 0.993467i \(-0.536406\pi\)
−0.114123 + 0.993467i \(0.536406\pi\)
\(720\) 0 0
\(721\) −8.22523 −0.306324
\(722\) −11.4440 −0.425903
\(723\) 0 0
\(724\) −35.6580 −1.32522
\(725\) 0 0
\(726\) 0 0
\(727\) −3.62879 −0.134584 −0.0672922 0.997733i \(-0.521436\pi\)
−0.0672922 + 0.997733i \(0.521436\pi\)
\(728\) 1.27236 0.0471567
\(729\) 0 0
\(730\) 0 0
\(731\) −28.1638 −1.04167
\(732\) 0 0
\(733\) −37.4985 −1.38504 −0.692519 0.721400i \(-0.743499\pi\)
−0.692519 + 0.721400i \(0.743499\pi\)
\(734\) 64.3273 2.37437
\(735\) 0 0
\(736\) −47.8514 −1.76383
\(737\) −47.7451 −1.75871
\(738\) 0 0
\(739\) 2.03701 0.0749325 0.0374663 0.999298i \(-0.488071\pi\)
0.0374663 + 0.999298i \(0.488071\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 14.6181 0.536647
\(743\) 37.5670 1.37820 0.689099 0.724667i \(-0.258006\pi\)
0.689099 + 0.724667i \(0.258006\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 71.9641 2.63479
\(747\) 0 0
\(748\) −48.5930 −1.77673
\(749\) 8.37432 0.305991
\(750\) 0 0
\(751\) −18.3132 −0.668260 −0.334130 0.942527i \(-0.608442\pi\)
−0.334130 + 0.942527i \(0.608442\pi\)
\(752\) 7.00049 0.255282
\(753\) 0 0
\(754\) −6.54916 −0.238506
\(755\) 0 0
\(756\) 0 0
\(757\) −32.6004 −1.18488 −0.592441 0.805614i \(-0.701836\pi\)
−0.592441 + 0.805614i \(0.701836\pi\)
\(758\) −16.1950 −0.588229
\(759\) 0 0
\(760\) 0 0
\(761\) −17.1784 −0.622715 −0.311358 0.950293i \(-0.600784\pi\)
−0.311358 + 0.950293i \(0.600784\pi\)
\(762\) 0 0
\(763\) 9.64300 0.349100
\(764\) −1.74005 −0.0629528
\(765\) 0 0
\(766\) −54.8601 −1.98218
\(767\) −31.4757 −1.13652
\(768\) 0 0
\(769\) 21.6261 0.779858 0.389929 0.920845i \(-0.372500\pi\)
0.389929 + 0.920845i \(0.372500\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −52.4438 −1.88749
\(773\) −43.4266 −1.56195 −0.780973 0.624565i \(-0.785276\pi\)
−0.780973 + 0.624565i \(0.785276\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −7.63430 −0.274056
\(777\) 0 0
\(778\) −65.9425 −2.36415
\(779\) −0.104297 −0.00373681
\(780\) 0 0
\(781\) 21.4484 0.767484
\(782\) −68.4829 −2.44894
\(783\) 0 0
\(784\) 21.5768 0.770600
\(785\) 0 0
\(786\) 0 0
\(787\) 28.4274 1.01333 0.506663 0.862144i \(-0.330879\pi\)
0.506663 + 0.862144i \(0.330879\pi\)
\(788\) 27.6372 0.984533
\(789\) 0 0
\(790\) 0 0
\(791\) −9.77706 −0.347632
\(792\) 0 0
\(793\) 16.4641 0.584656
\(794\) −54.6684 −1.94011
\(795\) 0 0
\(796\) 22.2755 0.789535
\(797\) −29.4872 −1.04449 −0.522246 0.852795i \(-0.674906\pi\)
−0.522246 + 0.852795i \(0.674906\pi\)
\(798\) 0 0
\(799\) 12.0068 0.424770
\(800\) 0 0
\(801\) 0 0
\(802\) −48.4857 −1.71209
\(803\) 31.5003 1.11162
\(804\) 0 0
\(805\) 0 0
\(806\) 20.2644 0.713782
\(807\) 0 0
\(808\) −11.3555 −0.399487
\(809\) 26.1311 0.918721 0.459361 0.888250i \(-0.348079\pi\)
0.459361 + 0.888250i \(0.348079\pi\)
\(810\) 0 0
\(811\) 40.1295 1.40914 0.704568 0.709637i \(-0.251141\pi\)
0.704568 + 0.709637i \(0.251141\pi\)
\(812\) −1.39898 −0.0490944
\(813\) 0 0
\(814\) −77.4930 −2.71613
\(815\) 0 0
\(816\) 0 0
