Properties

Label 6525.2.a.ca.1.1
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 12x^{7} + 21x^{6} + 48x^{5} - 68x^{4} - 73x^{3} + 66x^{2} + 40x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.74387\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.74387 q^{2} +5.52881 q^{4} +1.10432 q^{7} -9.68257 q^{8} +O(q^{10})\) \(q-2.74387 q^{2} +5.52881 q^{4} +1.10432 q^{7} -9.68257 q^{8} -0.0961550 q^{11} -1.00817 q^{13} -3.03012 q^{14} +15.5101 q^{16} -1.92647 q^{17} +1.36951 q^{19} +0.263836 q^{22} -1.36474 q^{23} +2.76628 q^{26} +6.10559 q^{28} +1.00000 q^{29} +2.17445 q^{31} -23.1924 q^{32} +5.28599 q^{34} -6.61652 q^{37} -3.75776 q^{38} -5.07876 q^{41} +7.53382 q^{43} -0.531622 q^{44} +3.74467 q^{46} -5.77938 q^{47} -5.78047 q^{49} -5.57396 q^{52} +2.54747 q^{53} -10.6927 q^{56} -2.74387 q^{58} +12.6670 q^{59} +7.29508 q^{61} -5.96640 q^{62} +32.6168 q^{64} +2.77418 q^{67} -10.6511 q^{68} +6.05383 q^{71} -11.5699 q^{73} +18.1549 q^{74} +7.57176 q^{76} -0.106186 q^{77} -3.01211 q^{79} +13.9354 q^{82} +0.455950 q^{83} -20.6718 q^{86} +0.931027 q^{88} -7.57581 q^{89} -1.11334 q^{91} -7.54539 q^{92} +15.8578 q^{94} +10.7828 q^{97} +15.8608 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 9 q - 2 q^{2} + 10 q^{4} - q^{7} - 9 q^{8} + 2 q^{11} - q^{13} - 3 q^{14} + 4 q^{16} - 12 q^{17} - q^{19} - 3 q^{22} - 16 q^{23} + 6 q^{26} + 4 q^{28} + 9 q^{29} + 5 q^{31} - 20 q^{32} + 3 q^{34} - 30 q^{38} - 10 q^{41} - 3 q^{43} - 13 q^{44} + 4 q^{46} - 26 q^{47} - 8 q^{49} + 9 q^{52} - 22 q^{53} + 22 q^{56} - 2 q^{58} + 4 q^{59} + 7 q^{61} - 28 q^{62} + 9 q^{64} - 5 q^{67} - 39 q^{68} + 10 q^{73} - 34 q^{74} - 2 q^{76} - 34 q^{77} + 10 q^{79} + 8 q^{82} - 46 q^{83} + 28 q^{86} - 2 q^{88} + 4 q^{89} - 21 q^{91} - 20 q^{92} + 5 q^{94} - 7 q^{97} - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.74387 −1.94021 −0.970103 0.242692i \(-0.921970\pi\)
−0.970103 + 0.242692i \(0.921970\pi\)
\(3\) 0 0
\(4\) 5.52881 2.76440
\(5\) 0 0
\(6\) 0 0
\(7\) 1.10432 0.417395 0.208697 0.977980i \(-0.433078\pi\)
0.208697 + 0.977980i \(0.433078\pi\)
\(8\) −9.68257 −3.42331
\(9\) 0 0
\(10\) 0 0
\(11\) −0.0961550 −0.0289918 −0.0144959 0.999895i \(-0.504614\pi\)
−0.0144959 + 0.999895i \(0.504614\pi\)
\(12\) 0 0
\(13\) −1.00817 −0.279615 −0.139808 0.990179i \(-0.544648\pi\)
−0.139808 + 0.990179i \(0.544648\pi\)
\(14\) −3.03012 −0.809832
\(15\) 0 0
\(16\) 15.5101 3.87752
\(17\) −1.92647 −0.467239 −0.233619 0.972328i \(-0.575057\pi\)
−0.233619 + 0.972328i \(0.575057\pi\)
\(18\) 0 0
\(19\) 1.36951 0.314187 0.157094 0.987584i \(-0.449788\pi\)
0.157094 + 0.987584i \(0.449788\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.263836 0.0562501
\(23\) −1.36474 −0.284568 −0.142284 0.989826i \(-0.545445\pi\)
−0.142284 + 0.989826i \(0.545445\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.76628 0.542512
\(27\) 0 0
\(28\) 6.10559 1.15385
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 2.17445 0.390543 0.195271 0.980749i \(-0.437441\pi\)
0.195271 + 0.980749i \(0.437441\pi\)
\(32\) −23.1924 −4.09988
\(33\) 0 0
\(34\) 5.28599 0.906540
\(35\) 0 0
\(36\) 0 0
\(37\) −6.61652 −1.08775 −0.543875 0.839166i \(-0.683043\pi\)
−0.543875 + 0.839166i \(0.683043\pi\)
\(38\) −3.75776 −0.609589
\(39\) 0 0
\(40\) 0 0
\(41\) −5.07876 −0.793169 −0.396584 0.917998i \(-0.629805\pi\)
−0.396584 + 0.917998i \(0.629805\pi\)
\(42\) 0 0
\(43\) 7.53382 1.14890 0.574448 0.818541i \(-0.305217\pi\)
0.574448 + 0.818541i \(0.305217\pi\)
\(44\) −0.531622 −0.0801450
\(45\) 0 0
\(46\) 3.74467 0.552121
\(47\) −5.77938 −0.843009 −0.421504 0.906826i \(-0.638498\pi\)
−0.421504 + 0.906826i \(0.638498\pi\)
\(48\) 0 0
\(49\) −5.78047 −0.825782
\(50\) 0 0
\(51\) 0 0
\(52\) −5.57396 −0.772970
\(53\) 2.54747 0.349922 0.174961 0.984575i \(-0.444020\pi\)
0.174961 + 0.984575i \(0.444020\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −10.6927 −1.42887
\(57\) 0 0
\(58\) −2.74387 −0.360287
\(59\) 12.6670 1.64910 0.824548 0.565792i \(-0.191429\pi\)
0.824548 + 0.565792i \(0.191429\pi\)
\(60\) 0 0
\(61\) 7.29508 0.934040 0.467020 0.884247i \(-0.345328\pi\)
0.467020 + 0.884247i \(0.345328\pi\)
\(62\) −5.96640 −0.757734
\(63\) 0 0
\(64\) 32.6168 4.07710
\(65\) 0 0
\(66\) 0 0
\(67\) 2.77418 0.338920 0.169460 0.985537i \(-0.445798\pi\)
0.169460 + 0.985537i \(0.445798\pi\)
