Properties

Label 6525.2.a.ca.1.2
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.18077\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18077 q^{2} +2.75577 q^{4} -4.62113 q^{7} -1.64817 q^{8} +O(q^{10})\) \(q-2.18077 q^{2} +2.75577 q^{4} -4.62113 q^{7} -1.64817 q^{8} +2.53207 q^{11} +2.08906 q^{13} +10.0776 q^{14} -1.91726 q^{16} -0.481630 q^{17} +4.25554 q^{19} -5.52188 q^{22} -5.22436 q^{23} -4.55576 q^{26} -12.7348 q^{28} +1.00000 q^{29} +0.0174694 q^{31} +7.47745 q^{32} +1.05033 q^{34} +7.52495 q^{37} -9.28036 q^{38} -5.88867 q^{41} -4.91245 q^{43} +6.97782 q^{44} +11.3932 q^{46} -7.27173 q^{47} +14.3549 q^{49} +5.75697 q^{52} -10.4262 q^{53} +7.61641 q^{56} -2.18077 q^{58} -2.12111 q^{59} -2.79999 q^{61} -0.0380968 q^{62} -12.4721 q^{64} +5.03637 q^{67} -1.32726 q^{68} -8.56725 q^{71} +1.59489 q^{73} -16.4102 q^{74} +11.7273 q^{76} -11.7010 q^{77} +11.6409 q^{79} +12.8419 q^{82} +4.69781 q^{83} +10.7129 q^{86} -4.17329 q^{88} +14.6662 q^{89} -9.65381 q^{91} -14.3972 q^{92} +15.8580 q^{94} -0.438441 q^{97} -31.3047 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8} + 2 q^{11} - q^{13} - 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} - 3 q^{22} - 16 q^{23} + 6 q^{26} + 4 q^{28} + 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} - 10 q^{41} - 3 q^{43} - 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} + 9 q^{52} - 22 q^{53} + 22 q^{56} - 2 q^{58} + 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} - 5 q^{67} - 39 q^{68} + 10 q^{73} - 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} + 8 q^{82} - 46 q^{83} + 28 q^{86} - 2 q^{88} + 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} - 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18077 −1.54204 −0.771020 0.636811i \(-0.780253\pi\)
−0.771020 + 0.636811i \(0.780253\pi\)
\(3\) 0 0
\(4\) 2.75577 1.37789
\(5\) 0 0
\(6\) 0 0
\(7\) −4.62113 −1.74662 −0.873312 0.487162i \(-0.838032\pi\)
−0.873312 + 0.487162i \(0.838032\pi\)
\(8\) −1.64817 −0.582716
\(9\) 0 0
\(10\) 0 0
\(11\) 2.53207 0.763449 0.381725 0.924276i \(-0.375330\pi\)
0.381725 + 0.924276i \(0.375330\pi\)
\(12\) 0 0
\(13\) 2.08906 0.579400 0.289700 0.957117i \(-0.406444\pi\)
0.289700 + 0.957117i \(0.406444\pi\)
\(14\) 10.0776 2.69336
\(15\) 0 0
\(16\) −1.91726 −0.479316
\(17\) −0.481630 −0.116812 −0.0584062 0.998293i \(-0.518602\pi\)
−0.0584062 + 0.998293i \(0.518602\pi\)
\(18\) 0 0
\(19\) 4.25554 0.976287 0.488143 0.872763i \(-0.337674\pi\)
0.488143 + 0.872763i \(0.337674\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.52188 −1.17727
\(23\) −5.22436 −1.08935 −0.544677 0.838646i \(-0.683348\pi\)
−0.544677 + 0.838646i \(0.683348\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.55576 −0.893458
\(27\) 0 0
\(28\) −12.7348 −2.40665
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 0.0174694 0.00313760 0.00156880 0.999999i \(-0.499501\pi\)
0.00156880 + 0.999999i \(0.499501\pi\)
\(32\) 7.47745 1.32184
\(33\) 0 0
\(34\) 1.05033 0.180129
\(35\) 0 0
\(36\) 0 0
\(37\) 7.52495 1.23709 0.618547 0.785748i \(-0.287721\pi\)
0.618547 + 0.785748i \(0.287721\pi\)
\(38\) −9.28036 −1.50547
\(39\) 0 0
\(40\) 0 0
\(41\) −5.88867 −0.919655 −0.459828 0.888008i \(-0.652089\pi\)
−0.459828 + 0.888008i \(0.652089\pi\)
\(42\) 0 0
\(43\) −4.91245 −0.749141 −0.374571 0.927198i \(-0.622210\pi\)
−0.374571 + 0.927198i \(0.622210\pi\)
\(44\) 6.97782 1.05195
\(45\) 0 0
\(46\) 11.3932 1.67983
\(47\) −7.27173 −1.06069 −0.530346 0.847782i \(-0.677938\pi\)
−0.530346 + 0.847782i \(0.677938\pi\)
\(48\) 0 0
\(49\) 14.3549 2.05069
\(50\) 0 0
\(51\) 0 0
\(52\) 5.75697 0.798348
\(53\) −10.4262 −1.43215 −0.716074 0.698024i \(-0.754063\pi\)
−0.716074 + 0.698024i \(0.754063\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 7.61641 1.01779
\(57\) 0 0
\(58\) −2.18077 −0.286350
\(59\) −2.12111 −0.276145 −0.138073 0.990422i \(-0.544091\pi\)
−0.138073 + 0.990422i \(0.544091\pi\)
\(60\) 0 0
\(61\) −2.79999 −0.358502 −0.179251 0.983803i \(-0.557367\pi\)
−0.179251 + 0.983803i \(0.557367\pi\)
\(62\) −0.0380968 −0.00483830
\(63\) 0 0
\(64\) −12.4721 −1.55901
\(65\) 0 0
\(66\) 0 0
\(67\) 5.03637 0.615290 0.307645 0.951501i \(-0.400459\pi\)
0.307645 + 0.951501i \(0.400459\pi\)
\(68\) −1.32726 −0.160954
\(69\) 0 0
\(70\) 0 0
\(71\) −8.56725 −1.01675 −0.508373 0.861137i \(-0.669753\pi\)