\(817\) −18.5560 −0.649191
\(818\) −30.9131 −1.08085
\(819\) 0 0
\(820\) 0 0
\(821\) −3.29593 −0.115029 −0.0575143 0.998345i \(-0.518317\pi\)
−0.0575143 + 0.998345i \(0.518317\pi\)
\(822\) 0 0
\(823\) −11.4922 −0.400593 −0.200297 0.979735i \(-0.564191\pi\)
−0.200297 + 0.979735i \(0.564191\pi\)
\(824\) 9.15684 0.318994
\(825\) 0 0
\(826\) −12.5134 −0.435398
\(827\) −39.3099 −1.36694 −0.683470 0.729979i \(-0.739530\pi\)
−0.683470 + 0.729979i \(0.739530\pi\)
\(828\) 0 0
\(829\) 5.76236 0.200135 0.100068 0.994981i \(-0.468094\pi\)
0.100068 + 0.994981i \(0.468094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 32.5672 1.12907
\(833\) 37.0072 1.28222
\(834\) 0 0
\(835\) 0 0
\(836\) −32.0159 −1.10729
\(837\) 0 0
\(838\) −22.1433 −0.764927
\(839\) −12.0263 −0.415193 −0.207596 0.978215i \(-0.566564\pi\)
−0.207596 + 0.978215i \(0.566564\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 43.7423 1.50746
\(843\) 0 0
\(844\) 46.6891 1.60711
\(845\) 0 0
\(846\) 0 0
\(847\) −1.85549 −0.0637554
\(848\) 37.9470 1.30311
\(849\) 0 0
\(850\) 0 0
\(851\) −58.6807 −2.01155
\(852\) 0 0
\(853\) 38.8644 1.33069 0.665346 0.746535i \(-0.268284\pi\)
0.665346 + 0.746535i \(0.268284\pi\)
\(854\) 6.54543 0.223980
\(855\) 0 0
\(856\) −9.32281 −0.318647
\(857\) 18.9047 0.645772 0.322886 0.946438i \(-0.395347\pi\)
0.322886 + 0.946438i \(0.395347\pi\)
\(858\) 0 0
\(859\) 26.1799 0.893245 0.446623 0.894722i \(-0.352627\pi\)
0.446623 + 0.894722i \(0.352627\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 67.3392 2.29358
\(863\) −9.88255 −0.336406 −0.168203 0.985752i \(-0.553796\pi\)
−0.168203 + 0.985752i \(0.553796\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −65.9395 −2.24072
\(867\) 0 0
\(868\) 4.32870 0.146926
\(869\) 35.0205 1.18799
\(870\) 0 0
\(871\) 40.0808 1.35809
\(872\) −10.7352 −0.363539
\(873\) 0 0
\(874\) −45.1206 −1.52623
\(875\) 0 0
\(876\) 0 0
\(877\) 44.4465 1.50085 0.750426 0.660955i \(-0.229849\pi\)
0.750426 + 0.660955i \(0.229849\pi\)
\(878\) 71.5984 2.41633
\(879\) 0 0
\(880\) 0 0
\(881\) −48.1307 −1.62156 −0.810782 0.585348i \(-0.800958\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(882\) 0 0
\(883\) 53.0155 1.78411 0.892056 0.451924i \(-0.149262\pi\)
0.892056 + 0.451924i \(0.149262\pi\)
\(884\) 40.7926 1.37200
\(885\) 0 0
\(886\) −24.5178 −0.823692
\(887\) 3.01914 0.101373 0.0506863 0.998715i \(-0.483859\pi\)
0.0506863 + 0.998715i \(0.483859\pi\)
\(888\) 0 0
\(889\) −1.70228 −0.0570926
\(890\) 0 0
\(891\) 0 0
\(892\) −41.8304 −1.40059
\(893\) 7.91080 0.264725
\(894\) 0 0
\(895\) 0 0
\(896\) 3.18933 0.106548
\(897\) 0 0
\(898\) −3.22571 −0.107643
\(899\) −3.09420 −0.103197
\(900\) 0 0
\(901\) 65.0844 2.16828
\(902\) 0.221489 0.00737476
\(903\) 0 0
\(904\) 10.8844 0.362011
\(905\) 0 0
\(906\) 0 0
\(907\) −4.46070 −0.148115 −0.0740575 0.997254i \(-0.523595\pi\)
−0.0740575 + 0.997254i \(0.523595\pi\)
\(908\) −41.9934 −1.39360
\(909\) 0 0
\(910\) 0 0
\(911\) 33.9155 1.12367 0.561835 0.827249i \(-0.310095\pi\)
0.561835 + 0.827249i \(0.310095\pi\)
