Properties

Label 6525.2.a.ca.1.7
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.10241\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.10241 q^{2} -0.784687 q^{4} -0.259703 q^{7} -3.06987 q^{8} +O(q^{10})\) \(q+1.10241 q^{2} -0.784687 q^{4} -0.259703 q^{7} -3.06987 q^{8} -2.44014 q^{11} +2.69984 q^{13} -0.286300 q^{14} -1.81489 q^{16} -3.91523 q^{17} +6.90606 q^{19} -2.69004 q^{22} -2.05376 q^{23} +2.97634 q^{26} +0.203785 q^{28} +1.00000 q^{29} +7.37721 q^{31} +4.13899 q^{32} -4.31620 q^{34} +0.743697 q^{37} +7.61333 q^{38} -1.04589 q^{41} +9.90608 q^{43} +1.91474 q^{44} -2.26409 q^{46} -2.77675 q^{47} -6.93255 q^{49} -2.11853 q^{52} -12.9332 q^{53} +0.797254 q^{56} +1.10241 q^{58} -14.0907 q^{59} +1.19165 q^{61} +8.13273 q^{62} +8.19266 q^{64} -7.08814 q^{67} +3.07223 q^{68} +10.3985 q^{71} +2.04508 q^{73} +0.819861 q^{74} -5.41909 q^{76} +0.633710 q^{77} -14.7942 q^{79} -1.15300 q^{82} +2.61712 q^{83} +10.9206 q^{86} +7.49091 q^{88} -14.1257 q^{89} -0.701156 q^{91} +1.61156 q^{92} -3.06112 q^{94} -3.01317 q^{97} -7.64254 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8} + 2 q^{11} - q^{13} - 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} - 3 q^{22} - 16 q^{23} + 6 q^{26} + 4 q^{28} + 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} - 10 q^{41} - 3 q^{43} - 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} + 9 q^{52} - 22 q^{53} + 22 q^{56} - 2 q^{58} + 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} - 5 q^{67} - 39 q^{68} + 10 q^{73} - 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} + 8 q^{82} - 46 q^{83} + 28 q^{86} - 2 q^{88} + 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} - 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10241 0.779523 0.389762 0.920916i \(-0.372557\pi\)
0.389762 + 0.920916i \(0.372557\pi\)
\(3\) 0 0
\(4\) −0.784687 −0.392343
\(5\) 0 0
\(6\) 0 0
\(7\) −0.259703 −0.0981584 −0.0490792 0.998795i \(-0.515629\pi\)
−0.0490792 + 0.998795i \(0.515629\pi\)
\(8\) −3.06987 −1.08536
\(9\) 0 0
\(10\) 0 0
\(11\) −2.44014 −0.735729 −0.367865 0.929879i \(-0.619911\pi\)
−0.367865 + 0.929879i \(0.619911\pi\)
\(12\) 0 0
\(13\) 2.69984 0.748801 0.374401 0.927267i \(-0.377849\pi\)
0.374401 + 0.927267i \(0.377849\pi\)
\(14\) −0.286300 −0.0765168
\(15\) 0 0
\(16\) −1.81489 −0.453723
\(17\) −3.91523 −0.949582 −0.474791 0.880099i \(-0.657476\pi\)
−0.474791 + 0.880099i \(0.657476\pi\)
\(18\) 0 0
\(19\) 6.90606 1.58436 0.792179 0.610288i \(-0.208946\pi\)
0.792179 + 0.610288i \(0.208946\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.69004 −0.573518
\(23\) −2.05376 −0.428238 −0.214119 0.976808i \(-0.568688\pi\)
−0.214119 + 0.976808i \(0.568688\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.97634 0.583708
\(27\) 0 0
\(28\) 0.203785 0.0385118
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 7.37721 1.32499 0.662493 0.749068i \(-0.269498\pi\)
0.662493 + 0.749068i \(0.269498\pi\)
\(32\) 4.13899 0.731676
\(33\) 0 0
\(34\) −4.31620 −0.740221
\(35\) 0 0
\(36\) 0 0
\(37\) 0.743697 0.122263 0.0611315 0.998130i \(-0.480529\pi\)
0.0611315 + 0.998130i \(0.480529\pi\)
\(38\) 7.61333 1.23504
\(39\) 0 0
\(40\) 0 0
\(41\) −1.04589 −0.163340 −0.0816702 0.996659i \(-0.526025\pi\)
−0.0816702 + 0.996659i \(0.526025\pi\)
\(42\) 0 0
\(43\) 9.90608 1.51066 0.755331 0.655343i \(-0.227476\pi\)
0.755331 + 0.655343i \(0.227476\pi\)
\(44\) 1.91474 0.288658
\(45\) 0 0
\(46\) −2.26409 −0.333822
\(47\) −2.77675 −0.405030 −0.202515 0.979279i \(-0.564911\pi\)
−0.202515 + 0.979279i \(0.564911\pi\)
\(48\) 0 0
\(49\) −6.93255 −0.990365
\(50\) 0 0
\(51\) 0 0
\(52\) −2.11853 −0.293787
\(53\) −12.9332 −1.77651 −0.888257 0.459348i \(-0.848083\pi\)
−0.888257 + 0.459348i \(0.848083\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.797254 0.106538
\(57\) 0 0
\(58\) 1.10241 0.144754
\(59\) −14.0907 −1.83445 −0.917226 0.398367i \(-0.869577\pi\)
−0.917226 + 0.398367i \(0.869577\pi\)
\(60\) 0 0
\(61\) 1.19165 0.152575 0.0762877 0.997086i \(-0.475693\pi\)
0.0762877 + 0.997086i \(0.475693\pi\)
\(62\) 8.13273 1.03286
\(63\) 0 0
\(64\) 8.19266 1.02408
\(65\) 0 0
\(66\) 0 0
\(67\) −7.08814 −0.865954 −0.432977 0.901405i \(-0.642537\pi\)
−0.432977 + 0.901405i \(0.642537\pi\)
\(68\) 3.07223 0.372562
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3985 1.23407 0.617036 0.786935i \(-0.288333\pi\)
