Properties

Label 6525.2.a.bz.1.1
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.72810\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.72810 q^{2} +5.44251 q^{4} +4.61695 q^{7} -9.39150 q^{8} +O(q^{10})\) \(q-2.72810 q^{2} +5.44251 q^{4} +4.61695 q^{7} -9.39150 q^{8} +1.87758 q^{11} +5.48400 q^{13} -12.5955 q^{14} +14.7359 q^{16} +5.74056 q^{17} -5.40455 q^{19} -5.12221 q^{22} +0.137016 q^{23} -14.9609 q^{26} +25.1278 q^{28} -1.00000 q^{29} -8.18167 q^{31} -21.4180 q^{32} -15.6608 q^{34} -4.45785 q^{37} +14.7441 q^{38} +0.215243 q^{41} +7.17115 q^{43} +10.2187 q^{44} -0.373793 q^{46} +9.91293 q^{47} +14.3162 q^{49} +29.8467 q^{52} +1.14754 q^{53} -43.3601 q^{56} +2.72810 q^{58} +0.244913 q^{59} +8.75284 q^{61} +22.3204 q^{62} +28.9585 q^{64} -6.53295 q^{67} +31.2431 q^{68} +0.277412 q^{71} -11.4933 q^{73} +12.1614 q^{74} -29.4143 q^{76} +8.66866 q^{77} +1.66223 q^{79} -0.587203 q^{82} -9.58514 q^{83} -19.5636 q^{86} -17.6333 q^{88} -16.3332 q^{89} +25.3193 q^{91} +0.745712 q^{92} -27.0434 q^{94} +8.04128 q^{97} -39.0559 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 12 q^{4} + 2 q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 12 q^{4} + 2 q^{7} + 3 q^{8} - 6 q^{11} + 6 q^{13} - 9 q^{14} + 32 q^{16} + 12 q^{17} + 3 q^{22} + 14 q^{23} - 18 q^{26} + 14 q^{28} - 8 q^{29} + 8 q^{31} - 2 q^{32} - 13 q^{34} + 4 q^{37} + 26 q^{38} - 2 q^{41} + 2 q^{43} + 15 q^{44} + 24 q^{46} + 12 q^{47} + 38 q^{49} + 49 q^{52} + 4 q^{53} - 58 q^{56} - 2 q^{58} - 18 q^{59} + 12 q^{61} - 4 q^{62} + 21 q^{64} + 26 q^{67} + 81 q^{68} - 24 q^{71} - 14 q^{73} + 22 q^{74} - 26 q^{77} + 10 q^{79} + 48 q^{82} + 40 q^{83} - 8 q^{86} - 10 q^{88} - 34 q^{89} + 26 q^{91} - 18 q^{92} - 43 q^{94} + 30 q^{97} + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.72810 −1.92906 −0.964528 0.263981i \(-0.914964\pi\)
−0.964528 + 0.263981i \(0.914964\pi\)
\(3\) 0 0
\(4\) 5.44251 2.72126
\(5\) 0 0
\(6\) 0 0
\(7\) 4.61695 1.74504 0.872521 0.488577i \(-0.162484\pi\)
0.872521 + 0.488577i \(0.162484\pi\)
\(8\) −9.39150 −3.32040
\(9\) 0 0
\(10\) 0 0
\(11\) 1.87758 0.566110 0.283055 0.959104i \(-0.408652\pi\)
0.283055 + 0.959104i \(0.408652\pi\)
\(12\) 0 0
\(13\) 5.48400 1.52099 0.760494 0.649345i \(-0.224957\pi\)
0.760494 + 0.649345i \(0.224957\pi\)
\(14\) −12.5955 −3.36628
\(15\) 0 0
\(16\) 14.7359 3.68398
\(17\) 5.74056 1.39229 0.696145 0.717901i \(-0.254897\pi\)
0.696145 + 0.717901i \(0.254897\pi\)
\(18\) 0 0
\(19\) −5.40455 −1.23989 −0.619944 0.784646i \(-0.712845\pi\)
−0.619944 + 0.784646i \(0.712845\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −5.12221 −1.09206
\(23\) 0.137016 0.0285698 0.0142849 0.999898i \(-0.495453\pi\)
0.0142849 + 0.999898i \(0.495453\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −14.9609 −2.93407
\(27\) 0 0
\(28\) 25.1278 4.74870
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −8.18167 −1.46947 −0.734736 0.678353i \(-0.762694\pi\)
−0.734736 + 0.678353i \(0.762694\pi\)
\(32\) −21.4180 −3.78620
\(33\) 0 0
