Properties

Label 6525.2.a.ca.1.6
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.747618\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.747618 q^{2} -1.44107 q^{4} -3.28783 q^{7} -2.57260 q^{8} +O(q^{10})\) \(q+0.747618 q^{2} -1.44107 q^{4} -3.28783 q^{7} -2.57260 q^{8} +1.14171 q^{11} +2.14612 q^{13} -2.45804 q^{14} +0.958808 q^{16} +6.16470 q^{17} -7.20344 q^{19} +0.853562 q^{22} -0.227525 q^{23} +1.60448 q^{26} +4.73798 q^{28} +1.00000 q^{29} +1.59202 q^{31} +5.86203 q^{32} +4.60884 q^{34} +0.690638 q^{37} -5.38542 q^{38} +9.55584 q^{41} +0.739212 q^{43} -1.64528 q^{44} -0.170102 q^{46} -3.52745 q^{47} +3.80980 q^{49} -3.09270 q^{52} +0.756550 q^{53} +8.45827 q^{56} +0.747618 q^{58} +7.99502 q^{59} -0.836591 q^{61} +1.19023 q^{62} +2.46494 q^{64} -6.00144 q^{67} -8.88375 q^{68} -10.8715 q^{71} -6.33908 q^{73} +0.516334 q^{74} +10.3806 q^{76} -3.75374 q^{77} -7.23916 q^{79} +7.14412 q^{82} -7.46438 q^{83} +0.552648 q^{86} -2.93716 q^{88} -0.620360 q^{89} -7.05606 q^{91} +0.327878 q^{92} -2.63719 q^{94} -4.33183 q^{97} +2.84827 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8} + 2 q^{11} - q^{13} - 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} - 3 q^{22} - 16 q^{23} + 6 q^{26} + 4 q^{28} + 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} - 10 q^{41} - 3 q^{43} - 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} + 9 q^{52} - 22 q^{53} + 22 q^{56} - 2 q^{58} + 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} - 5 q^{67} - 39 q^{68} + 10 q^{73} - 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} + 8 q^{82} - 46 q^{83} + 28 q^{86} - 2 q^{88} + 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} - 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.747618 0.528646 0.264323 0.964434i \(-0.414852\pi\)
0.264323 + 0.964434i \(0.414852\pi\)
\(3\) 0 0
\(4\) −1.44107 −0.720534
\(5\) 0 0
\(6\) 0 0
\(7\) −3.28783 −1.24268 −0.621341 0.783541i \(-0.713412\pi\)
−0.621341 + 0.783541i \(0.713412\pi\)
\(8\) −2.57260 −0.909553
\(9\) 0 0
\(10\) 0 0
\(11\) 1.14171 0.344238 0.172119 0.985076i \(-0.444939\pi\)
0.172119 + 0.985076i \(0.444939\pi\)
\(12\) 0 0
\(13\) 2.14612 0.595226 0.297613 0.954687i \(-0.403810\pi\)
0.297613 + 0.954687i \(0.403810\pi\)
\(14\) −2.45804 −0.656938
\(15\) 0 0
\(16\) 0.958808 0.239702
\(17\) 6.16470 1.49516 0.747580 0.664172i \(-0.231216\pi\)
0.747580 + 0.664172i \(0.231216\pi\)
\(18\) 0 0
\(19\) −7.20344 −1.65258 −0.826292 0.563243i \(-0.809554\pi\)
−0.826292 + 0.563243i \(0.809554\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.853562 0.181980
\(23\) −0.227525 −0.0474422 −0.0237211 0.999719i \(-0.507551\pi\)
−0.0237211 + 0.999719i \(0.507551\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.60448 0.314664
\(27\) 0 0
\(28\) 4.73798 0.895393
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 1.59202 0.285936 0.142968 0.989727i \(-0.454335\pi\)
0.142968 + 0.989727i \(0.454335\pi\)
\(32\) 5.86203 1.03627
\(33\) 0 0
\(34\) 4.60884 0.790410
\(35\) 0 0
\(36\) 0 0
\(37\) 0.690638 0.113540 0.0567701 0.998387i \(-0.481920\pi\)
0.0567701 + 0.998387i \(0.481920\pi\)
\(38\) −5.38542 −0.873631
\(39\) 0 0
\(40\) 0 0
\(41\) 9.55584 1.49237 0.746186 0.665738i \(-0.231883\pi\)
0.746186 + 0.665738i \(0.231883\pi\)
\(42\) 0 0
\(43\) 0.739212 0.112729 0.0563644 0.998410i \(-0.482049\pi\)
0.0563644 + 0.998410i \(0.482049\pi\)
\(44\) −1.64528 −0.248035
\(45\) 0 0
\(46\) −0.170102 −0.0250801
\(47\) −3.52745 −0.514531 −0.257266 0.966341i \(-0.582822\pi\)
−0.257266 + 0.966341i \(0.582822\pi\)
\(48\) 0 0
\(49\) 3.80980 0.544256
\(50\) 0 0
\(51\) 0 0
\(52\) −3.09270 −0.428880
\(53\) 0.756550 0.103920 0.0519601 0.998649i \(-0.483453\pi\)
0.0519601 + 0.998649i \(0.483453\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 8.45827 1.13028
\(57\) 0 0
\(58\) 0.747618 0.0981671
\(59\) 7.99502 1.04086 0.520431 0.853904i \(-0.325771\pi\)
0.520431 + 0.853904i \(0.325771\pi\)
\(60\) 0 0
\(61\) −0.836591 −0.107115 −0.0535573 0.998565i \(-0.517056\pi\)
−0.0535573 + 0.998565i \(0.517056\pi\)
\(62\) 1.19023 0.151159
\(63\) 0 0
\(64\) 2.46494 0.308118
\(65\) 0 0
\(66\) 0 0
\(67\) −6.00144 −0.733193 −0.366597 0.930380i \(-0.619477\pi\)
−0.366597 + 0.930380i \(0.619477\pi\)
\(68\) −8.88375 −1.07731
\(69\) 0 0
\(70\) 0 0
\(71\) −10.8715 −1.29021 −0.645107 0.764093i \(-0.723187\pi\)