−0.508373 + 0.861137i \(0.669753\pi\)
\(72\) 0 0
\(73\) 1.59489 0.186668 0.0933339 0.995635i \(-0.470248\pi\)
0.0933339 + 0.995635i \(0.470248\pi\)
\(74\) −16.4102 −1.90765
\(75\) 0 0
\(76\) 11.7273 1.34521
\(77\) −11.7010 −1.33346
\(78\) 0 0
\(79\) 11.6409 1.30970 0.654852 0.755757i \(-0.272731\pi\)
0.654852 + 0.755757i \(0.272731\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.8419 1.41815
\(83\) 4.69781 0.515652 0.257826 0.966191i \(-0.416994\pi\)
0.257826 + 0.966191i \(0.416994\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.7129 1.15521
\(87\) 0 0
\(88\) −4.17329 −0.444874
\(89\) 14.6662 1.55462 0.777309 0.629119i \(-0.216584\pi\)
0.777309 + 0.629119i \(0.216584\pi\)
\(90\) 0 0
\(91\) −9.65381 −1.01199
\(92\) −14.3972 −1.50101
\(93\) 0 0
\(94\) 15.8580 1.63563
\(95\) 0 0
\(96\) 0 0
\(97\) −0.438441 −0.0445169 −0.0222585 0.999752i \(-0.507086\pi\)
−0.0222585 + 0.999752i \(0.507086\pi\)
\(98\) −31.3047 −3.16225
\(99\) 0 0
\(100\) 0 0
\(101\) 12.2631 1.22023 0.610113 0.792315i \(-0.291124\pi\)
0.610113 + 0.792315i \(0.291124\pi\)
\(102\) 0 0
\(103\) 13.5519 1.33531 0.667654 0.744471i \(-0.267298\pi\)
0.667654 + 0.744471i \(0.267298\pi\)
\(104\) −3.44312 −0.337626
\(105\) 0 0
\(106\) 22.7372 2.20843
\(107\) −14.0369 −1.35699 −0.678497 0.734603i \(-0.737368\pi\)
−0.678497 + 0.734603i \(0.737368\pi\)
\(108\) 0 0
\(109\) −5.16741 −0.494948 −0.247474 0.968895i \(-0.579601\pi\)
−0.247474 + 0.968895i \(0.579601\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.85992 0.837184
\(113\) 13.5837 1.27785 0.638923 0.769270i \(-0.279380\pi\)
0.638923 + 0.769270i \(0.279380\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.75577 0.255867
\(117\) 0 0
\(118\) 4.62567 0.425827
\(119\) 2.22567 0.204027
\(120\) 0 0
\(121\) −4.58860 −0.417145
\(122\) 6.10614 0.552824
\(123\) 0 0
\(124\) 0.0481417 0.00432325
\(125\) 0 0
\(126\) 0 0
\(127\) 21.9460 1.94739 0.973697 0.227847i \(-0.0731685\pi\)
0.973697 + 0.227847i \(0.0731685\pi\)
\(128\) 12.2439 1.08222
\(129\) 0 0
\(130\) 0 0
\(131\) −0.515976 −0.0450810 −0.0225405 0.999746i \(-0.507175\pi\)
−0.0225405 + 0.999746i \(0.507175\pi\)
\(132\) 0 0
\(133\) −19.6654 −1.70521
\(134\) −10.9832 −0.948802
\(135\) 0 0
\(136\) 0.793807 0.0680684
\(137\) −4.92240 −0.420549 −0.210275 0.977642i \(-0.567436\pi\)
−0.210275 + 0.977642i \(0.567436\pi\)
\(138\) 0 0
\(139\) −1.00838 −0.0855300 −0.0427650 0.999085i \(-0.513617\pi\)
−0.0427650 + 0.999085i \(0.513617\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 18.6832 1.56786
\(143\) 5.28965 0.442343
\(144\) 0 0
\(145\) 0 0
\(146\) −3.47809 −0.287849
\(147\) 0 0
\(148\) 20.7371 1.70458
\(149\) 9.17808 0.751898 0.375949 0.926640i \(-0.377317\pi\)
0.375949 + 0.926640i \(0.377317\pi\)
\(150\) 0 0
\(151\) −10.7451 −0.874421 −0.437210 0.899359i \(-0.644034\pi\)
−0.437210 + 0.899359i \(0.644034\pi\)
\(152\) −7.01384 −0.568898
\(153\) 0 0
\(154\) 25.5173 2.05625
\(155\) 0 0
\(156\) 0 0
\(157\) 10.4159 0.831278 0.415639 0.909530i \(-0.363558\pi\)
0.415639 + 0.909530i \(0.363558\pi\)
\(158\) −25.3862 −2.01962
\(159\) 0 0
\(160\) 0 0
\(161\) 24.1425 1.90269
\(162\) 0 0
\(163\) −4.52007 −0.354039 −0.177019 0.984207i \(-0.556646\pi\)
−0.177019 + 0.984207i \(0.556646\pi\)
\(164\) −16.2278 −1.26718
\(165\) 0 0
\(166\) −10.2449 −0.795156
\(167\) −7.66501 −0.593136 −0.296568 0.955012i \(-0.595842\pi\)
−0.296568 + 0.955012i \(0.595842\pi\)
\(168\) 0 0
\(169\) −8.63584 −0.664295
\(170\) 0 0
\(171\) 0 0
\(172\) −13.5376 −1.03223
\(173\) −0.239810 −0.0182324 −0.00911621 0.999958i \(-0.502902\pi\)
−0.00911621 + 0.999958i \(0.502902\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.85465 −0.365933
\(177\) 0 0
\(178\) −31.9838 −2.39728
\(179\) −19.3101 −1.44330 −0.721652 0.692256i \(-0.756617\pi\)
−0.721652 + 0.692256i \(0.756617\pi\)
\(180\) 0 0
\(181\) 11.1598 0.829500 0.414750 0.909935i \(-0.363869\pi\)
0.414750 + 0.909935i \(0.363869\pi\)
\(182\) 21.0528 1.56054
\(183\) 0 0
\(184\) 8.61063 0.634784
\(185\) 0 0
\(186\) 0 0
\(187\) −1.21952 −0.0891803
\(188\) −20.0392 −1.46151
\(189\) 0 0
\(190\) 0 0
\(191\) −8.73098 −0.631751 −0.315876 0.948801i \(-0.602298\pi\)
−0.315876 + 0.948801i \(0.602298\pi\)
\(192\) 0 0
\(193\) −13.3970 −0.964338 −0.482169 0.876078i \(-0.660151\pi\)
−0.482169 + 0.876078i \(0.660151\pi\)