\(68\) −10.6511 −1.29164
\(69\) 0 0
\(70\) 0 0
\(71\) 6.05383 0.718457 0.359229 0.933250i \(-0.383040\pi\)
0.359229 + 0.933250i \(0.383040\pi\)
\(72\) 0 0
\(73\) −11.5699 −1.35415 −0.677077 0.735912i \(-0.736754\pi\)
−0.677077 + 0.735912i \(0.736754\pi\)
\(74\) 18.1549 2.11046
\(75\) 0 0
\(76\) 7.57176 0.868541
\(77\) −0.106186 −0.0121010
\(78\) 0 0
\(79\) −3.01211 −0.338889 −0.169444 0.985540i \(-0.554197\pi\)
−0.169444 + 0.985540i \(0.554197\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 13.9354 1.53891
\(83\) 0.455950 0.0500470 0.0250235 0.999687i \(-0.492034\pi\)
0.0250235 + 0.999687i \(0.492034\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −20.6718 −2.22910
\(87\) 0 0
\(88\) 0.931027 0.0992478
\(89\) −7.57581 −0.803034 −0.401517 0.915852i \(-0.631517\pi\)
−0.401517 + 0.915852i \(0.631517\pi\)
\(90\) 0 0
\(91\) −1.11334 −0.116710
\(92\) −7.54539 −0.786661
\(93\) 0 0
\(94\) 15.8578 1.63561
\(95\) 0 0
\(96\) 0 0
\(97\) 10.7828 1.09483 0.547415 0.836862i \(-0.315612\pi\)
0.547415 + 0.836862i \(0.315612\pi\)
\(98\) 15.8608 1.60219
\(99\) 0 0
\(100\) 0 0
\(101\) −18.8731 −1.87794 −0.938971 0.343996i \(-0.888219\pi\)
−0.938971 + 0.343996i \(0.888219\pi\)
\(102\) 0 0
\(103\) −12.0872 −1.19098 −0.595491 0.803362i \(-0.703043\pi\)
−0.595491 + 0.803362i \(0.703043\pi\)
\(104\) 9.76166 0.957209
\(105\) 0 0
\(106\) −6.98991 −0.678920
\(107\) 10.8319 1.04716 0.523578 0.851977i \(-0.324597\pi\)
0.523578 + 0.851977i \(0.324597\pi\)
\(108\) 0 0
\(109\) 13.2131 1.26558 0.632790 0.774323i \(-0.281910\pi\)
0.632790 + 0.774323i \(0.281910\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 17.1281 1.61846
\(113\) −2.20594 −0.207517 −0.103758 0.994603i \(-0.533087\pi\)
−0.103758 + 0.994603i \(0.533087\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.52881 0.513337
\(117\) 0 0
\(118\) −34.7564 −3.19959
\(119\) −2.12745 −0.195023
\(120\) 0 0
\(121\) −10.9908 −0.999159
\(122\) −20.0167 −1.81223
\(123\) 0 0
\(124\) 12.0221 1.07962
\(125\) 0 0
\(126\) 0 0
\(127\) 16.8893 1.49868 0.749340 0.662185i \(-0.230371\pi\)
0.749340 + 0.662185i \(0.230371\pi\)
\(128\) −43.1113 −3.81054
\(129\) 0 0
\(130\) 0 0
\(131\) −8.43970 −0.737380 −0.368690 0.929552i \(-0.620194\pi\)
−0.368690 + 0.929552i \(0.620194\pi\)
\(132\) 0 0
\(133\) 1.51238 0.131140
\(134\) −7.61198 −0.657575
\(135\) 0 0
\(136\) 18.6532 1.59950
\(137\) −8.80002 −0.751836 −0.375918 0.926653i \(-0.622673\pi\)
−0.375918 + 0.926653i \(0.622673\pi\)
\(138\) 0 0
\(139\) 1.93520 0.164142 0.0820709 0.996626i \(-0.473847\pi\)
0.0820709 + 0.996626i \(0.473847\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −16.6109 −1.39396
\(143\) 0.0969403 0.00810656
\(144\) 0 0
\(145\) 0 0
\(146\) 31.7463 2.62734
\(147\) 0 0
\(148\) −36.5815 −3.00698
\(149\) 19.4823 1.59605 0.798025 0.602624i \(-0.205878\pi\)
0.798025 + 0.602624i \(0.205878\pi\)
\(150\) 0 0
\(151\) −19.0946 −1.55390 −0.776949 0.629563i \(-0.783234\pi\)
−0.776949 + 0.629563i \(0.783234\pi\)
\(152\) −13.2604 −1.07556
\(153\) 0 0
\(154\) 0.291361 0.0234785
\(155\) 0 0
\(156\) 0 0
\(157\) −11.1697 −0.891438 −0.445719 0.895173i \(-0.647052\pi\)
−0.445719 + 0.895173i \(0.647052\pi\)
\(158\) 8.26483 0.657515
\(159\) 0 0
\(160\) 0 0
\(161\) −1.50711 −0.118777
\(162\) 0 0
\(163\) −6.15583 −0.482161 −0.241081 0.970505i \(-0.577502\pi\)
−0.241081 + 0.970505i \(0.577502\pi\)
\(164\) −28.0795 −2.19264
\(165\) 0 0
\(166\) −1.25106 −0.0971015
\(167\) −14.4540 −1.11849 −0.559244 0.829003i \(-0.688908\pi\)
−0.559244 + 0.829003i \(0.688908\pi\)
\(168\) 0 0
\(169\) −11.9836 −0.921815
\(170\) 0 0
\(171\) 0 0
\(172\) 41.6530 3.17601
\(173\) −19.0331 −1.44706 −0.723531 0.690292i \(-0.757482\pi\)
−0.723531 + 0.690292i \(0.757482\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.49137 −0.112416
\(177\) 0 0
\(178\) 20.7870 1.55805
\(179\) −3.15556 −0.235857 −0.117929 0.993022i \(-0.537625\pi\)
−0.117929 + 0.993022i \(0.537625\pi\)
\(180\) 0 0
\(181\) −21.9375 −1.63060 −0.815301 0.579037i \(-0.803429\pi\)
−0.815301 + 0.579037i \(0.803429\pi\)
\(182\) 3.05487 0.226442
\(183\) 0 0
\(184\) 13.2142 0.974164
\(185\) 0 0
\(186\) 0 0
\(187\) 0.185240 0.0135461
\(188\) −31.9530 −2.33042
\(189\) 0 0
\(190\) 0 0
\(191\) 22.8151 1.65084 0.825422 0.564517i \(-0.190937\pi\)
0.825422 + 0.564517i \(0.190937\pi\)
\(192\) 0 0
\(193\) −7.27135 −0.523403 −0.261702 0.965149i \(-0.584284\pi\)