\(34\) −15.6608 −2.68581
\(35\) 0 0
\(36\) 0 0
\(37\) −4.45785 −0.732866 −0.366433 0.930444i \(-0.619421\pi\)
−0.366433 + 0.930444i \(0.619421\pi\)
\(38\) 14.7441 2.39181
\(39\) 0 0
\(40\) 0 0
\(41\) 0.215243 0.0336153 0.0168076 0.999859i \(-0.494650\pi\)
0.0168076 + 0.999859i \(0.494650\pi\)
\(42\) 0 0
\(43\) 7.17115 1.09359 0.546795 0.837266i \(-0.315848\pi\)
0.546795 + 0.837266i \(0.315848\pi\)
\(44\) 10.2187 1.54053
\(45\) 0 0
\(46\) −0.373793 −0.0551128
\(47\) 9.91293 1.44595 0.722975 0.690874i \(-0.242774\pi\)
0.722975 + 0.690874i \(0.242774\pi\)
\(48\) 0 0
\(49\) 14.3162 2.04517
\(50\) 0 0
\(51\) 0 0
\(52\) 29.8467 4.13899
\(53\) 1.14754 0.157627 0.0788134 0.996889i \(-0.474887\pi\)
0.0788134 + 0.996889i \(0.474887\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −43.3601 −5.79423
\(57\) 0 0
\(58\) 2.72810 0.358217
\(59\) 0.244913 0.0318849 0.0159425 0.999873i \(-0.494925\pi\)
0.0159425 + 0.999873i \(0.494925\pi\)
\(60\) 0 0
\(61\) 8.75284 1.12069 0.560343 0.828260i \(-0.310669\pi\)
0.560343 + 0.828260i \(0.310669\pi\)
\(62\) 22.3204 2.83469
\(63\) 0 0
\(64\) 28.9585 3.61981
\(65\) 0 0
\(66\) 0 0
\(67\) −6.53295 −0.798127 −0.399064 0.916923i \(-0.630665\pi\)
−0.399064 + 0.916923i \(0.630665\pi\)
\(68\) 31.2431 3.78878
\(69\) 0 0
\(70\) 0 0
\(71\) 0.277412 0.0329227 0.0164614 0.999865i \(-0.494760\pi\)
0.0164614 + 0.999865i \(0.494760\pi\)
\(72\) 0 0
\(73\) −11.4933 −1.34519 −0.672594 0.740011i \(-0.734820\pi\)
−0.672594 + 0.740011i \(0.734820\pi\)
\(74\) 12.1614 1.41374
\(75\) 0 0
\(76\) −29.4143 −3.37405
\(77\) 8.66866 0.987886
\(78\) 0 0
\(79\) 1.66223 0.187015 0.0935076 0.995619i \(-0.470192\pi\)
0.0935076 + 0.995619i \(0.470192\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.587203 −0.0648457
\(83\) −9.58514 −1.05211 −0.526053 0.850452i \(-0.676329\pi\)
−0.526053 + 0.850452i \(0.676329\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −19.5636 −2.10960
\(87\) 0 0
\(88\) −17.6333 −1.87971
\(89\) −16.3332 −1.73132 −0.865659 0.500634i \(-0.833100\pi\)
−0.865659 + 0.500634i \(0.833100\pi\)
\(90\) 0 0
\(91\) 25.3193 2.65419
\(92\) 0.745712 0.0777458
\(93\) 0 0
\(94\) −27.0434 −2.78932
\(95\) 0 0
\(96\) 0 0
\(97\) 8.04128 0.816468 0.408234 0.912877i \(-0.366145\pi\)
0.408234 + 0.912877i \(0.366145\pi\)
\(98\) −39.0559 −3.94525
\(99\) 0 0
\(100\) 0 0
\(101\) 12.3239 1.22627 0.613135 0.789978i \(-0.289908\pi\)
0.613135 + 0.789978i \(0.289908\pi\)
\(102\) 0 0
\(103\) −0.660912 −0.0651216 −0.0325608 0.999470i \(-0.510366\pi\)
−0.0325608 + 0.999470i \(0.510366\pi\)
\(104\) −51.5030 −5.05028
\(105\) 0 0
\(106\) −3.13060 −0.304071
\(107\) 14.5868 1.41016 0.705079 0.709128i \(-0.250911\pi\)
0.705079 + 0.709128i \(0.250911\pi\)
\(108\) 0 0
\(109\) 15.5050 1.48511 0.742557 0.669783i \(-0.233613\pi\)
0.742557 + 0.669783i \(0.233613\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 68.0349 6.42869
\(113\) 7.80660 0.734383 0.367191 0.930145i \(-0.380319\pi\)
0.367191 + 0.930145i \(0.380319\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.44251 −0.505325