\(194\) 0.956141 0.0686469
\(195\) 0 0
\(196\) 39.5587 2.82562
\(197\) −8.46706 −0.603253 −0.301627 0.953426i \(-0.597530\pi\)
−0.301627 + 0.953426i \(0.597530\pi\)
\(198\) 0 0
\(199\) 26.8789 1.90539 0.952696 0.303925i \(-0.0982972\pi\)
0.952696 + 0.303925i \(0.0982972\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −26.7431 −1.88164
\(203\) −4.62113 −0.324340
\(204\) 0 0
\(205\) 0 0
\(206\) −29.5536 −2.05910
\(207\) 0 0
\(208\) −4.00527 −0.277716
\(209\) 10.7753 0.745345
\(210\) 0 0
\(211\) −10.7357 −0.739079 −0.369540 0.929215i \(-0.620485\pi\)
−0.369540 + 0.929215i \(0.620485\pi\)
\(212\) −28.7322 −1.97334
\(213\) 0 0
\(214\) 30.6112 2.09254
\(215\) 0 0
\(216\) 0 0
\(217\) −0.0807284 −0.00548020
\(218\) 11.2690 0.763230
\(219\) 0 0
\(220\) 0 0
\(221\) −1.00615 −0.0676811
\(222\) 0 0
\(223\) −24.0249 −1.60882 −0.804412 0.594071i \(-0.797520\pi\)
−0.804412 + 0.594071i \(0.797520\pi\)
\(224\) −34.5543 −2.30876
\(225\) 0 0
\(226\) −29.6230 −1.97049
\(227\) −21.3367 −1.41617 −0.708083 0.706130i \(-0.750440\pi\)
−0.708083 + 0.706130i \(0.750440\pi\)
\(228\) 0 0
\(229\) 26.2040 1.73161 0.865804 0.500383i \(-0.166807\pi\)
0.865804 + 0.500383i \(0.166807\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.64817 −0.108208
\(233\) −22.7585 −1.49096 −0.745478 0.666530i \(-0.767779\pi\)
−0.745478 + 0.666530i \(0.767779\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.84531 −0.380497
\(237\) 0 0
\(238\) −4.85369 −0.314618
\(239\) −14.0542 −0.909089 −0.454544 0.890724i \(-0.650198\pi\)
−0.454544 + 0.890724i \(0.650198\pi\)
\(240\) 0 0
\(241\) −19.7283 −1.27081 −0.635406 0.772178i \(-0.719167\pi\)
−0.635406 + 0.772178i \(0.719167\pi\)
\(242\) 10.0067 0.643255
\(243\) 0 0
\(244\) −7.71613 −0.493975
\(245\) 0 0
\(246\) 0 0
\(247\) 8.89006 0.565661
\(248\) −0.0287925 −0.00182833
\(249\) 0 0
\(250\) 0 0
\(251\) 2.03124 0.128211 0.0641055 0.997943i \(-0.479581\pi\)
0.0641055 + 0.997943i \(0.479581\pi\)
\(252\) 0 0
\(253\) −13.2285 −0.831667
\(254\) −47.8593 −3.00296
\(255\) 0 0
\(256\) −1.75703 −0.109814
\(257\) 16.1654 1.00837 0.504184 0.863596i \(-0.331793\pi\)
0.504184 + 0.863596i \(0.331793\pi\)
\(258\) 0 0
\(259\) −34.7738 −2.16074
\(260\) 0 0
\(261\) 0 0
\(262\) 1.12523 0.0695167
\(263\) 10.8268 0.667609 0.333805 0.942642i \(-0.391667\pi\)
0.333805 + 0.942642i \(0.391667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 42.8858 2.62949
\(267\) 0 0
\(268\) 13.8791 0.847800
\(269\) −5.59873 −0.341360 −0.170680 0.985326i \(-0.554597\pi\)
−0.170680 + 0.985326i \(0.554597\pi\)
\(270\) 0 0
\(271\) −9.13245 −0.554757 −0.277378 0.960761i \(-0.589466\pi\)
−0.277378 + 0.960761i \(0.589466\pi\)
\(272\) 0.923410 0.0559900
\(273\) 0 0
\(274\) 10.7346 0.648503
\(275\) 0 0
\(276\) 0 0
\(277\) −11.1296 −0.668715 −0.334357 0.942446i \(-0.608519\pi\)
−0.334357 + 0.942446i \(0.608519\pi\)
\(278\) 2.19906 0.131891
\(279\) 0 0
\(280\) 0 0
\(281\) 20.9692 1.25092 0.625459 0.780257i \(-0.284912\pi\)
0.625459 + 0.780257i \(0.284912\pi\)
\(282\) 0 0
\(283\) 24.4468 1.45321 0.726607 0.687053i \(-0.241096\pi\)
0.726607 + 0.687053i \(0.241096\pi\)
\(284\) −23.6094 −1.40096
\(285\) 0 0
\(286\) −11.5355 −0.682110
\(287\) 27.2123 1.60629
\(288\) 0 0
\(289\) −16.7680 −0.986355
\(290\) 0 0
\(291\) 0 0
\(292\) 4.39515 0.257207
\(293\) 32.8311 1.91801 0.959007 0.283382i \(-0.0914565\pi\)
0.959007 + 0.283382i \(0.0914565\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.4024 −0.720875
\(297\) 0 0
\(298\) −20.0153 −1.15946
\(299\) −10.9140 −0.631173
\(300\) 0 0
\(301\) 22.7011 1.30847
\(302\) 23.4325 1.34839
\(303\) 0 0
\(304\) −8.15898 −0.467950
\(305\) 0 0
\(306\) 0 0
\(307\) 18.8856 1.07786 0.538928 0.842352i \(-0.318829\pi\)
0.538928 + 0.842352i \(0.318829\pi\)
\(308\) −32.2454 −1.83735
\(309\) 0 0
\(310\) 0 0
\(311\) 5.12864 0.290819 0.145409 0.989372i \(-0.453550\pi\)
0.145409 + 0.989372i \(0.453550\pi\)
\(312\) 0 0
\(313\) −7.42579 −0.419731 −0.209865 0.977730i \(-0.567303\pi\)
−0.209865 + 0.977730i \(0.567303\pi\)
\(314\) −22.7147 −1.28186
\(315\) 0 0
\(316\) 32.0797 1.80462
\(317\) 6.50490 0.365351 0.182676 0.983173i \(-0.441524\pi\)
0.182676 + 0.983173i \(0.441524\pi\)
\(318\) 0 0
\(319\) 2.53207 0.141769
\(320\) 0 0
\(321\) 0 0
\(322\) −52.6493 −2.93403
\(323\) −2.04959 −0.114042
\(324\) 0 0
\(325\) 0 0
\(326\) 9.85724 0.545942