0.617036 + 0.786935i \(0.288333\pi\)
\(72\) 0 0
\(73\) 2.04508 0.239359 0.119679 0.992813i \(-0.461813\pi\)
0.119679 + 0.992813i \(0.461813\pi\)
\(74\) 0.819861 0.0953069
\(75\) 0 0
\(76\) −5.41909 −0.621612
\(77\) 0.633710 0.0722180
\(78\) 0 0
\(79\) −14.7942 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.15300 −0.127328
\(83\) 2.61712 0.287266 0.143633 0.989631i \(-0.454122\pi\)
0.143633 + 0.989631i \(0.454122\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.9206 1.17760
\(87\) 0 0
\(88\) 7.49091 0.798534
\(89\) −14.1257 −1.49732 −0.748659 0.662955i \(-0.769302\pi\)
−0.748659 + 0.662955i \(0.769302\pi\)
\(90\) 0 0
\(91\) −0.701156 −0.0735011
\(92\) 1.61156 0.168016
\(93\) 0 0
\(94\) −3.06112 −0.315730
\(95\) 0 0
\(96\) 0 0
\(97\) −3.01317 −0.305941 −0.152971 0.988231i \(-0.548884\pi\)
−0.152971 + 0.988231i \(0.548884\pi\)
\(98\) −7.64254 −0.772013
\(99\) 0 0
\(100\) 0 0
\(101\) 7.03538 0.700046 0.350023 0.936741i \(-0.386174\pi\)
0.350023 + 0.936741i \(0.386174\pi\)
\(102\) 0 0
\(103\) −4.79874 −0.472834 −0.236417 0.971652i \(-0.575973\pi\)
−0.236417 + 0.971652i \(0.575973\pi\)
\(104\) −8.28817 −0.812722
\(105\) 0 0
\(106\) −14.2577 −1.38483
\(107\) −3.46700 −0.335167 −0.167584 0.985858i \(-0.553596\pi\)
−0.167584 + 0.985858i \(0.553596\pi\)
\(108\) 0 0
\(109\) −13.3130 −1.27515 −0.637575 0.770388i \(-0.720063\pi\)
−0.637575 + 0.770388i \(0.720063\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.471333 0.0445368
\(113\) −14.8958 −1.40128 −0.700642 0.713513i \(-0.747103\pi\)
−0.700642 + 0.713513i \(0.747103\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.784687 −0.0728563
\(117\) 0 0
\(118\) −15.5338 −1.43000
\(119\) 1.01680 0.0932094
\(120\) 0 0
\(121\) −5.04573 −0.458703
\(122\) 1.31369 0.118936
\(123\) 0 0
\(124\) −5.78880 −0.519850
\(125\) 0 0
\(126\) 0 0
\(127\) −17.6125 −1.56285 −0.781426 0.623997i \(-0.785508\pi\)
−0.781426 + 0.623997i \(0.785508\pi\)
\(128\) 0.753718 0.0666199
\(129\) 0 0
\(130\) 0 0
\(131\) 14.9500 1.30619 0.653094 0.757277i \(-0.273471\pi\)
0.653094 + 0.757277i \(0.273471\pi\)
\(132\) 0 0
\(133\) −1.79352 −0.155518
\(134\) −7.81406 −0.675032
\(135\) 0 0
\(136\) 12.0193 1.03064
\(137\) −14.0371 −1.19927 −0.599637 0.800272i \(-0.704688\pi\)
−0.599637 + 0.800272i \(0.704688\pi\)
\(138\) 0 0
\(139\) −12.2747 −1.04112 −0.520562 0.853824i \(-0.674277\pi\)
−0.520562 + 0.853824i \(0.674277\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.4634 0.961988
\(143\) −6.58798 −0.550915
\(144\) 0 0
\(145\) 0 0
\(146\) 2.25453 0.186586
\(147\) 0 0
\(148\) −0.583569 −0.0479691
\(149\) 21.1707 1.73437 0.867184 0.497987i \(-0.165927\pi\)
0.867184 + 0.497987i \(0.165927\pi\)
\(150\) 0 0
\(151\) −7.24726 −0.589774 −0.294887 0.955532i \(-0.595282\pi\)
−0.294887 + 0.955532i \(0.595282\pi\)
\(152\) −21.2007 −1.71961
\(153\) 0 0
\(154\) 0.698610 0.0562956
\(155\) 0 0
\(156\) 0 0
\(157\) 0.639386 0.0510286 0.0255143 0.999674i \(-0.491878\pi\)
0.0255143 + 0.999674i \(0.491878\pi\)
\(158\) −16.3093 −1.29750
\(159\) 0 0
\(160\) 0 0
\(161\) 0.533366 0.0420352
\(162\) 0 0
\(163\) 16.1593 1.26569 0.632847 0.774277i \(-0.281886\pi\)
0.632847 + 0.774277i \(0.281886\pi\)
\(164\) 0.820695 0.0640855
\(165\) 0 0
\(166\) 2.88514 0.223930
\(167\) 3.58496 0.277413 0.138706 0.990334i \(-0.455706\pi\)
0.138706 + 0.990334i \(0.455706\pi\)
\(168\) 0 0
\(169\) −5.71086 −0.439297
\(170\) 0 0
\(171\) 0 0
\(172\) −7.77317 −0.592698
\(173\) −1.44927 −0.110186 −0.0550930 0.998481i \(-0.517546\pi\)
−0.0550930 + 0.998481i \(0.517546\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.42859 0.333818
\(177\) 0 0
\(178\) −15.5723 −1.16719
\(179\) 6.89047 0.515018 0.257509 0.966276i \(-0.417098\pi\)
0.257509 + 0.966276i \(0.417098\pi\)
\(180\) 0 0
\(181\) 8.43599 0.627042 0.313521 0.949581i \(-0.398491\pi\)
0.313521 + 0.949581i \(0.398491\pi\)
\(182\) −0.772963 −0.0572958
\(183\) 0 0
\(184\) 6.30478 0.464794
\(185\) 0 0
\(186\) 0 0
\(187\) 9.55369 0.698635
\(188\) 2.17887 0.158911
\(189\) 0 0
\(190\) 0 0
\(191\) −19.1119 −1.38289 −0.691443 0.722431i \(-0.743025\pi\)
−0.691443 + 0.722431i \(0.743025\pi\)
\(192\) 0 0
\(193\) 26.4643 1.90494 0.952472 0.304628i \(-0.0985320\pi\)
0.952472 + 0.304628i \(0.0985320\pi\)
\(194\) −3.32176 −0.238489
\(195\) 0 0
\(196\) 5.43988 0.388563