−0.261702 + 0.965149i \(0.584284\pi\)
\(194\) −29.5866 −2.12420
\(195\) 0 0
\(196\) −31.9591 −2.28279
\(197\) 13.6506 0.972563 0.486282 0.873802i \(-0.338353\pi\)
0.486282 + 0.873802i \(0.338353\pi\)
\(198\) 0 0
\(199\) −9.81861 −0.696023 −0.348011 0.937490i \(-0.613143\pi\)
−0.348011 + 0.937490i \(0.613143\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 51.7852 3.64360
\(203\) 1.10432 0.0775083
\(204\) 0 0
\(205\) 0 0
\(206\) 33.1655 2.31075
\(207\) 0 0
\(208\) −15.6368 −1.08421
\(209\) −0.131685 −0.00910886
\(210\) 0 0
\(211\) −13.3349 −0.918009 −0.459004 0.888434i \(-0.651794\pi\)
−0.459004 + 0.888434i \(0.651794\pi\)
\(212\) 14.0845 0.967324
\(213\) 0 0
\(214\) −29.7212 −2.03170
\(215\) 0 0
\(216\) 0 0
\(217\) 2.40130 0.163011
\(218\) −36.2549 −2.45549
\(219\) 0 0
\(220\) 0 0
\(221\) 1.94221 0.130647
\(222\) 0 0
\(223\) −8.60466 −0.576211 −0.288105 0.957599i \(-0.593025\pi\)
−0.288105 + 0.957599i \(0.593025\pi\)
\(224\) −25.6120 −1.71127
\(225\) 0 0
\(226\) 6.05279 0.402626
\(227\) 14.6273 0.970846 0.485423 0.874279i \(-0.338666\pi\)
0.485423 + 0.874279i \(0.338666\pi\)
\(228\) 0 0
\(229\) 9.64412 0.637301 0.318651 0.947872i \(-0.396770\pi\)
0.318651 + 0.947872i \(0.396770\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −9.68257 −0.635692
\(233\) 17.9885 1.17847 0.589233 0.807963i \(-0.299430\pi\)
0.589233 + 0.807963i \(0.299430\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 70.0331 4.55877
\(237\) 0 0
\(238\) 5.83744 0.378385
\(239\) 7.74493 0.500978 0.250489 0.968120i \(-0.419409\pi\)
0.250489 + 0.968120i \(0.419409\pi\)
\(240\) 0 0
\(241\) 5.30756 0.341890 0.170945 0.985281i \(-0.445318\pi\)
0.170945 + 0.985281i \(0.445318\pi\)
\(242\) 30.1572 1.93858
\(243\) 0 0
\(244\) 40.3331 2.58206
\(245\) 0 0
\(246\) 0 0
\(247\) −1.38070 −0.0878517
\(248\) −21.0543 −1.33695
\(249\) 0 0
\(250\) 0 0
\(251\) −13.0470 −0.823518 −0.411759 0.911293i \(-0.635085\pi\)
−0.411759 + 0.911293i \(0.635085\pi\)
\(252\) 0 0
\(253\) 0.131227 0.00825015
\(254\) −46.3419 −2.90775
\(255\) 0 0
\(256\) 53.0581 3.31613
\(257\) −15.4865 −0.966024 −0.483012 0.875614i \(-0.660457\pi\)
−0.483012 + 0.875614i \(0.660457\pi\)
\(258\) 0 0
\(259\) −7.30678 −0.454021
\(260\) 0 0
\(261\) 0 0
\(262\) 23.1574 1.43067
\(263\) −5.90216 −0.363943 −0.181971 0.983304i \(-0.558248\pi\)
−0.181971 + 0.983304i \(0.558248\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.14978 −0.254439
\(267\) 0 0
\(268\) 15.3379 0.936911
\(269\) −26.1012 −1.59142 −0.795710 0.605678i \(-0.792902\pi\)
−0.795710 + 0.605678i \(0.792902\pi\)
\(270\) 0 0
\(271\) 3.68372 0.223770 0.111885 0.993721i \(-0.464311\pi\)
0.111885 + 0.993721i \(0.464311\pi\)
\(272\) −29.8798 −1.81173
\(273\) 0 0
\(274\) 24.1461 1.45872
\(275\) 0 0
\(276\) 0 0
\(277\) 24.6901 1.48349 0.741743 0.670684i \(-0.233999\pi\)
0.741743 + 0.670684i \(0.233999\pi\)
\(278\) −5.30994 −0.318469
\(279\) 0 0
\(280\) 0 0
\(281\) −22.8059 −1.36049 −0.680243 0.732986i \(-0.738126\pi\)
−0.680243 + 0.732986i \(0.738126\pi\)
\(282\) 0 0
\(283\) −5.95693 −0.354103 −0.177051 0.984202i \(-0.556656\pi\)
−0.177051 + 0.984202i \(0.556656\pi\)
\(284\) 33.4704 1.98610
\(285\) 0 0
\(286\) −0.265991 −0.0157284
\(287\) −5.60859 −0.331065
\(288\) 0 0
\(289\) −13.2887 −0.781688
\(290\) 0 0
\(291\) 0 0
\(292\) −63.9677 −3.74343
\(293\) 16.9708 0.991443 0.495721 0.868482i \(-0.334904\pi\)
0.495721 + 0.868482i \(0.334904\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 64.0650 3.72370
\(297\) 0 0
\(298\) −53.4568 −3.09667
\(299\) 1.37589 0.0795697
\(300\) 0 0
\(301\) 8.31977 0.479543
\(302\) 52.3931 3.01488
\(303\) 0 0
\(304\) 21.2412 1.21827
\(305\) 0 0
\(306\) 0 0
\(307\) 2.13874 0.122064 0.0610321 0.998136i \(-0.480561\pi\)
0.0610321 + 0.998136i \(0.480561\pi\)
\(308\) −0.587082 −0.0334521
\(309\) 0 0
\(310\) 0 0
\(311\) −13.6680 −0.775044 −0.387522 0.921861i \(-0.626669\pi\)
−0.387522 + 0.921861i \(0.626669\pi\)
\(312\) 0 0
\(313\) −5.07682 −0.286959 −0.143480 0.989653i \(-0.545829\pi\)
−0.143480 + 0.989653i \(0.545829\pi\)
\(314\) 30.6481 1.72957
\(315\) 0 0
\(316\) −16.6534 −0.936825
\(317\) −7.29420 −0.409683 −0.204842 0.978795i \(-0.565668\pi\)
−0.204842 + 0.978795i \(0.565668\pi\)
\(318\) 0 0
\(319\) −0.0961550 −0.00538364
\(320\) 0 0
\(321\) 0 0
\(322\) 4.13532 0.230452