\(327\) 0 0
\(328\) 9.70552 0.535898
\(329\) 33.6036 1.85263
\(330\) 0 0
\(331\) −6.95501 −0.382282 −0.191141 0.981563i \(-0.561219\pi\)
−0.191141 + 0.981563i \(0.561219\pi\)
\(332\) 12.9461 0.710510
\(333\) 0 0
\(334\) 16.7156 0.914639
\(335\) 0 0
\(336\) 0 0
\(337\) −10.9423 −0.596067 −0.298034 0.954555i \(-0.596331\pi\)
−0.298034 + 0.954555i \(0.596331\pi\)
\(338\) 18.8328 1.02437
\(339\) 0 0
\(340\) 0 0
\(341\) 0.0442338 0.00239540
\(342\) 0 0
\(343\) −33.9878 −1.83517
\(344\) 8.09655 0.436537
\(345\) 0 0
\(346\) 0.522971 0.0281151
\(347\) 0.705731 0.0378856 0.0189428 0.999821i \(-0.493970\pi\)
0.0189428 + 0.999821i \(0.493970\pi\)
\(348\) 0 0
\(349\) −12.7664 −0.683369 −0.341684 0.939815i \(-0.610997\pi\)
−0.341684 + 0.939815i \(0.610997\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.9335 1.00916
\(353\) −32.7819 −1.74481 −0.872403 0.488788i \(-0.837439\pi\)
−0.872403 + 0.488788i \(0.837439\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 40.4168 2.14209
\(357\) 0 0
\(358\) 42.1110 2.22563
\(359\) −16.5874 −0.875448 −0.437724 0.899109i \(-0.644215\pi\)
−0.437724 + 0.899109i \(0.644215\pi\)
\(360\) 0 0
\(361\) −0.890413 −0.0468638
\(362\) −24.3370 −1.27912
\(363\) 0 0
\(364\) −26.6037 −1.39441
\(365\) 0 0
\(366\) 0 0
\(367\) −22.0945 −1.15333 −0.576663 0.816982i \(-0.695645\pi\)
−0.576663 + 0.816982i \(0.695645\pi\)
\(368\) 10.0165 0.522145
\(369\) 0 0
\(370\) 0 0
\(371\) 48.1808 2.50142
\(372\) 0 0
\(373\) 11.2414 0.582055 0.291028 0.956715i \(-0.406003\pi\)
0.291028 + 0.956715i \(0.406003\pi\)
\(374\) 2.65950 0.137520
\(375\) 0 0
\(376\) 11.9850 0.618082
\(377\) 2.08906 0.107592
\(378\) 0 0
\(379\) −16.5726 −0.851276 −0.425638 0.904894i \(-0.639950\pi\)
−0.425638 + 0.904894i \(0.639950\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.0403 0.974186
\(383\) 28.5900 1.46088 0.730440 0.682976i \(-0.239315\pi\)
0.730440 + 0.682976i \(0.239315\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 29.2158 1.48705
\(387\) 0 0
\(388\) −1.20824 −0.0613393
\(389\) 19.9390 1.01095 0.505473 0.862842i \(-0.331318\pi\)
0.505473 + 0.862842i \(0.331318\pi\)
\(390\) 0 0
\(391\) 2.51621 0.127250
\(392\) −23.6592 −1.19497
\(393\) 0 0
\(394\) 18.4647 0.930240
\(395\) 0 0
\(396\) 0 0
\(397\) 21.5651 1.08232 0.541160 0.840919i \(-0.317985\pi\)
0.541160 + 0.840919i \(0.317985\pi\)
\(398\) −58.6167 −2.93819
\(399\) 0 0
\(400\) 0 0
\(401\) −33.4631 −1.67107 −0.835534 0.549439i \(-0.814842\pi\)
−0.835534 + 0.549439i \(0.814842\pi\)
\(402\) 0 0
\(403\) 0.0364946 0.00181792
\(404\) 33.7943 1.68133
\(405\) 0 0
\(406\) 10.0776 0.500145
\(407\) 19.0537 0.944459
\(408\) 0 0
\(409\) −26.6886 −1.31967 −0.659833 0.751413i \(-0.729373\pi\)
−0.659833 + 0.751413i \(0.729373\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 37.3460 1.83990
\(413\) 9.80194 0.482322
\(414\) 0 0
\(415\) 0 0
\(416\) 15.6208 0.765874
\(417\) 0 0
\(418\) −23.4986 −1.14935
\(419\) −16.7865 −0.820073 −0.410037 0.912069i \(-0.634484\pi\)
−0.410037 + 0.912069i \(0.634484\pi\)
\(420\) 0 0
\(421\) 10.7994 0.526332 0.263166 0.964751i \(-0.415233\pi\)
0.263166 + 0.964751i \(0.415233\pi\)
\(422\) 23.4122 1.13969
\(423\) 0 0
\(424\) 17.1841 0.834535
\(425\) 0 0
\(426\) 0 0
\(427\) 12.9391 0.626168
\(428\) −38.6824 −1.86978
\(429\) 0 0
\(430\) 0 0
\(431\) −19.9007 −0.958584 −0.479292 0.877655i \(-0.659107\pi\)
−0.479292 + 0.877655i \(0.659107\pi\)
\(432\) 0 0
\(433\) 15.1926 0.730110 0.365055 0.930986i \(-0.381050\pi\)
0.365055 + 0.930986i \(0.381050\pi\)
\(434\) 0.176050 0.00845069
\(435\) 0 0
\(436\) −14.2402 −0.681982
\(437\) −22.2325 −1.06352
\(438\) 0 0
\(439\) −10.6767 −0.509570 −0.254785 0.966998i \(-0.582005\pi\)
−0.254785 + 0.966998i \(0.582005\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.19419 0.104367
\(443\) −39.7889 −1.89043 −0.945214 0.326451i \(-0.894147\pi\)
−0.945214 + 0.326451i \(0.894147\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 52.3928 2.48087
\(447\) 0 0
\(448\) 57.6352 2.72301
\(449\) −5.03661 −0.237692 −0.118846 0.992913i \(-0.537920\pi\)
−0.118846 + 0.992913i \(0.537920\pi\)
\(450\) 0 0
\(451\) −14.9105 −0.702110
\(452\) 37.4336 1.76073
\(453\) 0 0
\(454\) 46.5305 2.18378
\(455\) 0 0
\(456\) 0 0
\(457\) −21.9875 −1.02853 −0.514267 0.857630i \(-0.671936\pi\)
−0.514267 + 0.857630i \(0.671936\pi\)