−0.645107 + 0.764093i \(0.723187\pi\)
\(72\) 0 0
\(73\) −6.33908 −0.741933 −0.370967 0.928646i \(-0.620974\pi\)
−0.370967 + 0.928646i \(0.620974\pi\)
\(74\) 0.516334 0.0600226
\(75\) 0 0
\(76\) 10.3806 1.19074
\(77\) −3.75374 −0.427778
\(78\) 0 0
\(79\) −7.23916 −0.814469 −0.407235 0.913324i \(-0.633507\pi\)
−0.407235 + 0.913324i \(0.633507\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.14412 0.788936
\(83\) −7.46438 −0.819323 −0.409661 0.912238i \(-0.634353\pi\)
−0.409661 + 0.912238i \(0.634353\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.552648 0.0595936
\(87\) 0 0
\(88\) −2.93716 −0.313103
\(89\) −0.620360 −0.0657580 −0.0328790 0.999459i \(-0.510468\pi\)
−0.0328790 + 0.999459i \(0.510468\pi\)
\(90\) 0 0
\(91\) −7.05606 −0.739676
\(92\) 0.327878 0.0341837
\(93\) 0 0
\(94\) −2.63719 −0.272005
\(95\) 0 0
\(96\) 0 0
\(97\) −4.33183 −0.439830 −0.219915 0.975519i \(-0.570578\pi\)
−0.219915 + 0.975519i \(0.570578\pi\)
\(98\) 2.84827 0.287719
\(99\) 0 0
\(100\) 0 0
\(101\) 12.4191 1.23575 0.617873 0.786278i \(-0.287994\pi\)
0.617873 + 0.786278i \(0.287994\pi\)
\(102\) 0 0
\(103\) −2.24039 −0.220752 −0.110376 0.993890i \(-0.535205\pi\)
−0.110376 + 0.993890i \(0.535205\pi\)
\(104\) −5.52111 −0.541389
\(105\) 0 0
\(106\) 0.565610 0.0549369
\(107\) −13.7724 −1.33143 −0.665714 0.746207i \(-0.731873\pi\)
−0.665714 + 0.746207i \(0.731873\pi\)
\(108\) 0 0
\(109\) 8.13819 0.779497 0.389749 0.920921i \(-0.372562\pi\)
0.389749 + 0.920921i \(0.372562\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.15239 −0.297873
\(113\) 0.238009 0.0223900 0.0111950 0.999937i \(-0.496436\pi\)
0.0111950 + 0.999937i \(0.496436\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.44107 −0.133800
\(117\) 0 0
\(118\) 5.97722 0.550248
\(119\) −20.2685 −1.85801
\(120\) 0 0
\(121\) −9.69650 −0.881500
\(122\) −0.625451 −0.0566257
\(123\) 0 0
\(124\) −2.29421 −0.206026
\(125\) 0 0
\(126\) 0 0
\(127\) −0.851365 −0.0755464 −0.0377732 0.999286i \(-0.512026\pi\)
−0.0377732 + 0.999286i \(0.512026\pi\)
\(128\) −9.88123 −0.873385
\(129\) 0 0
\(130\) 0 0
\(131\) 18.3953 1.60720 0.803601 0.595168i \(-0.202914\pi\)
0.803601 + 0.595168i \(0.202914\pi\)
\(132\) 0 0
\(133\) 23.6837 2.05363
\(134\) −4.48679 −0.387600
\(135\) 0 0
\(136\) −15.8593 −1.35993
\(137\) 7.62484 0.651434 0.325717 0.945467i \(-0.394394\pi\)
0.325717 + 0.945467i \(0.394394\pi\)
\(138\) 0 0
\(139\) −9.84900 −0.835382 −0.417691 0.908589i \(-0.637160\pi\)
−0.417691 + 0.908589i \(0.637160\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.12775 −0.682066
\(143\) 2.45024 0.204899
\(144\) 0 0
\(145\) 0 0
\(146\) −4.73921 −0.392220
\(147\) 0 0
\(148\) −0.995256 −0.0818095
\(149\) −9.65138 −0.790672 −0.395336 0.918537i \(-0.629372\pi\)
−0.395336 + 0.918537i \(0.629372\pi\)
\(150\) 0 0
\(151\) −2.60026 −0.211606 −0.105803 0.994387i \(-0.533741\pi\)
−0.105803 + 0.994387i \(0.533741\pi\)
\(152\) 18.5316 1.50311
\(153\) 0 0
\(154\) −2.80636 −0.226143
\(155\) 0 0
\(156\) 0 0
\(157\) 5.86918 0.468411 0.234206 0.972187i \(-0.424751\pi\)
0.234206 + 0.972187i \(0.424751\pi\)
\(158\) −5.41213 −0.430566
\(159\) 0 0
\(160\) 0 0
\(161\) 0.748061 0.0589555
\(162\) 0 0
\(163\) −13.7249 −1.07501 −0.537507 0.843259i \(-0.680634\pi\)
−0.537507 + 0.843259i \(0.680634\pi\)
\(164\) −13.7706 −1.07530
\(165\) 0 0
\(166\) −5.58051 −0.433131
\(167\) −23.6430 −1.82955 −0.914774 0.403967i \(-0.867631\pi\)
−0.914774 + 0.403967i \(0.867631\pi\)
\(168\) 0 0
\(169\) −8.39418 −0.645706
\(170\) 0 0
\(171\) 0 0
\(172\) −1.06525 −0.0812249
\(173\) −6.38271 −0.485268 −0.242634 0.970118i \(-0.578011\pi\)
−0.242634 + 0.970118i \(0.578011\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.09468 0.0825146
\(177\) 0 0
\(178\) −0.463792 −0.0347627
\(179\) −4.08939 −0.305656 −0.152828 0.988253i \(-0.548838\pi\)
−0.152828 + 0.988253i \(0.548838\pi\)
\(180\) 0 0
\(181\) −2.39584 −0.178081 −0.0890407 0.996028i \(-0.528380\pi\)
−0.0890407 + 0.996028i \(0.528380\pi\)
\(182\) −5.27524 −0.391026
\(183\) 0 0
\(184\) 0.585331 0.0431512
\(185\) 0 0
\(186\) 0 0
\(187\) 7.03829 0.514691
\(188\) 5.08329 0.370737
\(189\) 0 0
\(190\) 0 0
\(191\) 16.6078 1.20170 0.600851 0.799361i \(-0.294829\pi\)
0.600851 + 0.799361i \(0.294829\pi\)
\(192\) 0 0
\(193\) −14.9574 −1.07666 −0.538328 0.842735i \(-0.680944\pi\)