\(323\) −2.63833 −0.146801
\(324\) 0 0
\(325\) 0 0
\(326\) 16.8908 0.935493
\(327\) 0 0
\(328\) 49.1755 2.71526
\(329\) −6.38230 −0.351867
\(330\) 0 0
\(331\) −15.6728 −0.861454 −0.430727 0.902482i \(-0.641743\pi\)
−0.430727 + 0.902482i \(0.641743\pi\)
\(332\) 2.52086 0.138350
\(333\) 0 0
\(334\) 39.6600 2.17010
\(335\) 0 0
\(336\) 0 0
\(337\) 27.1038 1.47644 0.738219 0.674562i \(-0.235667\pi\)
0.738219 + 0.674562i \(0.235667\pi\)
\(338\) 32.8814 1.78851
\(339\) 0 0
\(340\) 0 0
\(341\) −0.209084 −0.0113225
\(342\) 0 0
\(343\) −14.1138 −0.762072
\(344\) −72.9467 −3.93302
\(345\) 0 0
\(346\) 52.2243 2.80760
\(347\) 19.8312 1.06460 0.532298 0.846557i \(-0.321329\pi\)
0.532298 + 0.846557i \(0.321329\pi\)
\(348\) 0 0
\(349\) −25.5566 −1.36802 −0.684008 0.729475i \(-0.739765\pi\)
−0.684008 + 0.729475i \(0.739765\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.23007 0.118863
\(353\) 7.94312 0.422770 0.211385 0.977403i \(-0.432203\pi\)
0.211385 + 0.977403i \(0.432203\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −41.8852 −2.21991
\(357\) 0 0
\(358\) 8.65843 0.457612
\(359\) 5.79924 0.306072 0.153036 0.988221i \(-0.451095\pi\)
0.153036 + 0.988221i \(0.451095\pi\)
\(360\) 0 0
\(361\) −17.1244 −0.901286
\(362\) 60.1936 3.16371
\(363\) 0 0
\(364\) −6.15546 −0.322634
\(365\) 0 0
\(366\) 0 0
\(367\) −22.6318 −1.18137 −0.590686 0.806901i \(-0.701143\pi\)
−0.590686 + 0.806901i \(0.701143\pi\)
\(368\) −21.1672 −1.10342
\(369\) 0 0
\(370\) 0 0
\(371\) 2.81323 0.146056
\(372\) 0 0
\(373\) 23.3987 1.21154 0.605769 0.795641i \(-0.292866\pi\)
0.605769 + 0.795641i \(0.292866\pi\)
\(374\) −0.508274 −0.0262822
\(375\) 0 0
\(376\) 55.9592 2.88588
\(377\) −1.00817 −0.0519233
\(378\) 0 0
\(379\) 27.4252 1.40874 0.704369 0.709834i \(-0.251230\pi\)
0.704369 + 0.709834i \(0.251230\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −62.6016 −3.20298
\(383\) 26.7931 1.36906 0.684531 0.728984i \(-0.260007\pi\)
0.684531 + 0.728984i \(0.260007\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.9516 1.01551
\(387\) 0 0
\(388\) 59.6161 3.02655
\(389\) 25.7792 1.30706 0.653528 0.756902i \(-0.273288\pi\)
0.653528 + 0.756902i \(0.273288\pi\)
\(390\) 0 0
\(391\) 2.62914 0.132961
\(392\) 55.9698 2.82690
\(393\) 0 0
\(394\) −37.4554 −1.88697
\(395\) 0 0
\(396\) 0 0
\(397\) 21.2065 1.06432 0.532161 0.846643i \(-0.321380\pi\)
0.532161 + 0.846643i \(0.321380\pi\)
\(398\) 26.9410 1.35043
\(399\) 0 0
\(400\) 0 0
\(401\) 20.5845 1.02794 0.513971 0.857807i \(-0.328174\pi\)
0.513971 + 0.857807i \(0.328174\pi\)
\(402\) 0 0
\(403\) −2.19221 −0.109202
\(404\) −104.346 −5.19139
\(405\) 0 0
\(406\) −3.03012 −0.150382
\(407\) 0.636211 0.0315358
\(408\) 0 0
\(409\) 1.93199 0.0955309 0.0477654 0.998859i \(-0.484790\pi\)
0.0477654 + 0.998859i \(0.484790\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −66.8275 −3.29236
\(413\) 13.9884 0.688324
\(414\) 0 0
\(415\) 0 0
\(416\) 23.3819 1.14639
\(417\) 0 0
\(418\) 0.361327 0.0176731
\(419\) 5.69653 0.278294 0.139147 0.990272i \(-0.455564\pi\)
0.139147 + 0.990272i \(0.455564\pi\)
\(420\) 0 0
\(421\) −34.1352 −1.66365 −0.831825 0.555038i \(-0.812704\pi\)
−0.831825 + 0.555038i \(0.812704\pi\)
\(422\) 36.5891 1.78113
\(423\) 0 0
\(424\) −24.6660 −1.19789
\(425\) 0 0
\(426\) 0 0
\(427\) 8.05613 0.389863
\(428\) 59.8873 2.89476
\(429\) 0 0
\(430\) 0 0
\(431\) −15.1704 −0.730734 −0.365367 0.930864i \(-0.619056\pi\)
−0.365367 + 0.930864i \(0.619056\pi\)
\(432\) 0 0
\(433\) 6.09226 0.292775 0.146388 0.989227i \(-0.453235\pi\)
0.146388 + 0.989227i \(0.453235\pi\)
\(434\) −6.58883 −0.316274
\(435\) 0 0
\(436\) 73.0524 3.49857
\(437\) −1.86903 −0.0894077
\(438\) 0 0
\(439\) −4.42241 −0.211070 −0.105535 0.994416i \(-0.533655\pi\)
−0.105535 + 0.994416i \(0.533655\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −5.32917 −0.253483
\(443\) 10.1506 0.482268 0.241134 0.970492i \(-0.422481\pi\)
0.241134 + 0.970492i \(0.422481\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23.6101 1.11797
\(447\) 0 0
\(448\) 36.0195 1.70176
\(449\) 15.6656 0.739307 0.369653 0.929170i \(-0.379476\pi\)
0.369653 + 0.929170i \(0.379476\pi\)
\(450\) 0 0
\(451\) 0.488348 0.0229954
\(452\) −12.1962 −0.573660
\(453\) 0 0
\(454\) −40.1353 −1.88364
\(455\) 0 0
\(456\) 0 0
\(457\) −29.3357 −1.37226 −0.686132 0.727477i \(-0.740693\pi\)