\(458\) −57.1450 −2.67021
\(459\) 0 0
\(460\) 0 0
\(461\) −4.05792 −0.188996 −0.0944982 0.995525i \(-0.530125\pi\)
−0.0944982 + 0.995525i \(0.530125\pi\)
\(462\) 0 0
\(463\) 14.1164 0.656045 0.328022 0.944670i \(-0.393618\pi\)
0.328022 + 0.944670i \(0.393618\pi\)
\(464\) −1.91726 −0.0890067
\(465\) 0 0
\(466\) 49.6310 2.29911
\(467\) −17.7201 −0.819987 −0.409994 0.912088i \(-0.634469\pi\)
−0.409994 + 0.912088i \(0.634469\pi\)
\(468\) 0 0
\(469\) −23.2737 −1.07468
\(470\) 0 0
\(471\) 0 0
\(472\) 3.49595 0.160914
\(473\) −12.4387 −0.571931
\(474\) 0 0
\(475\) 0 0
\(476\) 6.13345 0.281126
\(477\) 0 0
\(478\) 30.6490 1.40185
\(479\) −2.11468 −0.0966224 −0.0483112 0.998832i \(-0.515384\pi\)
−0.0483112 + 0.998832i \(0.515384\pi\)
\(480\) 0 0
\(481\) 15.7201 0.716773
\(482\) 43.0230 1.95964
\(483\) 0 0
\(484\) −12.6451 −0.574779
\(485\) 0 0
\(486\) 0 0
\(487\) 20.7266 0.939213 0.469607 0.882876i \(-0.344396\pi\)
0.469607 + 0.882876i \(0.344396\pi\)
\(488\) 4.61485 0.208905
\(489\) 0 0
\(490\) 0 0
\(491\) −8.10793 −0.365906 −0.182953 0.983122i \(-0.558566\pi\)
−0.182953 + 0.983122i \(0.558566\pi\)
\(492\) 0 0
\(493\) −0.481630 −0.0216915
\(494\) −19.3872 −0.872272
\(495\) 0 0
\(496\) −0.0334934 −0.00150390
\(497\) 39.5904 1.77587
\(498\) 0 0
\(499\) −26.6873 −1.19469 −0.597343 0.801986i \(-0.703777\pi\)
−0.597343 + 0.801986i \(0.703777\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −4.42968 −0.197706
\(503\) 29.3889 1.31039 0.655193 0.755462i \(-0.272587\pi\)
0.655193 + 0.755462i \(0.272587\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 28.8483 1.28246
\(507\) 0 0
\(508\) 60.4782 2.68329
\(509\) 44.1172 1.95546 0.977729 0.209870i \(-0.0673041\pi\)
0.977729 + 0.209870i \(0.0673041\pi\)
\(510\) 0 0
\(511\) −7.37020 −0.326038
\(512\) −20.6562 −0.912883
\(513\) 0 0
\(514\) −35.2530 −1.55494
\(515\) 0 0
\(516\) 0 0
\(517\) −18.4126 −0.809784
\(518\) 75.8338 3.33194
\(519\) 0 0
\(520\) 0 0
\(521\) −24.4913 −1.07299 −0.536493 0.843905i \(-0.680251\pi\)
−0.536493 + 0.843905i \(0.680251\pi\)
\(522\) 0 0
\(523\) −31.4170 −1.37377 −0.686885 0.726766i \(-0.741022\pi\)
−0.686885 + 0.726766i \(0.741022\pi\)
\(524\) −1.42191 −0.0621165
\(525\) 0 0
\(526\) −23.6108 −1.02948
\(527\) −0.00841378 −0.000366510 0
\(528\) 0 0
\(529\) 4.29397 0.186694
\(530\) 0 0
\(531\) 0 0
\(532\) −54.1934 −2.34958
\(533\) −12.3018 −0.532849
\(534\) 0 0
\(535\) 0 0
\(536\) −8.30078 −0.358539
\(537\) 0 0
\(538\) 12.2096 0.526391
\(539\) 36.3476 1.56560
\(540\) 0 0
\(541\) −6.19606 −0.266389 −0.133195 0.991090i \(-0.542524\pi\)
−0.133195 + 0.991090i \(0.542524\pi\)
\(542\) 19.9158 0.855457
\(543\) 0 0
\(544\) −3.60136 −0.154407
\(545\) 0 0
\(546\) 0 0
\(547\) 19.0729 0.815499 0.407749 0.913094i \(-0.366314\pi\)
0.407749 + 0.913094i \(0.366314\pi\)
\(548\) −13.5650 −0.579469
\(549\) 0 0
\(550\) 0 0
\(551\) 4.25554 0.181292
\(552\) 0 0
\(553\) −53.7941 −2.28756
\(554\) 24.2712 1.03118
\(555\) 0 0
\(556\) −2.77888 −0.117851
\(557\) −17.3672 −0.735872 −0.367936 0.929851i \(-0.619935\pi\)
−0.367936 + 0.929851i \(0.619935\pi\)
\(558\) 0 0
\(559\) −10.2624 −0.434053
\(560\) 0 0
\(561\) 0 0
\(562\) −45.7291 −1.92897
\(563\) −15.0986 −0.636331 −0.318165 0.948035i \(-0.603067\pi\)
−0.318165 + 0.948035i \(0.603067\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −53.3130 −2.24091
\(567\) 0 0
\(568\) 14.1203 0.592473
\(569\) −22.5431 −0.945058 −0.472529 0.881315i \(-0.656659\pi\)
−0.472529 + 0.881315i \(0.656659\pi\)
\(570\) 0 0
\(571\) 30.8973 1.29301 0.646506 0.762908i \(-0.276229\pi\)
0.646506 + 0.762908i \(0.276229\pi\)
\(572\) 14.5771 0.609498
\(573\) 0 0
\(574\) −59.3439 −2.47697
\(575\) 0 0
\(576\) 0 0
\(577\) 12.4363 0.517729 0.258865 0.965914i \(-0.416652\pi\)
0.258865 + 0.965914i \(0.416652\pi\)
\(578\) 36.5673 1.52100
\(579\) 0 0
\(580\) 0 0
\(581\) −21.7092 −0.900650
\(582\) 0 0
\(583\) −26.3999 −1.09337
\(584\) −2.62865 −0.108774
\(585\) 0 0
\(586\) −71.5972 −2.95765
\(587\) 4.57702 0.188914 0.0944569 0.995529i \(-0.469889\pi\)
0.0944569 + 0.995529i \(0.469889\pi\)
\(588\) 0 0
\(589\) 0.0743417 0.00306319
\(590\) 0 0
\(591\) 0 0
\(592\) −14.4273 −0.592959
\(593\) −40.3499 −1.65697 −0.828486 0.560009i \(-0.810797\pi\)
−0.828486 + 0.560009i \(0.810797\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 25.2927 1.03603