\(912\) 0 0
\(913\) −51.3911 −1.70080
\(914\) 26.0945 0.863131
\(915\) 0 0
\(916\) −19.3914 −0.640711
\(917\) 3.82207 0.126216
\(918\) 0 0
\(919\) −17.9083 −0.590739 −0.295370 0.955383i \(-0.595443\pi\)
−0.295370 + 0.955383i \(0.595443\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 44.0907 1.45205
\(923\) −18.0054 −0.592655
\(924\) 0 0
\(925\) 0 0
\(926\) 41.7243 1.37115
\(927\) 0 0
\(928\) −8.10000 −0.265896
\(929\) −31.3508 −1.02859 −0.514293 0.857615i \(-0.671946\pi\)
−0.514293 + 0.857615i \(0.671946\pi\)
\(930\) 0 0
\(931\) 24.3826 0.799106
\(932\) −0.428485 −0.0140355
\(933\) 0 0
\(934\) −53.1592 −1.73942
\(935\) 0 0
\(936\) 0 0
\(937\) −7.95458 −0.259865 −0.129932 0.991523i \(-0.541476\pi\)
−0.129932 + 0.991523i \(0.541476\pi\)
\(938\) 15.9345 0.520279
\(939\) 0 0
\(940\) 0 0
\(941\) 40.7463 1.32829 0.664146 0.747603i \(-0.268796\pi\)
0.664146 + 0.747603i \(0.268796\pi\)
\(942\) 0 0
\(943\) 0.167720 0.00546170
\(944\) −32.4836 −1.05725
\(945\) 0 0
\(946\) 39.4062 1.28121
\(947\) −9.40892 −0.305749 −0.152874 0.988246i \(-0.548853\pi\)
−0.152874 + 0.988246i \(0.548853\pi\)
\(948\) 0 0
\(949\) −26.4438 −0.858401
\(950\) 0 0
\(951\) 0 0
\(952\) 2.25215 0.0729925
\(953\) −32.6522 −1.05771 −0.528854 0.848713i \(-0.677378\pi\)
−0.528854 + 0.848713i \(0.677378\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 18.6536 0.603300
\(957\) 0 0
\(958\) −23.5280 −0.760155
\(959\) 6.19669 0.200101
\(960\) 0 0
\(961\) −21.4260 −0.691160
\(962\) 65.0535 2.09741
\(963\) 0 0
\(964\) 25.2100 0.811958
\(965\) 0 0
\(966\) 0 0
\(967\) 9.12653 0.293489 0.146745 0.989174i \(-0.453120\pi\)
0.146745 + 0.989174i \(0.453120\pi\)
\(968\) 2.06565 0.0663924
\(969\) 0 0
\(970\) 0 0
\(971\) 5.64921 0.181292 0.0906459 0.995883i \(-0.471107\pi\)
0.0906459 + 0.995883i \(0.471107\pi\)
\(972\) 0 0
\(973\) −0.389382 −0.0124830
\(974\) −6.63831 −0.212705
\(975\) 0 0
\(976\) 16.9912 0.543876
\(977\) −32.7475 −1.04768 −0.523842 0.851815i \(-0.675502\pi\)
−0.523842 + 0.851815i \(0.675502\pi\)
\(978\) 0 0
\(979\) 40.8429 1.30534
\(980\) 0 0
\(981\) 0 0
\(982\) −83.0567 −2.65045
\(983\) −33.5033 −1.06859 −0.534295 0.845298i \(-0.679423\pi\)
−0.534295 + 0.845298i \(0.679423\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −11.5924 −0.369177
\(987\) 0 0
\(988\) 26.8766 0.855059
\(989\) 29.8399 0.948853
\(990\) 0 0
\(991\) 22.5805 0.717295 0.358647 0.933473i \(-0.383238\pi\)
0.358647 + 0.933473i \(0.383238\pi\)
\(992\) 25.0630 0.795750
\(993\) 0 0
\(994\) −7.15820 −0.227044
\(995\) 0 0
\(996\) 0 0
\(997\) −22.5164 −0.713102 −0.356551 0.934276i \(-0.616047\pi\)
−0.356551 + 0.934276i \(0.616047\pi\)
\(998\) 67.5839 2.13933
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ca.1.8 9
3.2 odd 2 6525.2.a.cc.1.2 yes 9
5.4 even 2 6525.2.a.cd.1.2 yes 9
15.14 odd 2 6525.2.a.cb.1.8 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.8 9 1.1 even 1 trivial
6525.2.a.cb.1.8 yes 9 15.14 odd 2
6525.2.a.cc.1.2 yes 9 3.2 odd 2
6525.2.a.cd.1.2 yes 9 5.4 even 2