−0.686132 + 0.727477i \(0.740693\pi\)
\(458\) −26.4622 −1.23650
\(459\) 0 0
\(460\) 0 0
\(461\) −0.433920 −0.0202097 −0.0101048 0.999949i \(-0.503217\pi\)
−0.0101048 + 0.999949i \(0.503217\pi\)
\(462\) 0 0
\(463\) 9.63020 0.447553 0.223777 0.974640i \(-0.428161\pi\)
0.223777 + 0.974640i \(0.428161\pi\)
\(464\) 15.5101 0.720037
\(465\) 0 0
\(466\) −49.3581 −2.28647
\(467\) −13.4944 −0.624447 −0.312223 0.950009i \(-0.601074\pi\)
−0.312223 + 0.950009i \(0.601074\pi\)
\(468\) 0 0
\(469\) 3.06359 0.141463
\(470\) 0 0
\(471\) 0 0
\(472\) −122.649 −5.64536
\(473\) −0.724414 −0.0333086
\(474\) 0 0
\(475\) 0 0
\(476\) −11.7623 −0.539122
\(477\) 0 0
\(478\) −21.2510 −0.972000
\(479\) 7.97389 0.364336 0.182168 0.983267i \(-0.441688\pi\)
0.182168 + 0.983267i \(0.441688\pi\)
\(480\) 0 0
\(481\) 6.67057 0.304152
\(482\) −14.5632 −0.663337
\(483\) 0 0
\(484\) −60.7657 −2.76208
\(485\) 0 0
\(486\) 0 0
\(487\) −1.61623 −0.0732385 −0.0366192 0.999329i \(-0.511659\pi\)
−0.0366192 + 0.999329i \(0.511659\pi\)
\(488\) −70.6352 −3.19750
\(489\) 0 0
\(490\) 0 0
\(491\) −10.0585 −0.453932 −0.226966 0.973903i \(-0.572881\pi\)
−0.226966 + 0.973903i \(0.572881\pi\)
\(492\) 0 0
\(493\) −1.92647 −0.0867641
\(494\) 3.78845 0.170450
\(495\) 0 0
\(496\) 33.7259 1.51434
\(497\) 6.68538 0.299880
\(498\) 0 0
\(499\) 20.3154 0.909440 0.454720 0.890634i \(-0.349739\pi\)
0.454720 + 0.890634i \(0.349739\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 35.7992 1.59780
\(503\) −40.7407 −1.81654 −0.908270 0.418385i \(-0.862596\pi\)
−0.908270 + 0.418385i \(0.862596\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.360068 −0.0160070
\(507\) 0 0
\(508\) 93.3775 4.14296
\(509\) 35.8671 1.58978 0.794891 0.606752i \(-0.207528\pi\)
0.794891 + 0.606752i \(0.207528\pi\)
\(510\) 0 0
\(511\) −12.7769 −0.565217
\(512\) −59.3618 −2.62344
\(513\) 0 0
\(514\) 42.4930 1.87429
\(515\) 0 0
\(516\) 0 0
\(517\) 0.555716 0.0244403
\(518\) 20.0488 0.880895
\(519\) 0 0
\(520\) 0 0
\(521\) 10.6032 0.464534 0.232267 0.972652i \(-0.425386\pi\)
0.232267 + 0.972652i \(0.425386\pi\)
\(522\) 0 0
\(523\) −20.6859 −0.904530 −0.452265 0.891884i \(-0.649384\pi\)
−0.452265 + 0.891884i \(0.649384\pi\)
\(524\) −46.6615 −2.03842
\(525\) 0 0
\(526\) 16.1947 0.706124
\(527\) −4.18902 −0.182477
\(528\) 0 0
\(529\) −21.1375 −0.919021
\(530\) 0 0
\(531\) 0 0
\(532\) 8.36167 0.362524
\(533\) 5.12024 0.221782
\(534\) 0 0
\(535\) 0 0
\(536\) −26.8612 −1.16023
\(537\) 0 0
\(538\) 71.6183 3.08768
\(539\) 0.555821 0.0239409
\(540\) 0 0
\(541\) 1.77636 0.0763715 0.0381857 0.999271i \(-0.487842\pi\)
0.0381857 + 0.999271i \(0.487842\pi\)
\(542\) −10.1076 −0.434160
\(543\) 0 0
\(544\) 44.6797 1.91563
\(545\) 0 0
\(546\) 0 0
\(547\) 39.7930 1.70143 0.850713 0.525630i \(-0.176170\pi\)
0.850713 + 0.525630i \(0.176170\pi\)
\(548\) −48.6536 −2.07838
\(549\) 0 0
\(550\) 0 0
\(551\) 1.36951 0.0583431
\(552\) 0 0
\(553\) −3.32634 −0.141450
\(554\) −67.7464 −2.87827
\(555\) 0 0
\(556\) 10.6994 0.453754
\(557\) −10.6253 −0.450206 −0.225103 0.974335i \(-0.572272\pi\)
−0.225103 + 0.974335i \(0.572272\pi\)
\(558\) 0 0
\(559\) −7.59535 −0.321249
\(560\) 0 0
\(561\) 0 0
\(562\) 62.5764 2.63963
\(563\) −24.7572 −1.04339 −0.521696 0.853132i \(-0.674700\pi\)
−0.521696 + 0.853132i \(0.674700\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.3450 0.687033
\(567\) 0 0
\(568\) −58.6166 −2.45950
\(569\) −33.7414 −1.41451 −0.707257 0.706957i \(-0.750067\pi\)
−0.707257 + 0.706957i \(0.750067\pi\)
\(570\) 0 0
\(571\) −12.2259 −0.511639 −0.255819 0.966725i \(-0.582345\pi\)
−0.255819 + 0.966725i \(0.582345\pi\)
\(572\) 0.535964 0.0224098
\(573\) 0 0
\(574\) 15.3892 0.642334
\(575\) 0 0
\(576\) 0 0
\(577\) −22.9772 −0.956555 −0.478278 0.878209i \(-0.658739\pi\)
−0.478278 + 0.878209i \(0.658739\pi\)
\(578\) 36.4624 1.51664
\(579\) 0 0
\(580\) 0 0
\(581\) 0.503516 0.0208893
\(582\) 0 0
\(583\) −0.244952 −0.0101449
\(584\) 112.026 4.63568
\(585\) 0 0
\(586\) −46.5655 −1.92360
\(587\) −41.5985 −1.71695 −0.858477 0.512851i \(-0.828589\pi\)
−0.858477 + 0.512851i \(0.828589\pi\)
\(588\) 0 0
\(589\) 2.97793 0.122704
\(590\) 0 0
\(591\) 0 0
\(592\) −102.623 −4.21777
\(593\) −4.89980 −0.201211 −0.100605 0.994926i \(-0.532078\pi\)
−0.100605 + 0.994926i \(0.532078\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 107.714 4.41212