−0.538328 + 0.842735i \(0.680944\pi\)
\(194\) −3.23855 −0.232515
\(195\) 0 0
\(196\) −5.49017 −0.392155
\(197\) 2.23776 0.159434 0.0797168 0.996818i \(-0.474598\pi\)
0.0797168 + 0.996818i \(0.474598\pi\)
\(198\) 0 0
\(199\) −11.0259 −0.781608 −0.390804 0.920474i \(-0.627803\pi\)
−0.390804 + 0.920474i \(0.627803\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 9.28474 0.653272
\(203\) −3.28783 −0.230760
\(204\) 0 0
\(205\) 0 0
\(206\) −1.67495 −0.116700
\(207\) 0 0
\(208\) 2.05771 0.142677
\(209\) −8.22423 −0.568882
\(210\) 0 0
\(211\) 2.86625 0.197321 0.0986603 0.995121i \(-0.468544\pi\)
0.0986603 + 0.995121i \(0.468544\pi\)
\(212\) −1.09024 −0.0748779
\(213\) 0 0
\(214\) −10.2965 −0.703853
\(215\) 0 0
\(216\) 0 0
\(217\) −5.23430 −0.355327
\(218\) 6.08426 0.412078
\(219\) 0 0
\(220\) 0 0
\(221\) 13.2302 0.889957
\(222\) 0 0
\(223\) 27.9990 1.87495 0.937475 0.348053i \(-0.113157\pi\)
0.937475 + 0.348053i \(0.113157\pi\)
\(224\) −19.2733 −1.28775
\(225\) 0 0
\(226\) 0.177940 0.0118364
\(227\) −5.03458 −0.334157 −0.167078 0.985944i \(-0.553433\pi\)
−0.167078 + 0.985944i \(0.553433\pi\)
\(228\) 0 0
\(229\) −17.9628 −1.18702 −0.593508 0.804828i \(-0.702257\pi\)
−0.593508 + 0.804828i \(0.702257\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.57260 −0.168900
\(233\) −20.1246 −1.31841 −0.659204 0.751964i \(-0.729107\pi\)
−0.659204 + 0.751964i \(0.729107\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.5214 −0.749976
\(237\) 0 0
\(238\) −15.1531 −0.982227
\(239\) −15.1528 −0.980151 −0.490076 0.871680i \(-0.663031\pi\)
−0.490076 + 0.871680i \(0.663031\pi\)
\(240\) 0 0
\(241\) 12.2051 0.786199 0.393100 0.919496i \(-0.371403\pi\)
0.393100 + 0.919496i \(0.371403\pi\)
\(242\) −7.24928 −0.466001
\(243\) 0 0
\(244\) 1.20558 0.0771796
\(245\) 0 0
\(246\) 0 0
\(247\) −15.4594 −0.983660
\(248\) −4.09565 −0.260074
\(249\) 0 0
\(250\) 0 0
\(251\) −19.9095 −1.25668 −0.628339 0.777940i \(-0.716265\pi\)
−0.628339 + 0.777940i \(0.716265\pi\)
\(252\) 0 0
\(253\) −0.259767 −0.0163314
\(254\) −0.636496 −0.0399373
\(255\) 0 0
\(256\) −12.3173 −0.769829
\(257\) −26.3424 −1.64320 −0.821598 0.570067i \(-0.806917\pi\)
−0.821598 + 0.570067i \(0.806917\pi\)
\(258\) 0 0
\(259\) −2.27070 −0.141094
\(260\) 0 0
\(261\) 0 0
\(262\) 13.7526 0.849641
\(263\) −12.0813 −0.744966 −0.372483 0.928039i \(-0.621493\pi\)
−0.372483 + 0.928039i \(0.621493\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 17.7063 1.08565
\(267\) 0 0
\(268\) 8.64848 0.528290
\(269\) −1.21176 −0.0738821 −0.0369411 0.999317i \(-0.511761\pi\)
−0.0369411 + 0.999317i \(0.511761\pi\)
\(270\) 0 0
\(271\) 21.0190 1.27681 0.638407 0.769699i \(-0.279594\pi\)
0.638407 + 0.769699i \(0.279594\pi\)
\(272\) 5.91077 0.358393
\(273\) 0 0
\(274\) 5.70047 0.344378
\(275\) 0 0
\(276\) 0 0
\(277\) 5.12836 0.308133 0.154067 0.988060i \(-0.450763\pi\)
0.154067 + 0.988060i \(0.450763\pi\)
\(278\) −7.36330 −0.441621
\(279\) 0 0
\(280\) 0 0
\(281\) 6.71721 0.400715 0.200357 0.979723i \(-0.435790\pi\)
0.200357 + 0.979723i \(0.435790\pi\)
\(282\) 0 0
\(283\) 30.4659 1.81101 0.905505 0.424336i \(-0.139492\pi\)
0.905505 + 0.424336i \(0.139492\pi\)
\(284\) 15.6666 0.929642
\(285\) 0 0
\(286\) 1.83184 0.108319
\(287\) −31.4179 −1.85454
\(288\) 0 0
\(289\) 21.0035 1.23550
\(290\) 0 0
\(291\) 0 0
\(292\) 9.13504 0.534588
\(293\) −29.3859 −1.71675 −0.858373 0.513027i \(-0.828524\pi\)
−0.858373 + 0.513027i \(0.828524\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.77674 −0.103271
\(297\) 0 0
\(298\) −7.21554 −0.417985
\(299\) −0.488294 −0.0282388
\(300\) 0 0
\(301\) −2.43040 −0.140086
\(302\) −1.94400 −0.111865
\(303\) 0 0
\(304\) −6.90672 −0.396128
\(305\) 0 0
\(306\) 0 0
\(307\) −17.1417 −0.978330 −0.489165 0.872191i \(-0.662698\pi\)
−0.489165 + 0.872191i \(0.662698\pi\)
\(308\) 5.40939 0.308229
\(309\) 0 0
\(310\) 0 0
\(311\) −20.0480 −1.13682 −0.568410 0.822746i \(-0.692441\pi\)
−0.568410 + 0.822746i \(0.692441\pi\)
\(312\) 0 0
\(313\) −14.3163 −0.809205 −0.404603 0.914493i \(-0.632590\pi\)
−0.404603 + 0.914493i \(0.632590\pi\)
\(314\) 4.38790 0.247624
\(315\) 0 0
\(316\) 10.4321 0.586852
\(317\) −24.8223 −1.39416 −0.697080 0.716993i \(-0.745518\pi\)
−0.697080 + 0.716993i \(0.745518\pi\)
\(318\) 0 0
\(319\) 1.14171 0.0639234
\(320\) 0 0
\(321\) 0 0
\(322\) 0.559264 0.0311666
\(323\) −44.4071 −2.47088