\(197\) −16.8537 −1.20077 −0.600387 0.799710i \(-0.704987\pi\)
−0.600387 + 0.799710i \(0.704987\pi\)
\(198\) 0 0
\(199\) 13.8664 0.982966 0.491483 0.870887i \(-0.336455\pi\)
0.491483 + 0.870887i \(0.336455\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 7.75589 0.545703
\(203\) −0.259703 −0.0182276
\(204\) 0 0
\(205\) 0 0
\(206\) −5.29020 −0.368585
\(207\) 0 0
\(208\) −4.89992 −0.339749
\(209\) −16.8517 −1.16566
\(210\) 0 0
\(211\) −3.65686 −0.251748 −0.125874 0.992046i \(-0.540174\pi\)
−0.125874 + 0.992046i \(0.540174\pi\)
\(212\) 10.1485 0.697003
\(213\) 0 0
\(214\) −3.82206 −0.261271
\(215\) 0 0
\(216\) 0 0
\(217\) −1.91588 −0.130059
\(218\) −14.6764 −0.994010
\(219\) 0 0
\(220\) 0 0
\(221\) −10.5705 −0.711048
\(222\) 0 0
\(223\) −28.4822 −1.90731 −0.953653 0.300908i \(-0.902710\pi\)
−0.953653 + 0.300908i \(0.902710\pi\)
\(224\) −1.07491 −0.0718202
\(225\) 0 0
\(226\) −16.4214 −1.09233
\(227\) 21.4599 1.42434 0.712171 0.702006i \(-0.247712\pi\)
0.712171 + 0.702006i \(0.247712\pi\)
\(228\) 0 0
\(229\) 2.45267 0.162077 0.0810386 0.996711i \(-0.474176\pi\)
0.0810386 + 0.996711i \(0.474176\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.06987 −0.201547
\(233\) −0.132148 −0.00865732 −0.00432866 0.999991i \(-0.501378\pi\)
−0.00432866 + 0.999991i \(0.501378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.0568 0.719735
\(237\) 0 0
\(238\) 1.12093 0.0726589
\(239\) −14.0167 −0.906664 −0.453332 0.891342i \(-0.649765\pi\)
−0.453332 + 0.891342i \(0.649765\pi\)
\(240\) 0 0
\(241\) −21.8801 −1.40942 −0.704710 0.709495i \(-0.748923\pi\)
−0.704710 + 0.709495i \(0.748923\pi\)
\(242\) −5.56247 −0.357569
\(243\) 0 0
\(244\) −0.935073 −0.0598619
\(245\) 0 0
\(246\) 0 0
\(247\) 18.6453 1.18637
\(248\) −22.6471 −1.43809
\(249\) 0 0
\(250\) 0 0
\(251\) 3.58156 0.226066 0.113033 0.993591i \(-0.463943\pi\)
0.113033 + 0.993591i \(0.463943\pi\)
\(252\) 0 0
\(253\) 5.01145 0.315067
\(254\) −19.4162 −1.21828
\(255\) 0 0
\(256\) −15.5544 −0.972150
\(257\) −18.1721 −1.13354 −0.566772 0.823874i \(-0.691808\pi\)
−0.566772 + 0.823874i \(0.691808\pi\)
\(258\) 0 0
\(259\) −0.193140 −0.0120011
\(260\) 0 0
\(261\) 0 0
\(262\) 16.4811 1.01820
\(263\) 1.04165 0.0642310 0.0321155 0.999484i \(-0.489776\pi\)
0.0321155 + 0.999484i \(0.489776\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.97720 −0.121230
\(267\) 0 0
\(268\) 5.56197 0.339751
\(269\) 7.41914 0.452353 0.226177 0.974086i \(-0.427377\pi\)
0.226177 + 0.974086i \(0.427377\pi\)
\(270\) 0 0
\(271\) −4.59362 −0.279042 −0.139521 0.990219i \(-0.544556\pi\)
−0.139521 + 0.990219i \(0.544556\pi\)
\(272\) 7.10572 0.430848
\(273\) 0 0
\(274\) −15.4747 −0.934861
\(275\) 0 0
\(276\) 0 0
\(277\) −28.8324 −1.73237 −0.866187 0.499721i \(-0.833436\pi\)
−0.866187 + 0.499721i \(0.833436\pi\)
\(278\) −13.5317 −0.811580
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0972 0.960279 0.480139 0.877192i \(-0.340586\pi\)
0.480139 + 0.877192i \(0.340586\pi\)
\(282\) 0 0
\(283\) −14.7487 −0.876718 −0.438359 0.898800i \(-0.644440\pi\)
−0.438359 + 0.898800i \(0.644440\pi\)
\(284\) −8.15954 −0.484180
\(285\) 0 0
\(286\) −7.26267 −0.429451
\(287\) 0.271620 0.0160332
\(288\) 0 0
\(289\) −1.67100 −0.0982940
\(290\) 0 0
\(291\) 0 0
\(292\) −1.60475 −0.0939109
\(293\) 3.95227 0.230894 0.115447 0.993314i \(-0.463170\pi\)
0.115447 + 0.993314i \(0.463170\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.28306 −0.132700
\(297\) 0 0
\(298\) 23.3388 1.35198
\(299\) −5.54482 −0.320665
\(300\) 0 0
\(301\) −2.57264 −0.148284
\(302\) −7.98947 −0.459742
\(303\) 0 0
\(304\) −12.5338 −0.718861
\(305\) 0 0
\(306\) 0 0
\(307\) −13.6414 −0.778558 −0.389279 0.921120i \(-0.627276\pi\)
−0.389279 + 0.921120i \(0.627276\pi\)
\(308\) −0.497264 −0.0283342
\(309\) 0 0
\(310\) 0 0
\(311\) 23.3238 1.32257 0.661287 0.750133i \(-0.270011\pi\)
0.661287 + 0.750133i \(0.270011\pi\)
\(312\) 0 0
\(313\) 32.2649 1.82372 0.911861 0.410499i \(-0.134645\pi\)
0.911861 + 0.410499i \(0.134645\pi\)
\(314\) 0.704868 0.0397780
\(315\) 0 0
\(316\) 11.6088 0.653047
\(317\) −12.8351 −0.720889 −0.360445 0.932781i \(-0.617375\pi\)
−0.360445 + 0.932781i \(0.617375\pi\)
\(318\) 0 0
\(319\) −2.44014 −0.136621
\(320\) 0 0
\(321\) 0 0
\(322\) 0.587990 0.0327674
\(323\) −27.0388 −1.50448
\(324\) 0 0
\(325\) 0 0
\(326\) 17.8142 0.986638