\(597\) 0 0
\(598\) −3.77525 −0.154382
\(599\) −24.3309 −0.994133 −0.497066 0.867713i \(-0.665589\pi\)
−0.497066 + 0.867713i \(0.665589\pi\)
\(600\) 0 0
\(601\) −35.2493 −1.43785 −0.718923 0.695089i \(-0.755365\pi\)
−0.718923 + 0.695089i \(0.755365\pi\)
\(602\) −22.8283 −0.930414
\(603\) 0 0
\(604\) −105.570 −4.29560
\(605\) 0 0
\(606\) 0 0
\(607\) 46.7359 1.89695 0.948476 0.316850i \(-0.102625\pi\)
0.948476 + 0.316850i \(0.102625\pi\)
\(608\) −31.7623 −1.28813
\(609\) 0 0
\(610\) 0 0
\(611\) 5.82658 0.235718
\(612\) 0 0
\(613\) 0.159393 0.00643782 0.00321891 0.999995i \(-0.498975\pi\)
0.00321891 + 0.999995i \(0.498975\pi\)
\(614\) −5.86841 −0.236830
\(615\) 0 0
\(616\) 1.02815 0.0414255
\(617\) 18.5015 0.744841 0.372421 0.928064i \(-0.378528\pi\)
0.372421 + 0.928064i \(0.378528\pi\)
\(618\) 0 0
\(619\) −36.4393 −1.46462 −0.732310 0.680971i \(-0.761558\pi\)
−0.732310 + 0.680971i \(0.761558\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 37.5033 1.50375
\(623\) −8.36614 −0.335182
\(624\) 0 0
\(625\) 0 0
\(626\) 13.9301 0.556760
\(627\) 0 0
\(628\) −61.7550 −2.46429
\(629\) 12.7466 0.508239
\(630\) 0 0
\(631\) −33.2812 −1.32490 −0.662451 0.749105i \(-0.730484\pi\)
−0.662451 + 0.749105i \(0.730484\pi\)
\(632\) 29.1650 1.16012
\(633\) 0 0
\(634\) 20.0143 0.794870
\(635\) 0 0
\(636\) 0 0
\(637\) 5.82769 0.230901
\(638\) 0.263836 0.0104454
\(639\) 0 0
\(640\) 0 0
\(641\) −14.8916 −0.588185 −0.294092 0.955777i \(-0.595017\pi\)
−0.294092 + 0.955777i \(0.595017\pi\)
\(642\) 0 0
\(643\) −27.7299 −1.09356 −0.546779 0.837277i \(-0.684146\pi\)
−0.546779 + 0.837277i \(0.684146\pi\)
\(644\) −8.33254 −0.328348
\(645\) 0 0
\(646\) 7.23922 0.284823
\(647\) −30.9301 −1.21599 −0.607994 0.793942i \(-0.708026\pi\)
−0.607994 + 0.793942i \(0.708026\pi\)
\(648\) 0 0
\(649\) −1.21799 −0.0478103
\(650\) 0 0
\(651\) 0 0
\(652\) −34.0344 −1.33289
\(653\) −25.0243 −0.979278 −0.489639 0.871925i \(-0.662871\pi\)
−0.489639 + 0.871925i \(0.662871\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −78.7720 −3.07553
\(657\) 0 0
\(658\) 17.5122 0.682696
\(659\) −20.2013 −0.786930 −0.393465 0.919340i \(-0.628724\pi\)
−0.393465 + 0.919340i \(0.628724\pi\)
\(660\) 0 0
\(661\) −14.2973 −0.556099 −0.278049 0.960567i \(-0.589688\pi\)
−0.278049 + 0.960567i \(0.589688\pi\)
\(662\) 43.0040 1.67140
\(663\) 0 0
\(664\) −4.41476 −0.171326
\(665\) 0 0
\(666\) 0 0
\(667\) −1.36474 −0.0528430
\(668\) −79.9136 −3.09195
\(669\) 0 0
\(670\) 0 0
\(671\) −0.701459 −0.0270795
\(672\) 0 0
\(673\) −33.6661 −1.29773 −0.648867 0.760902i \(-0.724757\pi\)
−0.648867 + 0.760902i \(0.724757\pi\)
\(674\) −74.3692 −2.86459
\(675\) 0 0
\(676\) −66.2550 −2.54827
\(677\) −8.78111 −0.337486 −0.168743 0.985660i \(-0.553971\pi\)
−0.168743 + 0.985660i \(0.553971\pi\)
\(678\) 0 0
\(679\) 11.9077 0.456976
\(680\) 0 0
\(681\) 0 0
\(682\) 0.573699 0.0219681
\(683\) −37.3359 −1.42862 −0.714310 0.699830i \(-0.753259\pi\)
−0.714310 + 0.699830i \(0.753259\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 38.7263 1.47858
\(687\) 0 0
\(688\) 116.850 4.45487
\(689\) −2.56828 −0.0978435
\(690\) 0 0
\(691\) 38.7767 1.47513 0.737567 0.675274i \(-0.235975\pi\)
0.737567 + 0.675274i \(0.235975\pi\)
\(692\) −105.230 −4.00026
\(693\) 0 0
\(694\) −54.4142 −2.06554
\(695\) 0 0
\(696\) 0 0
\(697\) 9.78410 0.370599
\(698\) 70.1240 2.65423
\(699\) 0 0
\(700\) 0 0
\(701\) −20.8879 −0.788924 −0.394462 0.918912i \(-0.629069\pi\)
−0.394462 + 0.918912i \(0.629069\pi\)
\(702\) 0 0
\(703\) −9.06140 −0.341757
\(704\) −3.13627 −0.118203
\(705\) 0 0
\(706\) −21.7949 −0.820261
\(707\) −20.8420 −0.783843
\(708\) 0 0
\(709\) −9.72205 −0.365119 −0.182560 0.983195i \(-0.558438\pi\)
−0.182560 + 0.983195i \(0.558438\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 73.3533 2.74903
\(713\) −2.96756 −0.111136
\(714\) 0 0
\(715\) 0 0
\(716\) −17.4465 −0.652005
\(717\) 0 0
\(718\) −15.9124 −0.593844
\(719\) 45.2454 1.68737 0.843684 0.536841i \(-0.180382\pi\)
0.843684 + 0.536841i \(0.180382\pi\)
\(720\) 0 0
\(721\) −13.3481 −0.497110
\(722\) 46.9872 1.74868
\(723\) 0 0
\(724\) −121.288 −4.50764
\(725\) 0 0
\(726\) 0 0
\(727\) −19.4957 −0.723054 −0.361527 0.932362i \(-0.617744\pi\)
−0.361527 + 0.932362i \(0.617744\pi\)
\(728\) 10.7800 0.399534
\(729\) 0 0
\(730\) 0 0
\(731\) −14.5137 −0.536809
\(732\) 0 0