\(324\) 0 0
\(325\) 0 0
\(326\) −10.2610 −0.568302
\(327\) 0 0
\(328\) −24.5834 −1.35739
\(329\) 11.5976 0.639398
\(330\) 0 0
\(331\) −34.8886 −1.91765 −0.958824 0.284001i \(-0.908338\pi\)
−0.958824 + 0.284001i \(0.908338\pi\)
\(332\) 10.7567 0.590349
\(333\) 0 0
\(334\) −17.6759 −0.967183
\(335\) 0 0
\(336\) 0 0
\(337\) −20.9359 −1.14045 −0.570227 0.821487i \(-0.693145\pi\)
−0.570227 + 0.821487i \(0.693145\pi\)
\(338\) −6.27564 −0.341350
\(339\) 0 0
\(340\) 0 0
\(341\) 1.81763 0.0984300
\(342\) 0 0
\(343\) 10.4888 0.566344
\(344\) −1.90170 −0.102533
\(345\) 0 0
\(346\) −4.77183 −0.256535
\(347\) 1.68236 0.0903136 0.0451568 0.998980i \(-0.485621\pi\)
0.0451568 + 0.998980i \(0.485621\pi\)
\(348\) 0 0
\(349\) 3.12517 0.167286 0.0836432 0.996496i \(-0.473344\pi\)
0.0836432 + 0.996496i \(0.473344\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.69273 0.356724
\(353\) 23.4386 1.24751 0.623756 0.781619i \(-0.285606\pi\)
0.623756 + 0.781619i \(0.285606\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.893980 0.0473809
\(357\) 0 0
\(358\) −3.05730 −0.161584
\(359\) 1.45174 0.0766200 0.0383100 0.999266i \(-0.487803\pi\)
0.0383100 + 0.999266i \(0.487803\pi\)
\(360\) 0 0
\(361\) 32.8896 1.73103
\(362\) −1.79117 −0.0941420
\(363\) 0 0
\(364\) 10.1683 0.532961
\(365\) 0 0
\(366\) 0 0
\(367\) −17.1372 −0.894552 −0.447276 0.894396i \(-0.647606\pi\)
−0.447276 + 0.894396i \(0.647606\pi\)
\(368\) −0.218153 −0.0113720
\(369\) 0 0
\(370\) 0 0
\(371\) −2.48740 −0.129140
\(372\) 0 0
\(373\) −24.9017 −1.28936 −0.644681 0.764452i \(-0.723010\pi\)
−0.644681 + 0.764452i \(0.723010\pi\)
\(374\) 5.26196 0.272089
\(375\) 0 0
\(376\) 9.07473 0.467994
\(377\) 2.14612 0.110531
\(378\) 0 0
\(379\) 37.7156 1.93732 0.968659 0.248394i \(-0.0799028\pi\)
0.968659 + 0.248394i \(0.0799028\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 12.4163 0.635274
\(383\) −28.8331 −1.47330 −0.736650 0.676274i \(-0.763594\pi\)
−0.736650 + 0.676274i \(0.763594\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −11.1824 −0.569170
\(387\) 0 0
\(388\) 6.24245 0.316913
\(389\) 14.9618 0.758593 0.379296 0.925275i \(-0.376166\pi\)
0.379296 + 0.925275i \(0.376166\pi\)
\(390\) 0 0
\(391\) −1.40262 −0.0709336
\(392\) −9.80110 −0.495030
\(393\) 0 0
\(394\) 1.67299 0.0842839
\(395\) 0 0
\(396\) 0 0
\(397\) 26.4682 1.32840 0.664201 0.747554i \(-0.268772\pi\)
0.664201 + 0.747554i \(0.268772\pi\)
\(398\) −8.24320 −0.413194
\(399\) 0 0
\(400\) 0 0
\(401\) 25.6298 1.27989 0.639947 0.768419i \(-0.278956\pi\)
0.639947 + 0.768419i \(0.278956\pi\)
\(402\) 0 0
\(403\) 3.41667 0.170196
\(404\) −17.8968 −0.890397
\(405\) 0 0
\(406\) −2.45804 −0.121990
\(407\) 0.788507 0.0390849
\(408\) 0 0
\(409\) 14.0081 0.692657 0.346328 0.938113i \(-0.387428\pi\)
0.346328 + 0.938113i \(0.387428\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.22855 0.159059
\(413\) −26.2862 −1.29346
\(414\) 0 0
\(415\) 0 0
\(416\) 12.5806 0.616815
\(417\) 0 0
\(418\) −6.14859 −0.300737
\(419\) −17.7803 −0.868625 −0.434313 0.900762i \(-0.643009\pi\)
−0.434313 + 0.900762i \(0.643009\pi\)
\(420\) 0 0
\(421\) 39.0762 1.90446 0.952229 0.305385i \(-0.0987853\pi\)
0.952229 + 0.305385i \(0.0987853\pi\)
\(422\) 2.14286 0.104313
\(423\) 0 0
\(424\) −1.94630 −0.0945208
\(425\) 0 0
\(426\) 0 0
\(427\) 2.75057 0.133109
\(428\) 19.8469 0.959338
\(429\) 0 0
\(430\) 0 0
\(431\) 2.30354 0.110958 0.0554788 0.998460i \(-0.482331\pi\)
0.0554788 + 0.998460i \(0.482331\pi\)
\(432\) 0 0
\(433\) 11.7866 0.566426 0.283213 0.959057i \(-0.408600\pi\)
0.283213 + 0.959057i \(0.408600\pi\)
\(434\) −3.91325 −0.187842
\(435\) 0 0
\(436\) −11.7277 −0.561654
\(437\) 1.63896 0.0784021
\(438\) 0 0
\(439\) 20.2083 0.964492 0.482246 0.876036i \(-0.339821\pi\)
0.482246 + 0.876036i \(0.339821\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 9.89111 0.470472
\(443\) 3.99092 0.189614 0.0948072 0.995496i \(-0.469777\pi\)
0.0948072 + 0.995496i \(0.469777\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 20.9325 0.991184
\(447\) 0 0
\(448\) −8.10431 −0.382892
\(449\) 35.6417 1.68204 0.841019 0.541006i \(-0.181956\pi\)
0.841019 + 0.541006i \(0.181956\pi\)
\(450\) 0 0
\(451\) 10.9100 0.513731
\(452\) −0.342987 −0.0161328
\(453\) 0 0
\(454\) −3.76394 −0.176650
\(455\) 0 0
\(456\) 0 0
\(457\) −9.96090 −0.465951 −0.232976 0.972483i \(-0.574846\pi\)