\(597\) 0 0
\(598\) 23.8009 0.973293
\(599\) −15.5138 −0.633879 −0.316939 0.948446i \(-0.602655\pi\)
−0.316939 + 0.948446i \(0.602655\pi\)
\(600\) 0 0
\(601\) −39.3512 −1.60517 −0.802585 0.596537i \(-0.796543\pi\)
−0.802585 + 0.596537i \(0.796543\pi\)
\(602\) −49.5059 −2.01771
\(603\) 0 0
\(604\) −29.6110 −1.20485
\(605\) 0 0
\(606\) 0 0
\(607\) −27.6748 −1.12328 −0.561642 0.827380i \(-0.689830\pi\)
−0.561642 + 0.827380i \(0.689830\pi\)
\(608\) 31.8206 1.29049
\(609\) 0 0
\(610\) 0 0
\(611\) −15.1911 −0.614565
\(612\) 0 0
\(613\) 24.9886 1.00928 0.504640 0.863330i \(-0.331625\pi\)
0.504640 + 0.863330i \(0.331625\pi\)
\(614\) −41.1851 −1.66210
\(615\) 0 0
\(616\) 19.2853 0.777027
\(617\) −39.3823 −1.58547 −0.792736 0.609566i \(-0.791344\pi\)
−0.792736 + 0.609566i \(0.791344\pi\)
\(618\) 0 0
\(619\) 22.6843 0.911760 0.455880 0.890041i \(-0.349325\pi\)
0.455880 + 0.890041i \(0.349325\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −11.1844 −0.448454
\(623\) −67.7746 −2.71533
\(624\) 0 0
\(625\) 0 0
\(626\) 16.1940 0.647241
\(627\) 0 0
\(628\) 28.7038 1.14541
\(629\) −3.62424 −0.144508
\(630\) 0 0
\(631\) −28.9276 −1.15159 −0.575795 0.817594i \(-0.695307\pi\)
−0.575795 + 0.817594i \(0.695307\pi\)
\(632\) −19.1862 −0.763185
\(633\) 0 0
\(634\) −14.1857 −0.563386
\(635\) 0 0
\(636\) 0 0
\(637\) 29.9881 1.18817
\(638\) −5.52188 −0.218613
\(639\) 0 0
\(640\) 0 0
\(641\) −38.4633 −1.51921 −0.759605 0.650384i \(-0.774608\pi\)
−0.759605 + 0.650384i \(0.774608\pi\)
\(642\) 0 0
\(643\) −10.4518 −0.412179 −0.206090 0.978533i \(-0.566074\pi\)
−0.206090 + 0.978533i \(0.566074\pi\)
\(644\) 66.5312 2.62169
\(645\) 0 0
\(646\) 4.46970 0.175858
\(647\) −31.2256 −1.22761 −0.613803 0.789460i \(-0.710361\pi\)
−0.613803 + 0.789460i \(0.710361\pi\)
\(648\) 0 0
\(649\) −5.37082 −0.210823
\(650\) 0 0
\(651\) 0 0
\(652\) −12.4563 −0.487825
\(653\) 19.5358 0.764494 0.382247 0.924060i \(-0.375150\pi\)
0.382247 + 0.924060i \(0.375150\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 11.2901 0.440805
\(657\) 0 0
\(658\) −73.2819 −2.85683
\(659\) −5.49708 −0.214136 −0.107068 0.994252i \(-0.534146\pi\)
−0.107068 + 0.994252i \(0.534146\pi\)
\(660\) 0 0
\(661\) −23.1157 −0.899097 −0.449548 0.893256i \(-0.648415\pi\)
−0.449548 + 0.893256i \(0.648415\pi\)
\(662\) 15.1673 0.589494
\(663\) 0 0
\(664\) −7.74279 −0.300478
\(665\) 0 0
\(666\) 0 0
\(667\) −5.22436 −0.202288
\(668\) −21.1230 −0.817274
\(669\) 0 0
\(670\) 0 0
\(671\) −7.08978 −0.273698
\(672\) 0 0
\(673\) 37.1375 1.43155 0.715774 0.698332i \(-0.246074\pi\)
0.715774 + 0.698332i \(0.246074\pi\)
\(674\) 23.8628 0.919159
\(675\) 0 0
\(676\) −23.7984 −0.915324
\(677\) 8.34698 0.320800 0.160400 0.987052i \(-0.448722\pi\)
0.160400 + 0.987052i \(0.448722\pi\)
\(678\) 0 0
\(679\) 2.02609 0.0777543
\(680\) 0 0
\(681\) 0 0
\(682\) −0.0964639 −0.00369379
\(683\) 4.60136 0.176066 0.0880330 0.996118i \(-0.471942\pi\)
0.0880330 + 0.996118i \(0.471942\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 74.1196 2.82990
\(687\) 0 0
\(688\) 9.41845 0.359075
\(689\) −21.7809 −0.829787
\(690\) 0 0
\(691\) −37.7916 −1.43766 −0.718831 0.695185i \(-0.755323\pi\)
−0.718831 + 0.695185i \(0.755323\pi\)
\(692\) −0.660862 −0.0251222
\(693\) 0 0
\(694\) −1.53904 −0.0584211
\(695\) 0 0
\(696\) 0 0
\(697\) 2.83616 0.107427
\(698\) 27.8406 1.05378
\(699\) 0 0
\(700\) 0 0
\(701\) 30.4453 1.14990 0.574951 0.818188i \(-0.305021\pi\)
0.574951 + 0.818188i \(0.305021\pi\)
\(702\) 0 0
\(703\) 32.0227 1.20776
\(704\) −31.5803 −1.19023
\(705\) 0 0
\(706\) 71.4899 2.69056
\(707\) −56.6694 −2.13127
\(708\) 0 0
\(709\) 6.15061 0.230991 0.115496 0.993308i \(-0.463154\pi\)
0.115496 + 0.993308i \(0.463154\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −24.1724 −0.905901
\(713\) −0.0912665 −0.00341796
\(714\) 0 0
\(715\) 0 0
\(716\) −53.2142 −1.98871
\(717\) 0 0
\(718\) 36.1733 1.34998
\(719\) −22.0551 −0.822516 −0.411258 0.911519i \(-0.634911\pi\)
−0.411258 + 0.911519i \(0.634911\pi\)
\(720\) 0 0
\(721\) −62.6251 −2.33228
\(722\) 1.94179 0.0722659
\(723\) 0 0
\(724\) 30.7538 1.14296
\(725\) 0 0
\(726\) 0 0
\(727\) −9.94047 −0.368672 −0.184336 0.982863i \(-0.559013\pi\)
−0.184336 + 0.982863i \(0.559013\pi\)
\(728\) 15.9111 0.589705
\(729\) 0 0
\(730\) 0 0
\(731\) 2.36598 0.0875090
\(732\) 0 0