\(117\) 0 0
\(118\) −0.668145 −0.0615078
\(119\) 26.5038 2.42960
\(120\) 0 0
\(121\) −7.47471 −0.679519
\(122\) −23.8786 −2.16187
\(123\) 0 0
\(124\) −44.5289 −3.99881
\(125\) 0 0
\(126\) 0 0
\(127\) 19.7106 1.74903 0.874515 0.484999i \(-0.161180\pi\)
0.874515 + 0.484999i \(0.161180\pi\)
\(128\) −36.1656 −3.19662
\(129\) 0 0
\(130\) 0 0
\(131\) 1.05738 0.0923834 0.0461917 0.998933i \(-0.485291\pi\)
0.0461917 + 0.998933i \(0.485291\pi\)
\(132\) 0 0
\(133\) −24.9525 −2.16366
\(134\) 17.8225 1.53963
\(135\) 0 0
\(136\) −53.9125 −4.62296
\(137\) −3.21467 −0.274648 −0.137324 0.990526i \(-0.543850\pi\)
−0.137324 + 0.990526i \(0.543850\pi\)
\(138\) 0 0
\(139\) 8.48410 0.719612 0.359806 0.933027i \(-0.382843\pi\)
0.359806 + 0.933027i \(0.382843\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.756807 −0.0635098
\(143\) 10.2966 0.861046
\(144\) 0 0
\(145\) 0 0
\(146\) 31.3548 2.59494
\(147\) 0 0
\(148\) −24.2619 −1.99432
\(149\) 5.93205 0.485972 0.242986 0.970030i \(-0.421873\pi\)
0.242986 + 0.970030i \(0.421873\pi\)
\(150\) 0 0
\(151\) 8.06281 0.656142 0.328071 0.944653i \(-0.393601\pi\)
0.328071 + 0.944653i \(0.393601\pi\)
\(152\) 50.7568 4.11692
\(153\) 0 0
\(154\) −23.6490 −1.90569
\(155\) 0 0
\(156\) 0 0
\(157\) −9.87127 −0.787813 −0.393906 0.919151i \(-0.628877\pi\)
−0.393906 + 0.919151i \(0.628877\pi\)
\(158\) −4.53472 −0.360763
\(159\) 0 0
\(160\) 0 0
\(161\) 0.632596 0.0498555
\(162\) 0 0
\(163\) 1.25711 0.0984643 0.0492321 0.998787i \(-0.484323\pi\)
0.0492321 + 0.998787i \(0.484323\pi\)
\(164\) 1.17146 0.0914757
\(165\) 0 0
\(166\) 26.1492 2.02957
\(167\) 15.1462 1.17205 0.586024 0.810294i \(-0.300692\pi\)
0.586024 + 0.810294i \(0.300692\pi\)
\(168\) 0 0
\(169\) 17.0742 1.31340
\(170\) 0 0
\(171\) 0 0
\(172\) 39.0291 2.97594
\(173\) −2.34929 −0.178613 −0.0893065 0.996004i \(-0.528465\pi\)
−0.0893065 + 0.996004i \(0.528465\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 27.6678 2.08554
\(177\) 0 0
\(178\) 44.5586 3.33981
\(179\) 17.7814 1.32904 0.664520 0.747270i \(-0.268636\pi\)
0.664520 + 0.747270i \(0.268636\pi\)
\(180\) 0 0
\(181\) −2.69871 −0.200594 −0.100297 0.994958i \(-0.531979\pi\)
−0.100297 + 0.994958i \(0.531979\pi\)
\(182\) −69.0735 −5.12007
\(183\) 0 0
\(184\) −1.28679 −0.0948632
\(185\) 0 0
\(186\) 0 0
\(187\) 10.7783 0.788190
\(188\) 53.9512 3.93480
\(189\) 0 0
\(190\) 0 0
\(191\) −10.7997 −0.781442 −0.390721 0.920509i \(-0.627774\pi\)
−0.390721 + 0.920509i \(0.627774\pi\)
\(192\) 0 0
\(193\) −4.18447 −0.301205 −0.150602 0.988594i \(-0.548121\pi\)
−0.150602 + 0.988594i \(0.548121\pi\)
\(194\) −21.9374 −1.57501
\(195\) 0 0
\(196\) 77.9160 5.56543
\(197\) −5.76856 −0.410993 −0.205496 0.978658i \(-0.565881\pi\)
−0.205496 + 0.978658i \(0.565881\pi\)
\(198\) 0 0
\(199\) −5.45094 −0.386407 −0.193203 0.981159i \(-0.561888\pi\)
−0.193203 + 0.981159i \(0.561888\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −33.6207 −2.36554
\(203\) −4.61695 −0.324046
\(204\) 0 0