−0.232976 + 0.972483i \(0.574846\pi\)
\(458\) −13.4293 −0.627511
\(459\) 0 0
\(460\) 0 0
\(461\) 23.8451 1.11058 0.555288 0.831658i \(-0.312608\pi\)
0.555288 + 0.831658i \(0.312608\pi\)
\(462\) 0 0
\(463\) 24.0865 1.11939 0.559697 0.828697i \(-0.310917\pi\)
0.559697 + 0.828697i \(0.310917\pi\)
\(464\) 0.958808 0.0445116
\(465\) 0 0
\(466\) −15.0455 −0.696971
\(467\) −22.3707 −1.03519 −0.517596 0.855625i \(-0.673173\pi\)
−0.517596 + 0.855625i \(0.673173\pi\)
\(468\) 0 0
\(469\) 19.7317 0.911125
\(470\) 0 0
\(471\) 0 0
\(472\) −20.5680 −0.946720
\(473\) 0.843965 0.0388055
\(474\) 0 0
\(475\) 0 0
\(476\) 29.2082 1.33876
\(477\) 0 0
\(478\) −11.3285 −0.518153
\(479\) 18.3803 0.839816 0.419908 0.907567i \(-0.362062\pi\)
0.419908 + 0.907567i \(0.362062\pi\)
\(480\) 0 0
\(481\) 1.48219 0.0675820
\(482\) 9.12475 0.415621
\(483\) 0 0
\(484\) 13.9733 0.635150
\(485\) 0 0
\(486\) 0 0
\(487\) 7.49492 0.339627 0.169814 0.985476i \(-0.445683\pi\)
0.169814 + 0.985476i \(0.445683\pi\)
\(488\) 2.15222 0.0974264
\(489\) 0 0
\(490\) 0 0
\(491\) 2.85995 0.129068 0.0645338 0.997916i \(-0.479444\pi\)
0.0645338 + 0.997916i \(0.479444\pi\)
\(492\) 0 0
\(493\) 6.16470 0.277644
\(494\) −11.5577 −0.520008
\(495\) 0 0
\(496\) 1.52645 0.0685394
\(497\) 35.7437 1.60332
\(498\) 0 0
\(499\) −23.5907 −1.05606 −0.528032 0.849224i \(-0.677070\pi\)
−0.528032 + 0.849224i \(0.677070\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −14.8847 −0.664337
\(503\) −18.3177 −0.816748 −0.408374 0.912815i \(-0.633904\pi\)
−0.408374 + 0.912815i \(0.633904\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.194206 −0.00863353
\(507\) 0 0
\(508\) 1.22687 0.0544337
\(509\) 22.5521 0.999605 0.499803 0.866139i \(-0.333406\pi\)
0.499803 + 0.866139i \(0.333406\pi\)
\(510\) 0 0
\(511\) 20.8418 0.921986
\(512\) 10.5538 0.466418
\(513\) 0 0
\(514\) −19.6941 −0.868669
\(515\) 0 0
\(516\) 0 0
\(517\) −4.02732 −0.177121
\(518\) −1.69761 −0.0745889
\(519\) 0 0
\(520\) 0 0
\(521\) −32.8127 −1.43755 −0.718776 0.695242i \(-0.755297\pi\)
−0.718776 + 0.695242i \(0.755297\pi\)
\(522\) 0 0
\(523\) −23.7123 −1.03687 −0.518433 0.855118i \(-0.673484\pi\)
−0.518433 + 0.855118i \(0.673484\pi\)
\(524\) −26.5088 −1.15804
\(525\) 0 0
\(526\) −9.03221 −0.393823
\(527\) 9.81435 0.427520
\(528\) 0 0
\(529\) −22.9482 −0.997749
\(530\) 0 0
\(531\) 0 0
\(532\) −34.1297 −1.47971
\(533\) 20.5080 0.888298
\(534\) 0 0
\(535\) 0 0
\(536\) 15.4393 0.666878
\(537\) 0 0
\(538\) −0.905932 −0.0390575
\(539\) 4.34968 0.187354
\(540\) 0 0
\(541\) 12.8337 0.551766 0.275883 0.961191i \(-0.411030\pi\)
0.275883 + 0.961191i \(0.411030\pi\)
\(542\) 15.7142 0.674982
\(543\) 0 0
\(544\) 36.1377 1.54939
\(545\) 0 0
\(546\) 0 0
\(547\) −0.0964595 −0.00412431 −0.00206216 0.999998i \(-0.500656\pi\)
−0.00206216 + 0.999998i \(0.500656\pi\)
\(548\) −10.9879 −0.469380
\(549\) 0 0
\(550\) 0 0
\(551\) −7.20344 −0.306877
\(552\) 0 0
\(553\) 23.8011 1.01213
\(554\) 3.83405 0.162893
\(555\) 0 0
\(556\) 14.1931 0.601921
\(557\) −13.1379 −0.556670 −0.278335 0.960484i \(-0.589783\pi\)
−0.278335 + 0.960484i \(0.589783\pi\)
\(558\) 0 0
\(559\) 1.58643 0.0670991
\(560\) 0 0
\(561\) 0 0
\(562\) 5.02191 0.211836
\(563\) 13.5992 0.573138 0.286569 0.958060i \(-0.407485\pi\)
0.286569 + 0.958060i \(0.407485\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.7769 0.957383
\(567\) 0 0
\(568\) 27.9681 1.17352
\(569\) −9.13357 −0.382899 −0.191450 0.981502i \(-0.561319\pi\)
−0.191450 + 0.981502i \(0.561319\pi\)
\(570\) 0 0
\(571\) −31.1678 −1.30433 −0.652166 0.758076i \(-0.726140\pi\)
−0.652166 + 0.758076i \(0.726140\pi\)
\(572\) −3.53096 −0.147637
\(573\) 0 0
\(574\) −23.4886 −0.980396
\(575\) 0 0
\(576\) 0 0
\(577\) 11.3819 0.473833 0.236916 0.971530i \(-0.423863\pi\)
0.236916 + 0.971530i \(0.423863\pi\)
\(578\) 15.7026 0.653143
\(579\) 0 0
\(580\) 0 0
\(581\) 24.5416 1.01816
\(582\) 0 0
\(583\) 0.863760 0.0357733
\(584\) 16.3079 0.674828
\(585\) 0 0
\(586\) −21.9695 −0.907550
\(587\) −25.1969 −1.03999 −0.519994 0.854170i \(-0.674066\pi\)
−0.519994 + 0.854170i \(0.674066\pi\)
\(588\) 0 0
\(589\) −11.4681 −0.472533
\(590\) 0 0
\(591\) 0 0
\(592\) 0.662190 0.0272158
\(593\) −11.8015 −0.484628 −0.242314 0.970198i \(-0.577906\pi\)
−0.242314 + 0.970198i \(0.577906\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 13.9083 0.569705