\(733\) −35.7113 −1.31903 −0.659513 0.751693i \(-0.729238\pi\)
−0.659513 + 0.751693i \(0.729238\pi\)
\(734\) 62.0988 2.29211
\(735\) 0 0
\(736\) 31.6517 1.16670
\(737\) −0.266751 −0.00982590
\(738\) 0 0
\(739\) −39.8367 −1.46542 −0.732708 0.680543i \(-0.761744\pi\)
−0.732708 + 0.680543i \(0.761744\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −7.71912 −0.283378
\(743\) 21.7579 0.798218 0.399109 0.916903i \(-0.369319\pi\)
0.399109 + 0.916903i \(0.369319\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −64.2028 −2.35063
\(747\) 0 0
\(748\) 1.02416 0.0374469
\(749\) 11.9619 0.437078
\(750\) 0 0
\(751\) −36.0557 −1.31569 −0.657846 0.753152i \(-0.728532\pi\)
−0.657846 + 0.753152i \(0.728532\pi\)
\(752\) −89.6386 −3.26878
\(753\) 0 0
\(754\) 2.76628 0.100742
\(755\) 0 0
\(756\) 0 0
\(757\) 7.57942 0.275479 0.137739 0.990469i \(-0.456016\pi\)
0.137739 + 0.990469i \(0.456016\pi\)
\(758\) −75.2512 −2.73325
\(759\) 0 0
\(760\) 0 0
\(761\) −17.3466 −0.628814 −0.314407 0.949288i \(-0.601806\pi\)
−0.314407 + 0.949288i \(0.601806\pi\)
\(762\) 0 0
\(763\) 14.5915 0.528247
\(764\) 126.140 4.56360
\(765\) 0 0
\(766\) −73.5166 −2.65626
\(767\) −12.7704 −0.461113
\(768\) 0 0
\(769\) 13.7054 0.494228 0.247114 0.968986i \(-0.420518\pi\)
0.247114 + 0.968986i \(0.420518\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −40.2019 −1.44690
\(773\) 15.1545 0.545069 0.272534 0.962146i \(-0.412138\pi\)
0.272534 + 0.962146i \(0.412138\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −104.405 −3.74794
\(777\) 0 0
\(778\) −70.7346 −2.53596
\(779\) −6.95542 −0.249204
\(780\) 0 0
\(781\) −0.582105 −0.0208294
\(782\) −7.21401 −0.257972
\(783\) 0 0
\(784\) −89.6556 −3.20198
\(785\) 0 0
\(786\) 0 0
\(787\) 30.7331 1.09552 0.547759 0.836636i \(-0.315481\pi\)
0.547759 + 0.836636i \(0.315481\pi\)
\(788\) 75.4714 2.68856
\(789\) 0 0
\(790\) 0 0
\(791\) −2.43606 −0.0866165
\(792\) 0 0
\(793\) −7.35467 −0.261172
\(794\) −58.1877 −2.06500
\(795\) 0 0
\(796\) −54.2852 −1.92409
\(797\) −20.4224 −0.723399 −0.361699 0.932295i \(-0.617803\pi\)
−0.361699 + 0.932295i \(0.617803\pi\)
\(798\) 0 0
\(799\) 11.1338 0.393886
\(800\) 0 0
\(801\) 0 0
\(802\) −56.4812 −1.99442
\(803\) 1.11250 0.0392594
\(804\) 0 0
\(805\) 0 0
\(806\) 6.01514 0.211874
\(807\) 0 0
\(808\) 182.740 6.42877
\(809\) 41.0932 1.44476 0.722380 0.691497i \(-0.243048\pi\)
0.722380 + 0.691497i \(0.243048\pi\)
\(810\) 0 0
\(811\) 11.0882 0.389360 0.194680 0.980867i \(-0.437633\pi\)
0.194680 + 0.980867i \(0.437633\pi\)
\(812\) 6.10559 0.214264
\(813\) 0 0
\(814\) −1.74568 −0.0611860
\(815\) 0 0
\(816\) 0 0
\(817\) 10.3176 0.360969
\(818\) −5.30113 −0.185350
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4735 0.400427 0.200213 0.979752i \(-0.435836\pi\)
0.200213 + 0.979752i \(0.435836\pi\)
\(822\) 0 0
\(823\) 12.7083 0.442985 0.221492 0.975162i \(-0.428907\pi\)
0.221492 + 0.975162i \(0.428907\pi\)
\(824\) 117.035 4.07710
\(825\) 0 0
\(826\) −38.3823 −1.33549
\(827\) −13.3335 −0.463650 −0.231825 0.972757i \(-0.574470\pi\)
−0.231825 + 0.972757i \(0.574470\pi\)
\(828\) 0 0
\(829\) −26.2252 −0.910838 −0.455419 0.890277i \(-0.650510\pi\)
−0.455419 + 0.890277i \(0.650510\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −32.8832 −1.14002
\(833\) 11.1359 0.385837
\(834\) 0 0
\(835\) 0 0
\(836\) −0.728062 −0.0251806
\(837\) 0 0
\(838\) −15.6305 −0.539947
\(839\) −12.8865 −0.444891 −0.222446 0.974945i \(-0.571404\pi\)
−0.222446 + 0.974945i \(0.571404\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 93.6625 3.22782
\(843\) 0 0
\(844\) −73.7258 −2.53775
\(845\) 0 0
\(846\) 0 0
\(847\) −12.1373 −0.417044
\(848\) 39.5114 1.35683
\(849\) 0 0
\(850\) 0 0
\(851\) 9.02984 0.309539
\(852\) 0 0
\(853\) −17.3965 −0.595645 −0.297822 0.954621i \(-0.596260\pi\)
−0.297822 + 0.954621i \(0.596260\pi\)
\(854\) −22.1049 −0.756416
\(855\) 0 0
\(856\) −104.880 −3.58474
\(857\) 5.74494 0.196243 0.0981217 0.995174i \(-0.468717\pi\)
0.0981217 + 0.995174i \(0.468717\pi\)
\(858\) 0 0
\(859\) −36.5326 −1.24648 −0.623238 0.782032i \(-0.714183\pi\)
−0.623238 + 0.782032i \(0.714183\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 41.6256 1.41777
\(863\) 5.99556 0.204091 0.102046 0.994780i \(-0.467461\pi\)
0.102046 + 0.994780i \(0.467461\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.7163 −0.568044
\(867\) 0 0