\(733\) −37.8281 −1.39721 −0.698606 0.715507i \(-0.746196\pi\)
−0.698606 + 0.715507i \(0.746196\pi\)
\(734\) 48.1832 1.77847
\(735\) 0 0
\(736\) −39.0649 −1.43995
\(737\) 12.7525 0.469743
\(738\) 0 0
\(739\) 10.8388 0.398711 0.199355 0.979927i \(-0.436115\pi\)
0.199355 + 0.979927i \(0.436115\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −105.071 −3.85729
\(743\) 20.3076 0.745013 0.372506 0.928030i \(-0.378499\pi\)
0.372506 + 0.928030i \(0.378499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −24.5148 −0.897552
\(747\) 0 0
\(748\) −3.36073 −0.122880
\(749\) 64.8662 2.37016
\(750\) 0 0
\(751\) −17.0745 −0.623056 −0.311528 0.950237i \(-0.600841\pi\)
−0.311528 + 0.950237i \(0.600841\pi\)
\(752\) 13.9418 0.508406
\(753\) 0 0
\(754\) −4.55576 −0.165911
\(755\) 0 0
\(756\) 0 0
\(757\) 1.59082 0.0578194 0.0289097 0.999582i \(-0.490796\pi\)
0.0289097 + 0.999582i \(0.490796\pi\)
\(758\) 36.1410 1.31270
\(759\) 0 0
\(760\) 0 0
\(761\) −13.5039 −0.489515 −0.244758 0.969584i \(-0.578708\pi\)
−0.244758 + 0.969584i \(0.578708\pi\)
\(762\) 0 0
\(763\) 23.8793 0.864488
\(764\) −24.0606 −0.870482
\(765\) 0 0
\(766\) −62.3483 −2.25274
\(767\) −4.43113 −0.159999
\(768\) 0 0
\(769\) 9.89598 0.356858 0.178429 0.983953i \(-0.442899\pi\)
0.178429 + 0.983953i \(0.442899\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −36.9191 −1.32875
\(773\) 2.30422 0.0828771 0.0414385 0.999141i \(-0.486806\pi\)
0.0414385 + 0.999141i \(0.486806\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.722625 0.0259407
\(777\) 0 0
\(778\) −43.4824 −1.55892
\(779\) −25.0594 −0.897848
\(780\) 0 0
\(781\) −21.6929 −0.776233
\(782\) −5.48728 −0.196225
\(783\) 0 0
\(784\) −27.5220 −0.982929
\(785\) 0 0
\(786\) 0 0
\(787\) −14.6066 −0.520670 −0.260335 0.965518i \(-0.583833\pi\)
−0.260335 + 0.965518i \(0.583833\pi\)
\(788\) −23.3333 −0.831214
\(789\) 0 0
\(790\) 0 0
\(791\) −62.7721 −2.23192
\(792\) 0 0
\(793\) −5.84934 −0.207716
\(794\) −47.0286 −1.66898
\(795\) 0 0
\(796\) 74.0720 2.62541
\(797\) 0.347706 0.0123164 0.00615818 0.999981i \(-0.498040\pi\)
0.00615818 + 0.999981i \(0.498040\pi\)
\(798\) 0 0
\(799\) 3.50228 0.123902
\(800\) 0 0
\(801\) 0 0
\(802\) 72.9755 2.57685
\(803\) 4.03838 0.142511
\(804\) 0 0
\(805\) 0 0
\(806\) −0.0795864 −0.00280331
\(807\) 0 0
\(808\) −20.2117 −0.711044
\(809\) 33.8275 1.18931 0.594656 0.803980i \(-0.297288\pi\)
0.594656 + 0.803980i \(0.297288\pi\)
\(810\) 0 0
\(811\) −6.27670 −0.220405 −0.110202 0.993909i \(-0.535150\pi\)
−0.110202 + 0.993909i \(0.535150\pi\)
\(812\) −12.7348 −0.446903
\(813\) 0 0
\(814\) −41.5519 −1.45639
\(815\) 0 0
\(816\) 0 0
\(817\) −20.9051 −0.731377
\(818\) 58.2017 2.03498
\(819\) 0 0
\(820\) 0 0
\(821\) 42.2966 1.47616 0.738080 0.674713i \(-0.235733\pi\)
0.738080 + 0.674713i \(0.235733\pi\)
\(822\) 0 0
\(823\) 6.96302 0.242716 0.121358 0.992609i \(-0.461275\pi\)
0.121358 + 0.992609i \(0.461275\pi\)
\(824\) −22.3358 −0.778105
\(825\) 0 0
\(826\) −21.3758 −0.743760
\(827\) 56.1125 1.95122 0.975612 0.219503i \(-0.0704436\pi\)
0.975612 + 0.219503i \(0.0704436\pi\)
\(828\) 0 0
\(829\) −30.5026 −1.05940 −0.529699 0.848186i \(-0.677695\pi\)
−0.529699 + 0.848186i \(0.677695\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −26.0549 −0.903293
\(833\) −6.91373 −0.239546
\(834\) 0 0
\(835\) 0 0
\(836\) 29.6944 1.02700
\(837\) 0 0
\(838\) 36.6075 1.26459
\(839\) −44.8521 −1.54847 −0.774233 0.632901i \(-0.781864\pi\)
−0.774233 + 0.632901i \(0.781864\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −23.5511 −0.811624
\(843\) 0 0
\(844\) −29.5853 −1.01837
\(845\) 0 0
\(846\) 0 0
\(847\) 21.2045 0.728596
\(848\) 19.9898 0.686451
\(849\) 0 0
\(850\) 0 0
\(851\) −39.3131 −1.34764
\(852\) 0 0
\(853\) 17.0361 0.583306 0.291653 0.956524i \(-0.405795\pi\)
0.291653 + 0.956524i \(0.405795\pi\)
\(854\) −28.2173 −0.965575
\(855\) 0 0
\(856\) 23.1351 0.790742
\(857\) −46.0976 −1.57467 −0.787333 0.616528i \(-0.788539\pi\)
−0.787333 + 0.616528i \(0.788539\pi\)
\(858\) 0 0
\(859\) 22.9553 0.783225 0.391612 0.920130i \(-0.371917\pi\)
0.391612 + 0.920130i \(0.371917\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 43.3990 1.47817
\(863\) −40.6665 −1.38430 −0.692152 0.721752i \(-0.743337\pi\)
−0.692152 + 0.721752i \(0.743337\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −33.1316 −1.12586