\(597\) 0 0
\(598\) −0.365058 −0.0149283
\(599\) −19.6438 −0.802626 −0.401313 0.915941i \(-0.631446\pi\)
−0.401313 + 0.915941i \(0.631446\pi\)
\(600\) 0 0
\(601\) −37.2951 −1.52130 −0.760649 0.649163i \(-0.775119\pi\)
−0.760649 + 0.649163i \(0.775119\pi\)
\(602\) −1.81701 −0.0740558
\(603\) 0 0
\(604\) 3.74715 0.152469
\(605\) 0 0
\(606\) 0 0
\(607\) 33.4688 1.35846 0.679228 0.733927i \(-0.262315\pi\)
0.679228 + 0.733927i \(0.262315\pi\)
\(608\) −42.2268 −1.71252
\(609\) 0 0
\(610\) 0 0
\(611\) −7.57032 −0.306262
\(612\) 0 0
\(613\) 9.99980 0.403888 0.201944 0.979397i \(-0.435274\pi\)
0.201944 + 0.979397i \(0.435274\pi\)
\(614\) −12.8155 −0.517190
\(615\) 0 0
\(616\) 9.65689 0.389087
\(617\) −5.23113 −0.210597 −0.105299 0.994441i \(-0.533580\pi\)
−0.105299 + 0.994441i \(0.533580\pi\)
\(618\) 0 0
\(619\) 4.44318 0.178586 0.0892932 0.996005i \(-0.471539\pi\)
0.0892932 + 0.996005i \(0.471539\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −14.9883 −0.600975
\(623\) 2.03964 0.0817163
\(624\) 0 0
\(625\) 0 0
\(626\) −10.7031 −0.427783
\(627\) 0 0
\(628\) −8.45788 −0.337506
\(629\) 4.25758 0.169761
\(630\) 0 0
\(631\) 28.0756 1.11767 0.558836 0.829278i \(-0.311248\pi\)
0.558836 + 0.829278i \(0.311248\pi\)
\(632\) 18.6235 0.740803
\(633\) 0 0
\(634\) −18.5576 −0.737017
\(635\) 0 0
\(636\) 0 0
\(637\) 8.17626 0.323955
\(638\) 0.853562 0.0337929
\(639\) 0 0
\(640\) 0 0
\(641\) −28.9980 −1.14535 −0.572676 0.819782i \(-0.694095\pi\)
−0.572676 + 0.819782i \(0.694095\pi\)
\(642\) 0 0
\(643\) −8.78346 −0.346386 −0.173193 0.984888i \(-0.555408\pi\)
−0.173193 + 0.984888i \(0.555408\pi\)
\(644\) −1.07801 −0.0424794
\(645\) 0 0
\(646\) −33.1995 −1.30622
\(647\) 14.6873 0.577416 0.288708 0.957417i \(-0.406774\pi\)
0.288708 + 0.957417i \(0.406774\pi\)
\(648\) 0 0
\(649\) 9.12798 0.358305
\(650\) 0 0
\(651\) 0 0
\(652\) 19.7785 0.774584
\(653\) −33.8232 −1.32360 −0.661802 0.749678i \(-0.730208\pi\)
−0.661802 + 0.749678i \(0.730208\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.16222 0.357725
\(657\) 0 0
\(658\) 8.67060 0.338015
\(659\) 8.05417 0.313746 0.156873 0.987619i \(-0.449859\pi\)
0.156873 + 0.987619i \(0.449859\pi\)
\(660\) 0 0
\(661\) −2.01657 −0.0784357 −0.0392178 0.999231i \(-0.512487\pi\)
−0.0392178 + 0.999231i \(0.512487\pi\)
\(662\) −26.0833 −1.01376
\(663\) 0 0
\(664\) 19.2029 0.745217
\(665\) 0 0
\(666\) 0 0
\(667\) −0.227525 −0.00880979
\(668\) 34.0711 1.31825
\(669\) 0 0
\(670\) 0 0
\(671\) −0.955144 −0.0368729
\(672\) 0 0
\(673\) −35.0573 −1.35136 −0.675679 0.737196i \(-0.736149\pi\)
−0.675679 + 0.737196i \(0.736149\pi\)
\(674\) −15.6521 −0.602896
\(675\) 0 0
\(676\) 12.0966 0.465253
\(677\) 43.5224 1.67270 0.836351 0.548194i \(-0.184684\pi\)
0.836351 + 0.548194i \(0.184684\pi\)
\(678\) 0 0
\(679\) 14.2423 0.546569
\(680\) 0 0
\(681\) 0 0
\(682\) 1.35889 0.0520346
\(683\) −33.6868 −1.28899 −0.644494 0.764609i \(-0.722932\pi\)
−0.644494 + 0.764609i \(0.722932\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 7.84164 0.299395
\(687\) 0 0
\(688\) 0.708763 0.0270213
\(689\) 1.62364 0.0618559
\(690\) 0 0
\(691\) −22.7655 −0.866039 −0.433020 0.901384i \(-0.642552\pi\)
−0.433020 + 0.901384i \(0.642552\pi\)
\(692\) 9.19791 0.349652
\(693\) 0 0
\(694\) 1.25776 0.0477439
\(695\) 0 0
\(696\) 0 0
\(697\) 58.9089 2.23133
\(698\) 2.33643 0.0884352
\(699\) 0 0
\(700\) 0 0
\(701\) −39.1196 −1.47753 −0.738763 0.673966i \(-0.764589\pi\)
−0.738763 + 0.673966i \(0.764589\pi\)
\(702\) 0 0
\(703\) −4.97497 −0.187635
\(704\) 2.81425 0.106066
\(705\) 0 0
\(706\) 17.5232 0.659493
\(707\) −40.8318 −1.53564
\(708\) 0 0
\(709\) −8.56919 −0.321823 −0.160911 0.986969i \(-0.551443\pi\)
−0.160911 + 0.986969i \(0.551443\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.59594 0.0598104
\(713\) −0.362225 −0.0135654
\(714\) 0 0
\(715\) 0 0
\(716\) 5.89309 0.220235
\(717\) 0 0
\(718\) 1.08535 0.0405049
\(719\) 9.04221 0.337218 0.168609 0.985683i \(-0.446073\pi\)
0.168609 + 0.985683i \(0.446073\pi\)
\(720\) 0 0
\(721\) 7.36600 0.274324
\(722\) 24.5889 0.915102
\(723\) 0 0
\(724\) 3.45257 0.128314
\(725\) 0 0
\(726\) 0 0
\(727\) 25.6760 0.952270 0.476135 0.879372i \(-0.342037\pi\)
0.476135 + 0.879372i \(0.342037\pi\)
\(728\) 18.1524 0.672774
\(729\) 0 0
\(730\) 0 0
\(731\) 4.55702 0.168547
\(732\) 0 0