\(205\) 0 0
\(206\) 1.80303 0.125623
\(207\) 0 0
\(208\) 80.8117 5.60328
\(209\) −10.1474 −0.701914
\(210\) 0 0
\(211\) 0.863332 0.0594342 0.0297171 0.999558i \(-0.490539\pi\)
0.0297171 + 0.999558i \(0.490539\pi\)
\(212\) 6.24550 0.428943
\(213\) 0 0
\(214\) −39.7942 −2.72027
\(215\) 0 0
\(216\) 0 0
\(217\) −37.7743 −2.56429
\(218\) −42.2993 −2.86487
\(219\) 0 0
\(220\) 0 0
\(221\) 31.4812 2.11766
\(222\) 0 0
\(223\) −0.615197 −0.0411967 −0.0205983 0.999788i \(-0.506557\pi\)
−0.0205983 + 0.999788i \(0.506557\pi\)
\(224\) −98.8856 −6.60707
\(225\) 0 0
\(226\) −21.2972 −1.41667
\(227\) 23.7230 1.57455 0.787275 0.616602i \(-0.211491\pi\)
0.787275 + 0.616602i \(0.211491\pi\)
\(228\) 0 0
\(229\) −20.9808 −1.38645 −0.693226 0.720721i \(-0.743811\pi\)
−0.693226 + 0.720721i \(0.743811\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 9.39150 0.616582
\(233\) 7.95482 0.521138 0.260569 0.965455i \(-0.416090\pi\)
0.260569 + 0.965455i \(0.416090\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.33294 0.0867670
\(237\) 0 0
\(238\) −72.3051 −4.68684
\(239\) −17.4888 −1.13125 −0.565627 0.824661i \(-0.691366\pi\)
−0.565627 + 0.824661i \(0.691366\pi\)
\(240\) 0 0
\(241\) −14.7743 −0.951699 −0.475849 0.879527i \(-0.657859\pi\)
−0.475849 + 0.879527i \(0.657859\pi\)
\(242\) 20.3917 1.31083
\(243\) 0 0
\(244\) 47.6375 3.04968
\(245\) 0 0
\(246\) 0 0
\(247\) −29.6385 −1.88585
\(248\) 76.8382 4.87923
\(249\) 0 0
\(250\) 0 0
\(251\) 3.30996 0.208923 0.104461 0.994529i \(-0.466688\pi\)
0.104461 + 0.994529i \(0.466688\pi\)
\(252\) 0 0
\(253\) 0.257258 0.0161737
\(254\) −53.7723 −3.37398
\(255\) 0 0
\(256\) 40.7463 2.54664
\(257\) 30.8668 1.92542 0.962709 0.270539i \(-0.0872020\pi\)
0.962709 + 0.270539i \(0.0872020\pi\)
\(258\) 0 0
\(259\) −20.5816 −1.27888
\(260\) 0 0
\(261\) 0 0
\(262\) −2.88463 −0.178213
\(263\) −19.4833 −1.20139 −0.600697 0.799477i \(-0.705110\pi\)
−0.600697 + 0.799477i \(0.705110\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 68.0728 4.17381
\(267\) 0 0
\(268\) −35.5557 −2.17191
\(269\) −20.8385 −1.27055 −0.635273 0.772287i \(-0.719113\pi\)
−0.635273 + 0.772287i \(0.719113\pi\)
\(270\) 0 0
\(271\) 24.5849 1.49343 0.746713 0.665146i \(-0.231631\pi\)
0.746713 + 0.665146i \(0.231631\pi\)
\(272\) 84.5924 5.12916
\(273\) 0 0
\(274\) 8.76994 0.529811
\(275\) 0 0
\(276\) 0 0
\(277\) 1.89904 0.114102 0.0570510 0.998371i \(-0.481830\pi\)
0.0570510 + 0.998371i \(0.481830\pi\)
\(278\) −23.1455 −1.38817
\(279\) 0 0
\(280\) 0 0
\(281\) −32.4916 −1.93828 −0.969142 0.246503i \(-0.920719\pi\)
−0.969142 + 0.246503i \(0.920719\pi\)
\(282\) 0 0
\(283\) −11.9151 −0.708279 −0.354140 0.935193i \(-0.615226\pi\)
−0.354140 + 0.935193i \(0.615226\pi\)
\(284\) 1.50982 0.0895912
\(285\) 0 0
\(286\) −28.0902 −1.66101
\(287\) 0.993764 0.0586600
\(288\) 0 0
\(289\) 15.9540 0.938472
\(290\) 0 0
\(291\) 0 0
\(292\) −62.5524 −3.66060
\(293\) −20.7359 −1.21140 −0.605702 0.795692i \(-0.707108\pi\)
−0.605702 + 0.795692i \(0.707108\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 41.8659 2.43341