\(327\) 0 0
\(328\) 3.21075 0.177284
\(329\) 0.721128 0.0397571
\(330\) 0 0
\(331\) 24.8409 1.36538 0.682690 0.730708i \(-0.260810\pi\)
0.682690 + 0.730708i \(0.260810\pi\)
\(332\) −2.05362 −0.112707
\(333\) 0 0
\(334\) 3.95211 0.216250
\(335\) 0 0
\(336\) 0 0
\(337\) 20.0660 1.09306 0.546532 0.837438i \(-0.315948\pi\)
0.546532 + 0.837438i \(0.315948\pi\)
\(338\) −6.29573 −0.342442
\(339\) 0 0
\(340\) 0 0
\(341\) −18.0014 −0.974831
\(342\) 0 0
\(343\) 3.61832 0.195371
\(344\) −30.4104 −1.63962
\(345\) 0 0
\(346\) −1.59769 −0.0858925
\(347\) −20.5190 −1.10152 −0.550758 0.834665i \(-0.685661\pi\)
−0.550758 + 0.834665i \(0.685661\pi\)
\(348\) 0 0
\(349\) 11.9755 0.641035 0.320518 0.947243i \(-0.396143\pi\)
0.320518 + 0.947243i \(0.396143\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10.0997 −0.538315
\(353\) −21.1389 −1.12511 −0.562554 0.826761i \(-0.690181\pi\)
−0.562554 + 0.826761i \(0.690181\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.0842 0.587463
\(357\) 0 0
\(358\) 7.59614 0.401468
\(359\) −28.3132 −1.49432 −0.747158 0.664647i \(-0.768582\pi\)
−0.747158 + 0.664647i \(0.768582\pi\)
\(360\) 0 0
\(361\) 28.6936 1.51019
\(362\) 9.29994 0.488794
\(363\) 0 0
\(364\) 0.550188 0.0288377
\(365\) 0 0
\(366\) 0 0
\(367\) −1.41897 −0.0740694 −0.0370347 0.999314i \(-0.511791\pi\)
−0.0370347 + 0.999314i \(0.511791\pi\)
\(368\) 3.72735 0.194302
\(369\) 0 0
\(370\) 0 0
\(371\) 3.35879 0.174380
\(372\) 0 0
\(373\) −8.75979 −0.453565 −0.226782 0.973945i \(-0.572821\pi\)
−0.226782 + 0.973945i \(0.572821\pi\)
\(374\) 10.5321 0.544602
\(375\) 0 0
\(376\) 8.52426 0.439605
\(377\) 2.69984 0.139049
\(378\) 0 0
\(379\) −1.12506 −0.0577903 −0.0288951 0.999582i \(-0.509199\pi\)
−0.0288951 + 0.999582i \(0.509199\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −21.0692 −1.07799
\(383\) −24.5642 −1.25517 −0.627586 0.778547i \(-0.715957\pi\)
−0.627586 + 0.778547i \(0.715957\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 29.1746 1.48495
\(387\) 0 0
\(388\) 2.36440 0.120034
\(389\) 23.6020 1.19667 0.598333 0.801247i \(-0.295830\pi\)
0.598333 + 0.801247i \(0.295830\pi\)
\(390\) 0 0
\(391\) 8.04093 0.406647
\(392\) 21.2821 1.07491
\(393\) 0 0
\(394\) −18.5797 −0.936031
\(395\) 0 0
\(396\) 0 0
\(397\) −19.6694 −0.987177 −0.493589 0.869696i \(-0.664315\pi\)
−0.493589 + 0.869696i \(0.664315\pi\)
\(398\) 15.2865 0.766245
\(399\) 0 0
\(400\) 0 0
\(401\) 9.67611 0.483202 0.241601 0.970376i \(-0.422327\pi\)
0.241601 + 0.970376i \(0.422327\pi\)
\(402\) 0 0
\(403\) 19.9173 0.992151
\(404\) −5.52057 −0.274659
\(405\) 0 0
\(406\) −0.286300 −0.0142088
\(407\) −1.81472 −0.0899525
\(408\) 0 0
\(409\) 17.3784 0.859306 0.429653 0.902994i \(-0.358636\pi\)
0.429653 + 0.902994i \(0.358636\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.76551 0.185513
\(413\) 3.65939 0.180067
\(414\) 0 0
\(415\) 0 0
\(416\) 11.1746 0.547880
\(417\) 0 0
\(418\) −18.5776 −0.908658
\(419\) 21.0717 1.02942 0.514710 0.857365i \(-0.327900\pi\)
0.514710 + 0.857365i \(0.327900\pi\)
\(420\) 0 0
\(421\) −1.50826 −0.0735082 −0.0367541 0.999324i \(-0.511702\pi\)
−0.0367541 + 0.999324i \(0.511702\pi\)
\(422\) −4.03137 −0.196244
\(423\) 0 0
\(424\) 39.7033 1.92816
\(425\) 0 0
\(426\) 0 0
\(427\) −0.309475 −0.0149766
\(428\) 2.72051 0.131501
\(429\) 0 0
\(430\) 0 0
\(431\) −18.3955 −0.886081 −0.443041 0.896502i \(-0.646100\pi\)
−0.443041 + 0.896502i \(0.646100\pi\)
\(432\) 0 0
\(433\) 3.48458 0.167458 0.0837291 0.996489i \(-0.473317\pi\)
0.0837291 + 0.996489i \(0.473317\pi\)
\(434\) −2.11209 −0.101384
\(435\) 0 0
\(436\) 10.4465 0.500297
\(437\) −14.1834 −0.678483
\(438\) 0 0
\(439\) 11.7983 0.563103 0.281552 0.959546i \(-0.409151\pi\)
0.281552 + 0.959546i \(0.409151\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −11.6530 −0.554279
\(443\) 5.61507 0.266780 0.133390 0.991064i \(-0.457414\pi\)
0.133390 + 0.991064i \(0.457414\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −31.3991 −1.48679
\(447\) 0 0
\(448\) −2.12766 −0.100522
\(449\) −6.76532 −0.319275 −0.159638 0.987176i \(-0.551033\pi\)
−0.159638 + 0.987176i \(0.551033\pi\)
\(450\) 0 0
\(451\) 2.55211 0.120174
\(452\) 11.6886 0.549784
\(453\) 0 0
\(454\) 23.6576 1.11031
\(455\) 0 0
\(456\) 0 0
\(457\) −23.7375 −1.11039 −0.555196 0.831719i \(-0.687357\pi\)
−0.555196 + 0.831719i \(0.687357\pi\)