\(733\) 1.30522 0.0482093 0.0241047 0.999709i \(-0.492327\pi\)
0.0241047 + 0.999709i \(0.492327\pi\)
\(734\) −12.8121 −0.472901
\(735\) 0 0
\(736\) −1.33376 −0.0491629
\(737\) −6.85190 −0.252393
\(738\) 0 0
\(739\) 5.31974 0.195690 0.0978449 0.995202i \(-0.468805\pi\)
0.0978449 + 0.995202i \(0.468805\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.85963 −0.0682691
\(743\) 38.7894 1.42304 0.711522 0.702664i \(-0.248006\pi\)
0.711522 + 0.702664i \(0.248006\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −18.6170 −0.681616
\(747\) 0 0
\(748\) −10.1427 −0.370852
\(749\) 45.2812 1.65454
\(750\) 0 0
\(751\) 41.9496 1.53076 0.765382 0.643576i \(-0.222550\pi\)
0.765382 + 0.643576i \(0.222550\pi\)
\(752\) −3.38215 −0.123334
\(753\) 0 0
\(754\) 1.60448 0.0584316
\(755\) 0 0
\(756\) 0 0
\(757\) −44.0799 −1.60211 −0.801057 0.598589i \(-0.795728\pi\)
−0.801057 + 0.598589i \(0.795728\pi\)
\(758\) 28.1968 1.02416
\(759\) 0 0
\(760\) 0 0
\(761\) −48.8024 −1.76909 −0.884543 0.466459i \(-0.845529\pi\)
−0.884543 + 0.466459i \(0.845529\pi\)
\(762\) 0 0
\(763\) −26.7569 −0.968666
\(764\) −23.9330 −0.865866
\(765\) 0 0
\(766\) −21.5561 −0.778854
\(767\) 17.1582 0.619548
\(768\) 0 0
\(769\) 10.5748 0.381336 0.190668 0.981655i \(-0.438935\pi\)
0.190668 + 0.981655i \(0.438935\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 21.5546 0.775767
\(773\) 1.99543 0.0717706 0.0358853 0.999356i \(-0.488575\pi\)
0.0358853 + 0.999356i \(0.488575\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 11.1441 0.400049
\(777\) 0 0
\(778\) 11.1857 0.401027
\(779\) −68.8350 −2.46627
\(780\) 0 0
\(781\) −12.4121 −0.444141
\(782\) −1.04862 −0.0374987
\(783\) 0 0
\(784\) 3.65286 0.130459
\(785\) 0 0
\(786\) 0 0
\(787\) 6.26378 0.223280 0.111640 0.993749i \(-0.464390\pi\)
0.111640 + 0.993749i \(0.464390\pi\)
\(788\) −3.22476 −0.114877
\(789\) 0 0
\(790\) 0 0
\(791\) −0.782533 −0.0278237
\(792\) 0 0
\(793\) −1.79542 −0.0637573
\(794\) 19.7881 0.702254
\(795\) 0 0
\(796\) 15.8891 0.563175
\(797\) −23.6779 −0.838715 −0.419358 0.907821i \(-0.637745\pi\)
−0.419358 + 0.907821i \(0.637745\pi\)
\(798\) 0 0
\(799\) −21.7457 −0.769306
\(800\) 0 0
\(801\) 0 0
\(802\) 19.1613 0.676610
\(803\) −7.23738 −0.255402
\(804\) 0 0
\(805\) 0 0
\(806\) 2.55436 0.0899736
\(807\) 0 0
\(808\) −31.9494 −1.12398
\(809\) 3.13385 0.110180 0.0550901 0.998481i \(-0.482455\pi\)
0.0550901 + 0.998481i \(0.482455\pi\)
\(810\) 0 0
\(811\) 22.4677 0.788949 0.394474 0.918907i \(-0.370927\pi\)
0.394474 + 0.918907i \(0.370927\pi\)
\(812\) 4.73798 0.166270
\(813\) 0 0
\(814\) 0.589503 0.0206621
\(815\) 0 0
\(816\) 0 0
\(817\) −5.32487 −0.186294
\(818\) 10.4727 0.366170
\(819\) 0 0
\(820\) 0 0
\(821\) −34.1236 −1.19092 −0.595462 0.803384i \(-0.703031\pi\)
−0.595462 + 0.803384i \(0.703031\pi\)
\(822\) 0 0
\(823\) −49.5543 −1.72735 −0.863677 0.504046i \(-0.831844\pi\)
−0.863677 + 0.504046i \(0.831844\pi\)
\(824\) 5.76363 0.200786
\(825\) 0 0
\(826\) −19.6521 −0.683782
\(827\) −10.1137 −0.351687 −0.175843 0.984418i \(-0.556265\pi\)
−0.175843 + 0.984418i \(0.556265\pi\)
\(828\) 0 0
\(829\) 40.3973 1.40306 0.701528 0.712642i \(-0.252502\pi\)
0.701528 + 0.712642i \(0.252502\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.29006 0.183400
\(833\) 23.4862 0.813750
\(834\) 0 0
\(835\) 0 0
\(836\) 11.8517 0.409899
\(837\) 0 0
\(838\) −13.2929 −0.459195
\(839\) −42.2304 −1.45795 −0.728977 0.684538i \(-0.760004\pi\)
−0.728977 + 0.684538i \(0.760004\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 29.2141 1.00678
\(843\) 0 0
\(844\) −4.13046 −0.142176
\(845\) 0 0
\(846\) 0 0
\(847\) 31.8804 1.09542
\(848\) 0.725386 0.0249099
\(849\) 0 0
\(850\) 0 0
\(851\) −0.157137 −0.00538659
\(852\) 0 0
\(853\) −53.7233 −1.83945 −0.919726 0.392562i \(-0.871589\pi\)
−0.919726 + 0.392562i \(0.871589\pi\)
\(854\) 2.05637 0.0703676
\(855\) 0 0
\(856\) 35.4309 1.21100
\(857\) 37.9764 1.29725 0.648625 0.761109i \(-0.275345\pi\)
0.648625 + 0.761109i \(0.275345\pi\)
\(858\) 0 0
\(859\) 52.2536 1.78287 0.891435 0.453148i \(-0.149699\pi\)
0.891435 + 0.453148i \(0.149699\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.72217 0.0586573
\(863\) 46.9411 1.59789 0.798946 0.601402i \(-0.205391\pi\)
0.798946 + 0.601402i \(0.205391\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 8.81186 0.299439