\(867\) 0 0
\(868\) −0.222469 −0.00755109
\(869\) 29.4756 0.999892
\(870\) 0 0
\(871\) 10.5213 0.356499
\(872\) 8.51677 0.288414
\(873\) 0 0
\(874\) 48.4840 1.63999
\(875\) 0 0
\(876\) 0 0
\(877\) 47.6592 1.60934 0.804669 0.593724i \(-0.202343\pi\)
0.804669 + 0.593724i \(0.202343\pi\)
\(878\) 23.2834 0.785777
\(879\) 0 0
\(880\) 0 0
\(881\) −27.9539 −0.941791 −0.470895 0.882189i \(-0.656069\pi\)
−0.470895 + 0.882189i \(0.656069\pi\)
\(882\) 0 0
\(883\) 8.66251 0.291517 0.145758 0.989320i \(-0.453438\pi\)
0.145758 + 0.989320i \(0.453438\pi\)
\(884\) −2.77273 −0.0932569
\(885\) 0 0
\(886\) 86.7706 2.91512
\(887\) −44.4792 −1.49347 −0.746733 0.665124i \(-0.768379\pi\)
−0.746733 + 0.665124i \(0.768379\pi\)
\(888\) 0 0
\(889\) −101.415 −3.40136
\(890\) 0 0
\(891\) 0 0
\(892\) −66.2071 −2.21678
\(893\) −30.9451 −1.03554
\(894\) 0 0
\(895\) 0 0
\(896\) −56.5808 −1.89023
\(897\) 0 0
\(898\) 10.9837 0.366531
\(899\) 0.0174694 0.000582637 0
\(900\) 0 0
\(901\) 5.02157 0.167293
\(902\) 32.5165 1.08268
\(903\) 0 0
\(904\) −22.3882 −0.744621
\(905\) 0 0
\(906\) 0 0
\(907\) −21.1492 −0.702248 −0.351124 0.936329i \(-0.614201\pi\)
−0.351124 + 0.936329i \(0.614201\pi\)
\(908\) −58.7990 −1.95131
\(909\) 0 0
\(910\) 0 0
\(911\) −22.2895 −0.738483 −0.369241 0.929334i \(-0.620382\pi\)
−0.369241 + 0.929334i \(0.620382\pi\)
\(912\) 0 0
\(913\) 11.8952 0.393674
\(914\) 47.9498 1.58604
\(915\) 0 0
\(916\) 72.2122 2.38596
\(917\) 2.38439 0.0787396
\(918\) 0 0
\(919\) −52.4155 −1.72903 −0.864513 0.502610i \(-0.832373\pi\)
−0.864513 + 0.502610i \(0.832373\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 8.84941 0.291440
\(923\) −17.8975 −0.589102
\(924\) 0 0
\(925\) 0 0
\(926\) −30.7847 −1.01165
\(927\) 0 0
\(928\) 7.47745 0.245459
\(929\) 4.32654 0.141949 0.0709746 0.997478i \(-0.477389\pi\)
0.0709746 + 0.997478i \(0.477389\pi\)
\(930\) 0 0
\(931\) 61.0876 2.00207
\(932\) −62.7171 −2.05437
\(933\) 0 0
\(934\) 38.6435 1.26445
\(935\) 0 0
\(936\) 0 0
\(937\) 5.59734 0.182857 0.0914286 0.995812i \(-0.470857\pi\)
0.0914286 + 0.995812i \(0.470857\pi\)
\(938\) 50.7547 1.65720
\(939\) 0 0
\(940\) 0 0
\(941\) −48.3823 −1.57722 −0.788608 0.614896i \(-0.789198\pi\)
−0.788608 + 0.614896i \(0.789198\pi\)
\(942\) 0 0
\(943\) 30.7645 1.00183
\(944\) 4.06673 0.132361
\(945\) 0 0
\(946\) 27.1260 0.881941
\(947\) −54.4744 −1.77018 −0.885091 0.465419i \(-0.845904\pi\)
−0.885091 + 0.465419i \(0.845904\pi\)
\(948\) 0 0
\(949\) 3.33182 0.108155
\(950\) 0 0
\(951\) 0 0
\(952\) −3.66829 −0.118890
\(953\) −0.143303 −0.00464203 −0.00232101 0.999997i \(-0.500739\pi\)
−0.00232101 + 0.999997i \(0.500739\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −38.7301 −1.25262
\(957\) 0 0
\(958\) 4.61165 0.148996
\(959\) 22.7471 0.734541
\(960\) 0 0
\(961\) −30.9997 −0.999990
\(962\) −34.2819 −1.10529
\(963\) 0 0
\(964\) −54.3667 −1.75103
\(965\) 0 0
\(966\) 0 0
\(967\) 8.05985 0.259187 0.129594 0.991567i \(-0.458633\pi\)
0.129594 + 0.991567i \(0.458633\pi\)
\(968\) 7.56279 0.243077
\(969\) 0 0
\(970\) 0 0
\(971\) −9.00391 −0.288949 −0.144475 0.989509i \(-0.546149\pi\)
−0.144475 + 0.989509i \(0.546149\pi\)
\(972\) 0 0
\(973\) 4.65987 0.149389
\(974\) −45.2001 −1.44830
\(975\) 0 0
\(976\) 5.36831 0.171835
\(977\) 58.2212 1.86266 0.931330 0.364176i \(-0.118649\pi\)
0.931330 + 0.364176i \(0.118649\pi\)
\(978\) 0 0
\(979\) 37.1360 1.18687
\(980\) 0 0
\(981\) 0 0
\(982\) 17.6816 0.564241
\(983\) −9.19101 −0.293148 −0.146574 0.989200i \(-0.546825\pi\)
−0.146574 + 0.989200i \(0.546825\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.05033 0.0334492
\(987\) 0 0
\(988\) 24.4990 0.779416
\(989\) 25.6644 0.816081
\(990\) 0 0
\(991\) −18.4929 −0.587447 −0.293724 0.955890i \(-0.594895\pi\)
−0.293724 + 0.955890i \(0.594895\pi\)
\(992\) 0.130627 0.00414740
\(993\) 0 0
\(994\) −86.3376 −2.73846
\(995\) 0 0
\(996\) 0 0
\(997\) 24.7326 0.783288 0.391644 0.920117i \(-0.371906\pi\)
0.391644 + 0.920117i \(0.371906\pi\)
\(998\) 58.1989 1.84225
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ca.1.2 9
3.2 odd 2 6525.2.a.cc.1.8 yes 9
5.4 even 2 6525.2.a.cd.1.8 yes 9
15.14 odd 2 6525.2.a.cb.1.2 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.2 9 1.1 even 1 trivial
6525.2.a.cb.1.2 yes 9 15.14 odd 2
6525.2.a.cc.1.8 yes 9 3.2 odd 2
6525.2.a.cd.1.8 yes 9 5.4 even 2