\(458\) 2.70386 0.126343
\(459\) 0 0
\(460\) 0 0
\(461\) −5.34778 −0.249071 −0.124536 0.992215i \(-0.539744\pi\)
−0.124536 + 0.992215i \(0.539744\pi\)
\(462\) 0 0
\(463\) −35.7780 −1.66275 −0.831373 0.555715i \(-0.812444\pi\)
−0.831373 + 0.555715i \(0.812444\pi\)
\(464\) −1.81489 −0.0842543
\(465\) 0 0
\(466\) −0.145682 −0.00674859
\(467\) −21.7018 −1.00424 −0.502119 0.864799i \(-0.667446\pi\)
−0.502119 + 0.864799i \(0.667446\pi\)
\(468\) 0 0
\(469\) 1.84081 0.0850007
\(470\) 0 0
\(471\) 0 0
\(472\) 43.2566 1.99105
\(473\) −24.1722 −1.11144
\(474\) 0 0
\(475\) 0 0
\(476\) −0.797865 −0.0365701
\(477\) 0 0
\(478\) −15.4522 −0.706766
\(479\) 2.64777 0.120980 0.0604899 0.998169i \(-0.480734\pi\)
0.0604899 + 0.998169i \(0.480734\pi\)
\(480\) 0 0
\(481\) 2.00786 0.0915507
\(482\) −24.1209 −1.09868
\(483\) 0 0
\(484\) 3.95931 0.179969
\(485\) 0 0
\(486\) 0 0
\(487\) 22.7956 1.03297 0.516484 0.856297i \(-0.327240\pi\)
0.516484 + 0.856297i \(0.327240\pi\)
\(488\) −3.65822 −0.165600
\(489\) 0 0
\(490\) 0 0
\(491\) −15.3430 −0.692419 −0.346209 0.938157i \(-0.612531\pi\)
−0.346209 + 0.938157i \(0.612531\pi\)
\(492\) 0 0
\(493\) −3.91523 −0.176333
\(494\) 20.5548 0.924803
\(495\) 0 0
\(496\) −13.3889 −0.601177
\(497\) −2.70051 −0.121135
\(498\) 0 0
\(499\) −15.6891 −0.702338 −0.351169 0.936312i \(-0.614216\pi\)
−0.351169 + 0.936312i \(0.614216\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.94836 0.176224
\(503\) −23.9984 −1.07003 −0.535017 0.844841i \(-0.679695\pi\)
−0.535017 + 0.844841i \(0.679695\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 5.52469 0.245602
\(507\) 0 0
\(508\) 13.8203 0.613175
\(509\) 36.6038 1.62243 0.811217 0.584746i \(-0.198806\pi\)
0.811217 + 0.584746i \(0.198806\pi\)
\(510\) 0 0
\(511\) −0.531114 −0.0234951
\(512\) −18.6548 −0.824434
\(513\) 0 0
\(514\) −20.0332 −0.883625
\(515\) 0 0
\(516\) 0 0
\(517\) 6.77564 0.297992
\(518\) −0.212920 −0.00935517
\(519\) 0 0
\(520\) 0 0
\(521\) 21.7123 0.951232 0.475616 0.879653i \(-0.342225\pi\)
0.475616 + 0.879653i \(0.342225\pi\)
\(522\) 0 0
\(523\) −8.97941 −0.392642 −0.196321 0.980540i \(-0.562900\pi\)
−0.196321 + 0.980540i \(0.562900\pi\)
\(524\) −11.7311 −0.512474
\(525\) 0 0
\(526\) 1.14833 0.0500696
\(527\) −28.8835 −1.25818
\(528\) 0 0
\(529\) −18.7821 −0.816612
\(530\) 0 0
\(531\) 0 0
\(532\) 1.40735 0.0610165
\(533\) −2.82373 −0.122310
\(534\) 0 0
\(535\) 0 0
\(536\) 21.7597 0.939876
\(537\) 0 0
\(538\) 8.17896 0.352620
\(539\) 16.9164 0.728640
\(540\) 0 0
\(541\) 14.7615 0.634646 0.317323 0.948318i \(-0.397216\pi\)
0.317323 + 0.948318i \(0.397216\pi\)
\(542\) −5.06406 −0.217520
\(543\) 0 0
\(544\) −16.2051 −0.694786
\(545\) 0 0
\(546\) 0 0
\(547\) 0.521793 0.0223102 0.0111551 0.999938i \(-0.496449\pi\)
0.0111551 + 0.999938i \(0.496449\pi\)
\(548\) 11.0147 0.470527
\(549\) 0 0
\(550\) 0 0
\(551\) 6.90606 0.294208
\(552\) 0 0
\(553\) 3.84210 0.163383
\(554\) −31.7852 −1.35043
\(555\) 0 0
\(556\) 9.63176 0.408478
\(557\) 16.1158 0.682849 0.341425 0.939909i \(-0.389091\pi\)
0.341425 + 0.939909i \(0.389091\pi\)
\(558\) 0 0
\(559\) 26.7448 1.13119
\(560\) 0 0
\(561\) 0 0
\(562\) 17.7458 0.748560
\(563\) −41.5917 −1.75288 −0.876440 0.481510i \(-0.840088\pi\)
−0.876440 + 0.481510i \(0.840088\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −16.2591 −0.683422
\(567\) 0 0
\(568\) −31.9220 −1.33942
\(569\) 12.6935 0.532139 0.266069 0.963954i \(-0.414275\pi\)
0.266069 + 0.963954i \(0.414275\pi\)
\(570\) 0 0
\(571\) 7.51726 0.314588 0.157294 0.987552i \(-0.449723\pi\)
0.157294 + 0.987552i \(0.449723\pi\)
\(572\) 5.16950 0.216148
\(573\) 0 0
\(574\) 0.299438 0.0124983
\(575\) 0 0
\(576\) 0 0
\(577\) 20.8973 0.869966 0.434983 0.900439i \(-0.356754\pi\)
0.434983 + 0.900439i \(0.356754\pi\)
\(578\) −1.84213 −0.0766225
\(579\) 0 0
\(580\) 0 0
\(581\) −0.679672 −0.0281975
\(582\) 0 0
\(583\) 31.5588 1.30703
\(584\) −6.27815 −0.259792
\(585\) 0 0
\(586\) 4.35703 0.179987
\(587\) 13.4075 0.553388 0.276694 0.960958i \(-0.410761\pi\)
0.276694 + 0.960958i \(0.410761\pi\)
\(588\) 0 0
\(589\) 50.9475 2.09925
\(590\) 0 0
\(591\) 0 0
\(592\) −1.34973 −0.0554736
\(593\) 45.4648 1.86701 0.933507 0.358560i \(-0.116732\pi\)
0.933507 + 0.358560i \(0.116732\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.6123 −0.680468
\(597\) 0 0