\(297\) 0 0
\(298\) −16.1832 −0.937467
\(299\) 0.751396 0.0434544
\(300\) 0 0
\(301\) 33.1088 1.90836
\(302\) −21.9961 −1.26574
\(303\) 0 0
\(304\) −79.6409 −4.56772
\(305\) 0 0
\(306\) 0 0
\(307\) −16.9755 −0.968842 −0.484421 0.874835i \(-0.660970\pi\)
−0.484421 + 0.874835i \(0.660970\pi\)
\(308\) 47.1793 2.68829
\(309\) 0 0
\(310\) 0 0
\(311\) 20.9019 1.18524 0.592619 0.805483i \(-0.298094\pi\)
0.592619 + 0.805483i \(0.298094\pi\)
\(312\) 0 0
\(313\) 12.7754 0.722110 0.361055 0.932545i \(-0.382417\pi\)
0.361055 + 0.932545i \(0.382417\pi\)
\(314\) 26.9298 1.51973
\(315\) 0 0
\(316\) 9.04669 0.508916
\(317\) −15.0552 −0.845582 −0.422791 0.906227i \(-0.638950\pi\)
−0.422791 + 0.906227i \(0.638950\pi\)
\(318\) 0 0
\(319\) −1.87758 −0.105124
\(320\) 0 0
\(321\) 0 0
\(322\) −1.72578 −0.0961741
\(323\) −31.0251 −1.72628
\(324\) 0 0
\(325\) 0 0
\(326\) −3.42951 −0.189943
\(327\) 0 0
\(328\) −2.02145 −0.111616
\(329\) 45.7675 2.52324
\(330\) 0 0
\(331\) −17.7325 −0.974668 −0.487334 0.873216i \(-0.662031\pi\)
−0.487334 + 0.873216i \(0.662031\pi\)
\(332\) −52.1672 −2.86305
\(333\) 0 0
\(334\) −41.3203 −2.26095
\(335\) 0 0
\(336\) 0 0
\(337\) −17.5905 −0.958217 −0.479108 0.877756i \(-0.659040\pi\)
−0.479108 + 0.877756i \(0.659040\pi\)
\(338\) −46.5801 −2.53363
\(339\) 0 0
\(340\) 0 0
\(341\) −15.3617 −0.831883
\(342\) 0 0
\(343\) 33.7784 1.82386
\(344\) −67.3479 −3.63115
\(345\) 0 0
\(346\) 6.40909 0.344555
\(347\) 21.0789 1.13157 0.565787 0.824552i \(-0.308573\pi\)
0.565787 + 0.824552i \(0.308573\pi\)
\(348\) 0 0
\(349\) −0.723154 −0.0387096 −0.0193548 0.999813i \(-0.506161\pi\)
−0.0193548 + 0.999813i \(0.506161\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −40.2139 −2.14341
\(353\) −5.93891 −0.316096 −0.158048 0.987431i \(-0.550520\pi\)
−0.158048 + 0.987431i \(0.550520\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −88.8938 −4.71136
\(357\) 0 0
\(358\) −48.5092 −2.56379
\(359\) 2.30973 0.121903 0.0609514 0.998141i \(-0.480587\pi\)
0.0609514 + 0.998141i \(0.480587\pi\)
\(360\) 0 0
\(361\) 10.2091 0.537323
\(362\) 7.36234 0.386956
\(363\) 0 0
\(364\) 137.801 7.22272
\(365\) 0 0
\(366\) 0 0
\(367\) 22.9235 1.19660 0.598298 0.801274i \(-0.295844\pi\)
0.598298 + 0.801274i \(0.295844\pi\)
\(368\) 2.01906 0.105251
\(369\) 0 0
\(370\) 0 0
\(371\) 5.29813 0.275065
\(372\) 0 0
\(373\) −2.83182 −0.146626 −0.0733129 0.997309i \(-0.523357\pi\)
−0.0733129 + 0.997309i \(0.523357\pi\)
\(374\) −29.4043 −1.52046
\(375\) 0 0
\(376\) −93.0973 −4.80113
\(377\) −5.48400 −0.282440
\(378\) 0 0
\(379\) −29.2539 −1.50267 −0.751335 0.659921i \(-0.770590\pi\)
−0.751335 + 0.659921i \(0.770590\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 29.4627 1.50744
\(383\) 2.99063 0.152814 0.0764070 0.997077i \(-0.475655\pi\)
0.0764070 + 0.997077i \(0.475655\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11.4156 0.581040
\(387\) 0 0
\(388\) 43.7648 2.22182
\(389\) 8.57339 0.434688 0.217344 0.976095i \(-0.430261\pi\)