\(867\) 0 0
\(868\) 7.54297 0.256025
\(869\) −8.26501 −0.280371
\(870\) 0 0
\(871\) −12.8798 −0.436415
\(872\) −20.9363 −0.708994
\(873\) 0 0
\(874\) 1.22532 0.0414469
\(875\) 0 0
\(876\) 0 0
\(877\) −37.5859 −1.26919 −0.634593 0.772846i \(-0.718832\pi\)
−0.634593 + 0.772846i \(0.718832\pi\)
\(878\) 15.1081 0.509875
\(879\) 0 0
\(880\) 0 0
\(881\) −34.1047 −1.14902 −0.574509 0.818499i \(-0.694807\pi\)
−0.574509 + 0.818499i \(0.694807\pi\)
\(882\) 0 0
\(883\) −5.27332 −0.177461 −0.0887307 0.996056i \(-0.528281\pi\)
−0.0887307 + 0.996056i \(0.528281\pi\)
\(884\) −19.0656 −0.641244
\(885\) 0 0
\(886\) 2.98368 0.100239
\(887\) −15.9851 −0.536728 −0.268364 0.963318i \(-0.586483\pi\)
−0.268364 + 0.963318i \(0.586483\pi\)
\(888\) 0 0
\(889\) 2.79914 0.0938801
\(890\) 0 0
\(891\) 0 0
\(892\) −40.3484 −1.35096
\(893\) 25.4098 0.850306
\(894\) 0 0
\(895\) 0 0
\(896\) 32.4877 1.08534
\(897\) 0 0
\(898\) 26.6464 0.889202
\(899\) 1.59202 0.0530970
\(900\) 0 0
\(901\) 4.66390 0.155377
\(902\) 8.15651 0.271582
\(903\) 0 0
\(904\) −0.612303 −0.0203649
\(905\) 0 0
\(906\) 0 0
\(907\) 33.0649 1.09790 0.548950 0.835855i \(-0.315028\pi\)
0.548950 + 0.835855i \(0.315028\pi\)
\(908\) 7.25516 0.240771
\(909\) 0 0
\(910\) 0 0
\(911\) 14.5224 0.481148 0.240574 0.970631i \(-0.422664\pi\)
0.240574 + 0.970631i \(0.422664\pi\)
\(912\) 0 0
\(913\) −8.52215 −0.282042
\(914\) −7.44695 −0.246323
\(915\) 0 0
\(916\) 25.8856 0.855284
\(917\) −60.4805 −1.99724
\(918\) 0 0
\(919\) −1.83140 −0.0604122 −0.0302061 0.999544i \(-0.509616\pi\)
−0.0302061 + 0.999544i \(0.509616\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.8270 0.587101
\(923\) −23.3316 −0.767968
\(924\) 0 0
\(925\) 0 0
\(926\) 18.0075 0.591763
\(927\) 0 0
\(928\) 5.86203 0.192431
\(929\) 17.5449 0.575631 0.287815 0.957686i \(-0.407071\pi\)
0.287815 + 0.957686i \(0.407071\pi\)
\(930\) 0 0
\(931\) −27.4436 −0.899429
\(932\) 29.0010 0.949958
\(933\) 0 0
\(934\) −16.7247 −0.547250
\(935\) 0 0
\(936\) 0 0
\(937\) −32.4416 −1.05982 −0.529911 0.848053i \(-0.677775\pi\)
−0.529911 + 0.848053i \(0.677775\pi\)
\(938\) 14.7518 0.481663
\(939\) 0 0
\(940\) 0 0
\(941\) 17.5838 0.573216 0.286608 0.958048i \(-0.407472\pi\)
0.286608 + 0.958048i \(0.407472\pi\)
\(942\) 0 0
\(943\) −2.17419 −0.0708013
\(944\) 7.66569 0.249497
\(945\) 0 0
\(946\) 0.630963 0.0205144
\(947\) 27.3823 0.889805 0.444902 0.895579i \(-0.353238\pi\)
0.444902 + 0.895579i \(0.353238\pi\)
\(948\) 0 0
\(949\) −13.6044 −0.441618
\(950\) 0 0
\(951\) 0 0
\(952\) 52.1427 1.68996
\(953\) 41.5899 1.34723 0.673614 0.739083i \(-0.264741\pi\)
0.673614 + 0.739083i \(0.264741\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 21.8362 0.706232
\(957\) 0 0
\(958\) 13.7414 0.443965
\(959\) −25.0691 −0.809525
\(960\) 0 0
\(961\) −28.4655 −0.918241
\(962\) 1.10811 0.0357270
\(963\) 0 0
\(964\) −17.5884 −0.566483
\(965\) 0 0
\(966\) 0 0
\(967\) −24.3025 −0.781517 −0.390759 0.920493i \(-0.627787\pi\)
−0.390759 + 0.920493i \(0.627787\pi\)
\(968\) 24.9453 0.801771
\(969\) 0 0
\(970\) 0 0
\(971\) −56.8121 −1.82319 −0.911593 0.411093i \(-0.865147\pi\)
−0.911593 + 0.411093i \(0.865147\pi\)
\(972\) 0 0
\(973\) 32.3818 1.03811
\(974\) 5.60334 0.179543
\(975\) 0 0
\(976\) −0.802131 −0.0256756
\(977\) 25.2789 0.808743 0.404371 0.914595i \(-0.367490\pi\)
0.404371 + 0.914595i \(0.367490\pi\)
\(978\) 0 0
\(979\) −0.708271 −0.0226364
\(980\) 0 0
\(981\) 0 0
\(982\) 2.13815 0.0682311
\(983\) 16.8975 0.538945 0.269473 0.963008i \(-0.413151\pi\)
0.269473 + 0.963008i \(0.413151\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.60884 0.146775
\(987\) 0 0
\(988\) 22.2781 0.708760
\(989\) −0.168189 −0.00534810
\(990\) 0 0
\(991\) −41.6666 −1.32358 −0.661792 0.749688i \(-0.730204\pi\)
−0.661792 + 0.749688i \(0.730204\pi\)
\(992\) 9.33249 0.296307
\(993\) 0 0
\(994\) 26.7226 0.847590
\(995\) 0 0
\(996\) 0 0
\(997\) 15.6779 0.496523 0.248262 0.968693i \(-0.420141\pi\)
0.248262 + 0.968693i \(0.420141\pi\)
\(998\) −17.6368 −0.558284
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ca.1.6 9
3.2 odd 2 6525.2.a.cc.1.4 yes 9
5.4 even 2 6525.2.a.cd.1.4 yes 9
15.14 odd 2 6525.2.a.cb.1.6 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.6 9 1.1 even 1 trivial
6525.2.a.cb.1.6 yes 9 15.14 odd 2
6525.2.a.cc.1.4 yes 9 3.2 odd 2
6525.2.a.cd.1.4 yes 9 5.4 even 2