\(598\) −6.11268 −0.249966
\(599\) −39.8389 −1.62777 −0.813886 0.581025i \(-0.802652\pi\)
−0.813886 + 0.581025i \(0.802652\pi\)
\(600\) 0 0
\(601\) 3.93631 0.160566 0.0802828 0.996772i \(-0.474418\pi\)
0.0802828 + 0.996772i \(0.474418\pi\)
\(602\) −2.83611 −0.115591
\(603\) 0 0
\(604\) 5.68683 0.231394
\(605\) 0 0
\(606\) 0 0
\(607\) −20.9392 −0.849895 −0.424948 0.905218i \(-0.639707\pi\)
−0.424948 + 0.905218i \(0.639707\pi\)
\(608\) 28.5841 1.15924
\(609\) 0 0
\(610\) 0 0
\(611\) −7.49677 −0.303287
\(612\) 0 0
\(613\) −21.7071 −0.876743 −0.438372 0.898794i \(-0.644445\pi\)
−0.438372 + 0.898794i \(0.644445\pi\)
\(614\) −15.0385 −0.606904
\(615\) 0 0
\(616\) −1.94541 −0.0783828
\(617\) −41.3694 −1.66547 −0.832735 0.553672i \(-0.813226\pi\)
−0.832735 + 0.553672i \(0.813226\pi\)
\(618\) 0 0
\(619\) 20.2608 0.814350 0.407175 0.913350i \(-0.366514\pi\)
0.407175 + 0.913350i \(0.366514\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 25.7125 1.03098
\(623\) 3.66847 0.146974
\(624\) 0 0
\(625\) 0 0
\(626\) 35.5693 1.42163
\(627\) 0 0
\(628\) −0.501718 −0.0200207
\(629\) −2.91174 −0.116099
\(630\) 0 0
\(631\) 36.5698 1.45582 0.727911 0.685671i \(-0.240491\pi\)
0.727911 + 0.685671i \(0.240491\pi\)
\(632\) 45.4164 1.80657
\(633\) 0 0
\(634\) −14.1495 −0.561950
\(635\) 0 0
\(636\) 0 0
\(637\) −18.7168 −0.741586
\(638\) −2.69004 −0.106500
\(639\) 0 0
\(640\) 0 0
\(641\) 47.7470 1.88589 0.942946 0.332946i \(-0.108043\pi\)
0.942946 + 0.332946i \(0.108043\pi\)
\(642\) 0 0
\(643\) −33.8571 −1.33519 −0.667596 0.744524i \(-0.732677\pi\)
−0.667596 + 0.744524i \(0.732677\pi\)
\(644\) −0.418525 −0.0164922
\(645\) 0 0
\(646\) −29.8079 −1.17278
\(647\) 28.7777 1.13137 0.565683 0.824623i \(-0.308613\pi\)
0.565683 + 0.824623i \(0.308613\pi\)
\(648\) 0 0
\(649\) 34.3832 1.34966
\(650\) 0 0
\(651\) 0 0
\(652\) −12.6800 −0.496587
\(653\) 25.3565 0.992277 0.496138 0.868243i \(-0.334751\pi\)
0.496138 + 0.868243i \(0.334751\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.89818 0.0741114
\(657\) 0 0
\(658\) 0.794981 0.0309916
\(659\) −7.28954 −0.283960 −0.141980 0.989870i \(-0.545347\pi\)
−0.141980 + 0.989870i \(0.545347\pi\)
\(660\) 0 0
\(661\) −21.1056 −0.820913 −0.410457 0.911880i \(-0.634631\pi\)
−0.410457 + 0.911880i \(0.634631\pi\)
\(662\) 27.3849 1.06435
\(663\) 0 0
\(664\) −8.03421 −0.311788
\(665\) 0 0
\(666\) 0 0
\(667\) −2.05376 −0.0795218
\(668\) −2.81307 −0.108841
\(669\) 0 0
\(670\) 0 0
\(671\) −2.90779 −0.112254
\(672\) 0 0
\(673\) −16.0938 −0.620369 −0.310184 0.950676i \(-0.600391\pi\)
−0.310184 + 0.950676i \(0.600391\pi\)
\(674\) 22.1210 0.852068
\(675\) 0 0
\(676\) 4.48124 0.172355
\(677\) −8.21364 −0.315676 −0.157838 0.987465i \(-0.550452\pi\)
−0.157838 + 0.987465i \(0.550452\pi\)
\(678\) 0 0
\(679\) 0.782529 0.0300307
\(680\) 0 0
\(681\) 0 0
\(682\) −19.8450 −0.759904
\(683\) −38.0962 −1.45771 −0.728856 0.684667i \(-0.759948\pi\)
−0.728856 + 0.684667i \(0.759948\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.98888 0.152296
\(687\) 0 0
\(688\) −17.9785 −0.685423
\(689\) −34.9176 −1.33025
\(690\) 0 0
\(691\) 33.5040 1.27455 0.637276 0.770635i \(-0.280061\pi\)
0.637276 + 0.770635i \(0.280061\pi\)
\(692\) 1.13722 0.0432307
\(693\) 0 0
\(694\) −22.6204 −0.858657
\(695\) 0 0
\(696\) 0 0
\(697\) 4.09489 0.155105
\(698\) 13.2020 0.499702
\(699\) 0 0
\(700\) 0 0
\(701\) −43.0350 −1.62541 −0.812704 0.582676i \(-0.802006\pi\)
−0.812704 + 0.582676i \(0.802006\pi\)
\(702\) 0 0
\(703\) 5.13601 0.193708
\(704\) −19.9912 −0.753447
\(705\) 0 0
\(706\) −23.3037 −0.877048
\(707\) −1.82711 −0.0687154
\(708\) 0 0
\(709\) 18.9752 0.712629 0.356315 0.934366i \(-0.384033\pi\)
0.356315 + 0.934366i \(0.384033\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 43.3640 1.62514
\(713\) −15.1510 −0.567410
\(714\) 0 0
\(715\) 0 0
\(716\) −5.40686 −0.202064
\(717\) 0 0
\(718\) −31.2129 −1.16485
\(719\) 45.3657 1.69186 0.845928 0.533297i \(-0.179047\pi\)
0.845928 + 0.533297i \(0.179047\pi\)
\(720\) 0 0
\(721\) 1.24625 0.0464127
\(722\) 31.6322 1.17723
\(723\) 0 0
\(724\) −6.61961 −0.246016
\(725\) 0 0
\(726\) 0 0
\(727\) 52.7459 1.95624 0.978118 0.208051i \(-0.0667120\pi\)
0.978118 + 0.208051i \(0.0667120\pi\)
\(728\) 2.15246 0.0797755
\(729\) 0 0
\(730\) 0 0
\(731\) −38.7845 −1.43450
\(732\) 0 0