0.217344 + 0.976095i \(0.430261\pi\)
\(390\) 0 0
\(391\) 0.786549 0.0397775
\(392\) −134.451 −6.79078
\(393\) 0 0
\(394\) 15.7372 0.792828
\(395\) 0 0
\(396\) 0 0
\(397\) 9.29605 0.466556 0.233278 0.972410i \(-0.425055\pi\)
0.233278 + 0.972410i \(0.425055\pi\)
\(398\) 14.8707 0.745400
\(399\) 0 0
\(400\) 0 0
\(401\) −19.5392 −0.975739 −0.487870 0.872916i \(-0.662226\pi\)
−0.487870 + 0.872916i \(0.662226\pi\)
\(402\) 0 0
\(403\) −44.8683 −2.23505
\(404\) 67.0728 3.33700
\(405\) 0 0
\(406\) 12.5955 0.625103
\(407\) −8.36995 −0.414883
\(408\) 0 0
\(409\) 37.9582 1.87691 0.938456 0.345398i \(-0.112256\pi\)
0.938456 + 0.345398i \(0.112256\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.59702 −0.177213
\(413\) 1.13075 0.0556405
\(414\) 0 0
\(415\) 0 0
\(416\) −117.456 −5.75876
\(417\) 0 0
\(418\) 27.6832 1.35403
\(419\) 10.0952 0.493184 0.246592 0.969119i \(-0.420689\pi\)
0.246592 + 0.969119i \(0.420689\pi\)
\(420\) 0 0
\(421\) 13.8521 0.675111 0.337556 0.941306i \(-0.390400\pi\)
0.337556 + 0.941306i \(0.390400\pi\)
\(422\) −2.35525 −0.114652
\(423\) 0 0
\(424\) −10.7771 −0.523384
\(425\) 0 0
\(426\) 0 0
\(427\) 40.4114 1.95565
\(428\) 79.3888 3.83740
\(429\) 0 0
\(430\) 0 0
\(431\) −18.2149 −0.877380 −0.438690 0.898638i \(-0.644557\pi\)
−0.438690 + 0.898638i \(0.644557\pi\)
\(432\) 0 0
\(433\) 6.73476 0.323652 0.161826 0.986819i \(-0.448262\pi\)
0.161826 + 0.986819i \(0.448262\pi\)
\(434\) 103.052 4.94666
\(435\) 0 0
\(436\) 84.3864 4.04137
\(437\) −0.740510 −0.0354234
\(438\) 0 0
\(439\) 30.9590 1.47759 0.738795 0.673930i \(-0.235395\pi\)
0.738795 + 0.673930i \(0.235395\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −85.8838 −4.08508
\(443\) −21.4432 −1.01880 −0.509398 0.860531i \(-0.670132\pi\)
−0.509398 + 0.860531i \(0.670132\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.67832 0.0794707
\(447\) 0 0
\(448\) 133.700 6.31672
\(449\) −25.6895 −1.21236 −0.606180 0.795327i \(-0.707299\pi\)
−0.606180 + 0.795327i \(0.707299\pi\)
\(450\) 0 0
\(451\) 0.404134 0.0190299
\(452\) 42.4875 1.99844
\(453\) 0 0
\(454\) −64.7186 −3.03739
\(455\) 0 0
\(456\) 0 0
\(457\) 30.3278 1.41868 0.709338 0.704868i \(-0.248994\pi\)
0.709338 + 0.704868i \(0.248994\pi\)
\(458\) 57.2377 2.67454
\(459\) 0 0
\(460\) 0 0
\(461\) 31.0026 1.44393 0.721967 0.691928i \(-0.243238\pi\)
0.721967 + 0.691928i \(0.243238\pi\)
\(462\) 0 0
\(463\) −27.6990 −1.28728 −0.643640 0.765328i \(-0.722577\pi\)
−0.643640 + 0.765328i \(0.722577\pi\)
\(464\) −14.7359 −0.684097
\(465\) 0 0
\(466\) −21.7015 −1.00530
\(467\) 4.03243 0.186598 0.0932992 0.995638i \(-0.470259\pi\)
0.0932992 + 0.995638i \(0.470259\pi\)
\(468\) 0 0
\(469\) −30.1623 −1.39277
\(470\) 0 0
\(471\) 0 0
\(472\) −2.30010 −0.105871
\(473\) 13.4644 0.619093
\(474\) 0 0
\(475\) 0 0
\(476\) 144.248 6.61157
\(477\) 0 0
\(478\) 47.7110 2.18225
\(479\) −1.32186 −0.0603973 −0.0301986 0.999544i \(-0.509614\pi\)
−0.0301986 + 0.999544i \(0.509614\pi\)
\(480\) 0 0
\(481\) −24.4468 −1.11468