\(868\) 13.2763 0.450627
\(869\) 0.289629 0.00982500
\(870\) 0 0
\(871\) −2.79684 −0.0947673
\(872\) −127.936 −4.33247
\(873\) 0 0
\(874\) 5.12836 0.173469
\(875\) 0 0
\(876\) 0 0
\(877\) −10.7265 −0.362209 −0.181105 0.983464i \(-0.557967\pi\)
−0.181105 + 0.983464i \(0.557967\pi\)
\(878\) 12.1345 0.409519
\(879\) 0 0
\(880\) 0 0
\(881\) −35.4683 −1.19496 −0.597479 0.801885i \(-0.703831\pi\)
−0.597479 + 0.801885i \(0.703831\pi\)
\(882\) 0 0
\(883\) 31.2074 1.05021 0.525106 0.851037i \(-0.324026\pi\)
0.525106 + 0.851037i \(0.324026\pi\)
\(884\) 10.7381 0.361162
\(885\) 0 0
\(886\) −27.8518 −0.935700
\(887\) 36.5271 1.22646 0.613230 0.789904i \(-0.289870\pi\)
0.613230 + 0.789904i \(0.289870\pi\)
\(888\) 0 0
\(889\) 18.6512 0.625542
\(890\) 0 0
\(891\) 0 0
\(892\) −47.5735 −1.59288
\(893\) −7.91492 −0.264863
\(894\) 0 0
\(895\) 0 0
\(896\) −47.6088 −1.59050
\(897\) 0 0
\(898\) −42.9844 −1.43441
\(899\) 2.17445 0.0725220
\(900\) 0 0
\(901\) −4.90763 −0.163497
\(902\) −1.33996 −0.0446158
\(903\) 0 0
\(904\) 21.3591 0.710394
\(905\) 0 0
\(906\) 0 0
\(907\) −26.6054 −0.883416 −0.441708 0.897159i \(-0.645627\pi\)
−0.441708 + 0.897159i \(0.645627\pi\)
\(908\) 80.8713 2.68381
\(909\) 0 0
\(910\) 0 0
\(911\) 29.9283 0.991567 0.495784 0.868446i \(-0.334881\pi\)
0.495784 + 0.868446i \(0.334881\pi\)
\(912\) 0 0
\(913\) −0.0438418 −0.00145095
\(914\) 80.4932 2.66248
\(915\) 0 0
\(916\) 53.3204 1.76176
\(917\) −9.32015 −0.307779
\(918\) 0 0
\(919\) −2.30814 −0.0761385 −0.0380693 0.999275i \(-0.512121\pi\)
−0.0380693 + 0.999275i \(0.512121\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.19062 0.0392109
\(923\) −6.10327 −0.200892
\(924\) 0 0
\(925\) 0 0
\(926\) −26.4240 −0.868346
\(927\) 0 0
\(928\) −23.1924 −0.761329
\(929\) 13.6997 0.449473 0.224737 0.974420i \(-0.427848\pi\)
0.224737 + 0.974420i \(0.427848\pi\)
\(930\) 0 0
\(931\) −7.91642 −0.259450
\(932\) 99.4549 3.25775
\(933\) 0 0
\(934\) 37.0269 1.21156
\(935\) 0 0
\(936\) 0 0
\(937\) 44.5601 1.45572 0.727858 0.685728i \(-0.240516\pi\)
0.727858 + 0.685728i \(0.240516\pi\)
\(938\) −8.40608 −0.274468
\(939\) 0 0
\(940\) 0 0
\(941\) −59.0327 −1.92441 −0.962206 0.272324i \(-0.912208\pi\)
−0.962206 + 0.272324i \(0.912208\pi\)
\(942\) 0 0
\(943\) 6.93119 0.225711
\(944\) 196.465 6.39440
\(945\) 0 0
\(946\) 1.98770 0.0646256
\(947\) −40.4627 −1.31486 −0.657431 0.753515i \(-0.728357\pi\)
−0.657431 + 0.753515i \(0.728357\pi\)
\(948\) 0 0
\(949\) 11.6644 0.378642
\(950\) 0 0
\(951\) 0 0
\(952\) 20.5992 0.667624
\(953\) 50.2692 1.62838 0.814190 0.580599i \(-0.197182\pi\)
0.814190 + 0.580599i \(0.197182\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 42.8202 1.38490
\(957\) 0 0
\(958\) −21.8793 −0.706888
\(959\) −9.71806 −0.313813
\(960\) 0 0
\(961\) −26.2718 −0.847476
\(962\) −18.3031 −0.590117
\(963\) 0 0
\(964\) 29.3444 0.945121
\(965\) 0 0
\(966\) 0 0
\(967\) −24.4422 −0.786009 −0.393004 0.919537i \(-0.628564\pi\)
−0.393004 + 0.919537i \(0.628564\pi\)
\(968\) 106.419 3.42043
\(969\) 0 0
\(970\) 0 0
\(971\) 47.1924 1.51447 0.757237 0.653140i \(-0.226549\pi\)
0.757237 + 0.653140i \(0.226549\pi\)
\(972\) 0 0
\(973\) 2.13709 0.0685120
\(974\) 4.43473 0.142098
\(975\) 0 0
\(976\) 113.147 3.62176
\(977\) −55.7755 −1.78442 −0.892209 0.451623i \(-0.850845\pi\)
−0.892209 + 0.451623i \(0.850845\pi\)
\(978\) 0 0
\(979\) 0.728451 0.0232814
\(980\) 0 0
\(981\) 0 0
\(982\) 27.5991 0.880722
\(983\) −44.1469 −1.40807 −0.704033 0.710167i \(-0.748619\pi\)
−0.704033 + 0.710167i \(0.748619\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.28599 0.168340
\(987\) 0 0
\(988\) −7.63361 −0.242857
\(989\) −10.2817 −0.326939
\(990\) 0 0
\(991\) −25.7068 −0.816605 −0.408302 0.912847i \(-0.633879\pi\)
−0.408302 + 0.912847i \(0.633879\pi\)
\(992\) −50.4308 −1.60118
\(993\) 0 0
\(994\) −18.3438 −0.581830
\(995\) 0 0
\(996\) 0 0
\(997\) −5.14864 −0.163059 −0.0815296 0.996671i \(-0.525981\pi\)
−0.0815296 + 0.996671i \(0.525981\pi\)
\(998\) −55.7426 −1.76450
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.ca.1.1 9
3.2 odd 2 6525.2.a.cc.1.9 yes 9
5.4 even 2 6525.2.a.cd.1.9 yes 9
15.14 odd 2 6525.2.a.cb.1.1 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6525.2.a.ca.1.1 9 1.1 even 1 trivial
6525.2.a.cb.1.1 yes 9 15.14 odd 2
6525.2.a.cc.1.9 yes 9 3.2 odd 2
6525.2.a.cd.1.9 yes 9 5.4 even 2