\(733\) 0.902479 0.0333338 0.0166669 0.999861i \(-0.494695\pi\)
0.0166669 + 0.999861i \(0.494695\pi\)
\(734\) −1.56429 −0.0577388
\(735\) 0 0
\(736\) −8.50047 −0.313332
\(737\) 17.2960 0.637108
\(738\) 0 0
\(739\) 2.20398 0.0810748 0.0405374 0.999178i \(-0.487093\pi\)
0.0405374 + 0.999178i \(0.487093\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.70277 0.135933
\(743\) −27.9539 −1.02553 −0.512765 0.858529i \(-0.671379\pi\)
−0.512765 + 0.858529i \(0.671379\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −9.65691 −0.353564
\(747\) 0 0
\(748\) −7.49665 −0.274105
\(749\) 0.900389 0.0328995
\(750\) 0 0
\(751\) −15.0939 −0.550785 −0.275392 0.961332i \(-0.588808\pi\)
−0.275392 + 0.961332i \(0.588808\pi\)
\(752\) 5.03950 0.183772
\(753\) 0 0
\(754\) 2.97634 0.108392
\(755\) 0 0
\(756\) 0 0
\(757\) −20.9780 −0.762459 −0.381229 0.924481i \(-0.624499\pi\)
−0.381229 + 0.924481i \(0.624499\pi\)
\(758\) −1.24028 −0.0450489
\(759\) 0 0
\(760\) 0 0
\(761\) −24.5060 −0.888341 −0.444171 0.895942i \(-0.646502\pi\)
−0.444171 + 0.895942i \(0.646502\pi\)
\(762\) 0 0
\(763\) 3.45741 0.125167
\(764\) 14.9968 0.542566
\(765\) 0 0
\(766\) −27.0799 −0.978436
\(767\) −38.0426 −1.37364
\(768\) 0 0
\(769\) −17.4343 −0.628698 −0.314349 0.949307i \(-0.601786\pi\)
−0.314349 + 0.949307i \(0.601786\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20.7662 −0.747392
\(773\) 32.1687 1.15703 0.578514 0.815672i \(-0.303633\pi\)
0.578514 + 0.815672i \(0.303633\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 9.25006 0.332058
\(777\) 0 0
\(778\) 26.0191 0.932830
\(779\) −7.22297 −0.258790
\(780\) 0 0
\(781\) −25.3737 −0.907943
\(782\) 8.86442 0.316991
\(783\) 0 0
\(784\) 12.5819 0.449352
\(785\) 0 0
\(786\) 0 0
\(787\) −10.9274 −0.389519 −0.194760 0.980851i \(-0.562393\pi\)
−0.194760 + 0.980851i \(0.562393\pi\)
\(788\) 13.2248 0.471115
\(789\) 0 0
\(790\) 0 0
\(791\) 3.86849 0.137548
\(792\) 0 0
\(793\) 3.21727 0.114249
\(794\) −21.6838 −0.769528
\(795\) 0 0
\(796\) −10.8808 −0.385660
\(797\) 36.1564 1.28072 0.640362 0.768073i \(-0.278784\pi\)
0.640362 + 0.768073i \(0.278784\pi\)
\(798\) 0 0
\(799\) 10.8716 0.384609
\(800\) 0 0
\(801\) 0 0
\(802\) 10.6671 0.376667
\(803\) −4.99029 −0.176103
\(804\) 0 0
\(805\) 0 0
\(806\) 21.9571 0.773405
\(807\) 0 0
\(808\) −21.5977 −0.759805
\(809\) 5.45860 0.191914 0.0959570 0.995385i \(-0.469409\pi\)
0.0959570 + 0.995385i \(0.469409\pi\)
\(810\) 0 0
\(811\) 9.26041 0.325177 0.162588 0.986694i \(-0.448016\pi\)
0.162588 + 0.986694i \(0.448016\pi\)
\(812\) 0.203785 0.00715146
\(813\) 0 0
\(814\) −2.00057 −0.0701201
\(815\) 0 0
\(816\) 0 0
\(817\) 68.4119 2.39343
\(818\) 19.1582 0.669849
\(819\) 0 0
\(820\) 0 0
\(821\) −23.2683 −0.812070 −0.406035 0.913857i \(-0.633089\pi\)
−0.406035 + 0.913857i \(0.633089\pi\)
\(822\) 0 0
\(823\) −8.10683 −0.282586 −0.141293 0.989968i \(-0.545126\pi\)
−0.141293 + 0.989968i \(0.545126\pi\)
\(824\) 14.7315 0.513197
\(825\) 0 0
\(826\) 4.03416 0.140366
\(827\) −17.6578 −0.614020 −0.307010 0.951706i \(-0.599329\pi\)
−0.307010 + 0.951706i \(0.599329\pi\)
\(828\) 0 0
\(829\) −18.2623 −0.634277 −0.317139 0.948379i \(-0.602722\pi\)
−0.317139 + 0.948379i \(0.602722\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 22.1189 0.766834
\(833\) 27.1425 0.940433
\(834\) 0 0
\(835\) 0 0
\(836\) 13.2233 0.457338
\(837\) 0 0
\(838\) 23.2297 0.802456
\(839\) −54.3175 −1.87525 −0.937625 0.347649i \(-0.886980\pi\)
−0.937625 + 0.347649i \(0.886980\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −1.66273 −0.0573014
\(843\) 0 0
\(844\) 2.86949 0.0987718
\(845\) 0 0
\(846\) 0 0
\(847\) 1.31039 0.0450255
\(848\) 23.4724 0.806046
\(849\) 0 0
\(850\) 0 0
\(851\) −1.52737 −0.0523577
\(852\) 0 0
\(853\) 13.7415 0.470501 0.235250 0.971935i \(-0.424409\pi\)
0.235250 + 0.971935i \(0.424409\pi\)
\(854\) −0.341169 −0.0116746
\(855\) 0 0
\(856\) 10.6432 0.363779
\(857\) 44.3493 1.51494 0.757472 0.652868i \(-0.226434\pi\)
0.757472 + 0.652868i \(0.226434\pi\)
\(858\) 0 0
\(859\) −13.0913 −0.446671 −0.223335 0.974742i \(-0.571694\pi\)
−0.223335 + 0.974742i \(0.571694\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −20.2795 −0.690721
\(863\) 5.94858 0.202492 0.101246 0.994861i \(-0.467717\pi\)
0.101246 + 0.994861i \(0.467717\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 3.84145 0.130538
\(867\) 0 0