\(482\) 40.3058 1.83588
\(483\) 0 0
\(484\) −40.6812 −1.84915
\(485\) 0 0
\(486\) 0 0
\(487\) −9.89390 −0.448335 −0.224168 0.974551i \(-0.571966\pi\)
−0.224168 + 0.974551i \(0.571966\pi\)
\(488\) −82.2024 −3.72113
\(489\) 0 0
\(490\) 0 0
\(491\) −17.1305 −0.773089 −0.386545 0.922271i \(-0.626331\pi\)
−0.386545 + 0.922271i \(0.626331\pi\)
\(492\) 0 0
\(493\) −5.74056 −0.258542
\(494\) 80.8568 3.63792
\(495\) 0 0
\(496\) −120.564 −5.41350
\(497\) 1.28080 0.0574516
\(498\) 0 0
\(499\) −7.95477 −0.356104 −0.178052 0.984021i \(-0.556980\pi\)
−0.178052 + 0.984021i \(0.556980\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −9.02989 −0.403024
\(503\) −13.3471 −0.595119 −0.297559 0.954703i \(-0.596173\pi\)
−0.297559 + 0.954703i \(0.596173\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.701825 −0.0311999
\(507\) 0 0
\(508\) 107.275 4.75956
\(509\) 5.55324 0.246143 0.123071 0.992398i \(-0.460726\pi\)
0.123071 + 0.992398i \(0.460726\pi\)
\(510\) 0 0
\(511\) −53.0639 −2.34741
\(512\) −38.8286 −1.71600
\(513\) 0 0
\(514\) −84.2076 −3.71424
\(515\) 0 0
\(516\) 0 0
\(517\) 18.6123 0.818567
\(518\) 56.1487 2.46703
\(519\) 0 0
\(520\) 0 0
\(521\) −41.5095 −1.81857 −0.909283 0.416179i \(-0.863369\pi\)
−0.909283 + 0.416179i \(0.863369\pi\)
\(522\) 0 0
\(523\) −11.6261 −0.508375 −0.254188 0.967155i \(-0.581808\pi\)
−0.254188 + 0.967155i \(0.581808\pi\)
\(524\) 5.75479 0.251399
\(525\) 0 0
\(526\) 53.1525 2.31756
\(527\) −46.9674 −2.04593
\(528\) 0 0
\(529\) −22.9812 −0.999184
\(530\) 0 0
\(531\) 0 0
\(532\) −135.804 −5.88786
\(533\) 1.18039 0.0511284
\(534\) 0 0
\(535\) 0 0
\(536\) 61.3543 2.65010
\(537\) 0 0
\(538\) 56.8495 2.45096
\(539\) 26.8797 1.15779
\(540\) 0 0
\(541\) −5.29830 −0.227792 −0.113896 0.993493i \(-0.536333\pi\)
−0.113896 + 0.993493i \(0.536333\pi\)
\(542\) −67.0700 −2.88090
\(543\) 0 0
\(544\) −122.951 −5.27149
\(545\) 0 0
\(546\) 0 0
\(547\) −6.78093 −0.289932 −0.144966 0.989437i \(-0.546307\pi\)
−0.144966 + 0.989437i \(0.546307\pi\)
\(548\) −17.4959 −0.747387
\(549\) 0 0
\(550\) 0 0
\(551\) 5.40455 0.230241
\(552\) 0 0
\(553\) 7.67441 0.326349
\(554\) −5.18076 −0.220109
\(555\) 0 0
\(556\) 46.1748 1.95825
\(557\) −0.186307 −0.00789410 −0.00394705 0.999992i \(-0.501256\pi\)
−0.00394705 + 0.999992i \(0.501256\pi\)
\(558\) 0 0
\(559\) 39.3266 1.66334
\(560\) 0 0
\(561\) 0 0
\(562\) 88.6401 3.73906
\(563\) 27.1382 1.14374 0.571869 0.820345i \(-0.306219\pi\)
0.571869 + 0.820345i \(0.306219\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 32.5056 1.36631
\(567\) 0 0
\(568\) −2.60532 −0.109317
\(569\) −22.8795 −0.959157 −0.479578 0.877499i \(-0.659210\pi\)
−0.479578 + 0.877499i \(0.659210\pi\)
\(570\) 0 0
\(571\) 38.3621 1.60541 0.802703 0.596379i \(-0.203394\pi\)
0.802703 + 0.596379i \(0.203394\pi\)
\(572\) 56.0395 2.34313
\(573\) 0 0
\(574\) −2.71108 −0.113158
\(575\) 0 0
\(576\) 0 0
\(577\) −12.0497 −0.501637 −0.250818 0.968034i \(-0.580700\pi\)
−0.250818 + 0.968034i \(0.580700\pi\)
\(578\) −43.5241 −1.81036
\(579\) 0 0