\(868\) 1.50337 0.0510276
\(869\) 36.0999 1.22461
\(870\) 0 0
\(871\) −19.1369 −0.648428
\(872\) 40.8691 1.38400
\(873\) 0 0
\(874\) −15.6359 −0.528893
\(875\) 0 0
\(876\) 0 0
\(877\) 26.0586 0.879935 0.439968 0.898014i \(-0.354990\pi\)
0.439968 + 0.898014i \(0.354990\pi\)
\(878\) 13.0066 0.438952
\(879\) 0 0
\(880\) 0 0
\(881\) −9.01092 −0.303586 −0.151793 0.988412i \(-0.548505\pi\)
−0.151793 + 0.988412i \(0.548505\pi\)
\(882\) 0 0
\(883\) 8.80991 0.296477 0.148239 0.988952i \(-0.452640\pi\)
0.148239 + 0.988952i \(0.452640\pi\)
\(884\) 8.29452 0.278975
\(885\) 0 0
\(886\) 6.19013 0.207961
\(887\) −12.2685 −0.411936 −0.205968 0.978559i \(-0.566034\pi\)
−0.205968 + 0.978559i \(0.566034\pi\)
\(888\) 0 0
\(889\) 4.57400 0.153407
\(890\) 0 0
\(891\) 0 0
\(892\) 22.3496 0.748319
\(893\) −19.1764 −0.641713
\(894\) 0 0
\(895\) 0 0
\(896\) −0.195743 −0.00653930
\(897\) 0 0
\(898\) −7.45818 −0.248883
\(899\) 7.37721 0.246044
\(900\) 0 0
\(901\) 50.6365 1.68695
\(902\) 2.81348 0.0936787
\(903\) 0 0
\(904\) 45.7284 1.52090
\(905\) 0 0
\(906\) 0 0
\(907\) −43.9602 −1.45968 −0.729838 0.683620i \(-0.760405\pi\)
−0.729838 + 0.683620i \(0.760405\pi\)
\(908\) −16.8393 −0.558831
\(909\) 0 0
\(910\) 0 0
\(911\) 49.1806 1.62943 0.814713 0.579865i \(-0.196895\pi\)
0.814713 + 0.579865i \(0.196895\pi\)
\(912\) 0 0
\(913\) −6.38612 −0.211350
\(914\) −26.1685 −0.865577
\(915\) 0 0
\(916\) −1.92458 −0.0635899
\(917\) −3.88256 −0.128213
\(918\) 0 0
\(919\) 24.3120 0.801979 0.400990 0.916083i \(-0.368666\pi\)
0.400990 + 0.916083i \(0.368666\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −5.89547 −0.194157
\(923\) 28.0742 0.924074
\(924\) 0 0
\(925\) 0 0
\(926\) −39.4421 −1.29615
\(927\) 0 0
\(928\) 4.13899 0.135869
\(929\) 51.4063 1.68659 0.843293 0.537453i \(-0.180614\pi\)
0.843293 + 0.537453i \(0.180614\pi\)
\(930\) 0 0
\(931\) −47.8766 −1.56909
\(932\) 0.103695 0.00339664
\(933\) 0 0
\(934\) −23.9243 −0.782827
\(935\) 0 0
\(936\) 0 0
\(937\) −17.8156 −0.582010 −0.291005 0.956722i \(-0.593990\pi\)
−0.291005 + 0.956722i \(0.593990\pi\)
\(938\) 2.02933 0.0662600
\(939\) 0 0
\(940\) 0 0
\(941\) 6.44862 0.210219 0.105110 0.994461i \(-0.466481\pi\)
0.105110 + 0.994461i \(0.466481\pi\)
\(942\) 0 0
\(943\) 2.14800 0.0699486
\(944\) 25.5731 0.832334
\(945\) 0 0
\(946\) −26.6477 −0.866392
\(947\) −23.1321 −0.751694 −0.375847 0.926682i \(-0.622648\pi\)
−0.375847 + 0.926682i \(0.622648\pi\)
\(948\) 0 0
\(949\) 5.52140 0.179232
\(950\) 0 0
\(951\) 0 0
\(952\) −3.12143 −0.101166
\(953\) 9.35394 0.303004 0.151502 0.988457i \(-0.451589\pi\)
0.151502 + 0.988457i \(0.451589\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 10.9987 0.355724
\(957\) 0 0
\(958\) 2.91894 0.0943067
\(959\) 3.64548 0.117719
\(960\) 0 0
\(961\) 23.4233 0.755589
\(962\) 2.21349 0.0713659
\(963\) 0 0
\(964\) 17.1690 0.552977
\(965\) 0 0
\(966\) 0 0
\(967\) −21.3156 −0.685463 −0.342732 0.939433i \(-0.611352\pi\)
−0.342732 + 0.939433i \(0.611352\pi\)
\(968\) 15.4897 0.497859
\(969\) 0 0
\(970\) 0 0
\(971\) −0.806232 −0.0258732 −0.0129366 0.999916i \(-0.504118\pi\)
−0.0129366 + 0.999916i \(0.504118\pi\)
\(972\) 0 0
\(973\) 3.18776 0.102195
\(974\) 25.1302 0.805223
\(975\) 0 0
\(976\) −2.16272 −0.0692270
\(977\) −6.87870 −0.220069 −0.110035 0.993928i \(-0.535096\pi\)
−0.110035 + 0.993928i \(0.535096\pi\)
\(978\) 0 0
\(979\) 34.4686 1.10162
\(980\) 0 0
\(981\) 0 0
\(982\) −16.9143 −0.539756
\(983\) −2.23941 −0.0714262 −0.0357131 0.999362i \(-0.511370\pi\)
−0.0357131 + 0.999362i \(0.511370\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −4.31620 −0.137456
\(987\) 0 0
\(988\) −14.6307 −0.465464
\(989\) −20.3447 −0.646923
\(990\) 0 0
\(991\) 18.8061 0.597394 0.298697 0.954348i \(-0.403448\pi\)
0.298697 + 0.954348i \(0.403448\pi\)
\(992\) 30.5342 0.969461
\(993\) 0 0
\(994\) −2.97708 −0.0944272
\(995\) 0 0
\(996\) 0 0
\(997\) 33.5310 1.06194 0.530968 0.847392i \(-0.321828\pi\)
0.530968 + 0.847392i \(0.321828\pi\)
\(998\) −17.2958 −0.547489
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ca.1.7 9
3.2 odd 2 6525.2.a.cc.1.3 yes 9
5.4 even 2 6525.2.a.cd.1.3 yes 9
15.14 odd 2 6525.2.a.cb.1.7 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.7 9 1.1 even 1 trivial
6525.2.a.cb.1.7 yes 9 15.14 odd 2
6525.2.a.cc.1.3 yes 9 3.2 odd 2
6525.2.a.cd.1.3 yes 9 5.4 even 2