\(580\) 0 0
\(581\) −44.2541 −1.83597
\(582\) 0 0
\(583\) 2.15459 0.0892341
\(584\) 107.939 4.46656
\(585\) 0 0
\(586\) 56.5695 2.33687
\(587\) 23.6704 0.976982 0.488491 0.872569i \(-0.337547\pi\)
0.488491 + 0.872569i \(0.337547\pi\)
\(588\) 0 0
\(589\) 44.2183 1.82198
\(590\) 0 0
\(591\) 0 0
\(592\) −65.6905 −2.69986
\(593\) −25.9414 −1.06529 −0.532643 0.846340i \(-0.678801\pi\)
−0.532643 + 0.846340i \(0.678801\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 32.2852 1.32245
\(597\) 0 0
\(598\) −2.04988 −0.0838259
\(599\) 17.2886 0.706393 0.353196 0.935549i \(-0.385095\pi\)
0.353196 + 0.935549i \(0.385095\pi\)
\(600\) 0 0
\(601\) −30.8997 −1.26042 −0.630212 0.776423i \(-0.717032\pi\)
−0.630212 + 0.776423i \(0.717032\pi\)
\(602\) −90.3240 −3.68133
\(603\) 0 0
\(604\) 43.8820 1.78553
\(605\) 0 0
\(606\) 0 0
\(607\) 4.07152 0.165258 0.0826290 0.996580i \(-0.473668\pi\)
0.0826290 + 0.996580i \(0.473668\pi\)
\(608\) 115.754 4.69446
\(609\) 0 0
\(610\) 0 0
\(611\) 54.3625 2.19927
\(612\) 0 0
\(613\) 32.3595 1.30699 0.653494 0.756931i \(-0.273302\pi\)
0.653494 + 0.756931i \(0.273302\pi\)
\(614\) 46.3108 1.86895
\(615\) 0 0
\(616\) −81.4118 −3.28017
\(617\) 33.4957 1.34849 0.674243 0.738509i \(-0.264470\pi\)
0.674243 + 0.738509i \(0.264470\pi\)
\(618\) 0 0
\(619\) −16.6857 −0.670656 −0.335328 0.942101i \(-0.608847\pi\)
−0.335328 + 0.942101i \(0.608847\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −57.0224 −2.28639
\(623\) −75.4096 −3.02122
\(624\) 0 0
\(625\) 0 0
\(626\) −34.8526 −1.39299
\(627\) 0 0
\(628\) −53.7245 −2.14384
\(629\) −25.5905 −1.02036
\(630\) 0 0
\(631\) 9.91590 0.394746 0.197373 0.980328i \(-0.436759\pi\)
0.197373 + 0.980328i \(0.436759\pi\)
\(632\) −15.6108 −0.620965
\(633\) 0 0
\(634\) 41.0719 1.63118
\(635\) 0 0
\(636\) 0 0
\(637\) 78.5099 3.11068
\(638\) 5.12221 0.202790
\(639\) 0 0
\(640\) 0 0
\(641\) 22.9862 0.907902 0.453951 0.891027i \(-0.350014\pi\)
0.453951 + 0.891027i \(0.350014\pi\)
\(642\) 0 0
\(643\) −12.9117 −0.509190 −0.254595 0.967048i \(-0.581942\pi\)
−0.254595 + 0.967048i \(0.581942\pi\)
\(644\) 3.44291 0.135670
\(645\) 0 0
\(646\) 84.6395 3.33010
\(647\) −16.6096 −0.652989 −0.326494 0.945199i \(-0.605867\pi\)
−0.326494 + 0.945199i \(0.605867\pi\)
\(648\) 0 0
\(649\) 0.459842 0.0180504
\(650\) 0 0
\(651\) 0 0
\(652\) 6.84182 0.267947
\(653\) 21.5638 0.843858 0.421929 0.906629i \(-0.361353\pi\)
0.421929 + 0.906629i \(0.361353\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.17180 0.123838
\(657\) 0 0
\(658\) −124.858 −4.86747
\(659\) −31.7863 −1.23822 −0.619110 0.785305i \(-0.712506\pi\)
−0.619110 + 0.785305i \(0.712506\pi\)
\(660\) 0 0
\(661\) 30.0046 1.16704 0.583521 0.812098i \(-0.301674\pi\)
0.583521 + 0.812098i \(0.301674\pi\)
\(662\) 48.3760 1.88019
\(663\) 0 0
\(664\) 90.0189 3.49341
\(665\) 0 0
\(666\) 0 0
\(667\) −0.137016 −0.00530529
\(668\) 82.4334 3.18944
\(669\) 0 0
\(670\) 0 0
\(671\) 16.4341 0.634432
\(672\) 0 0
\(673\) −35.0842 −1.35240 −0.676199 0.736719i \(-0.736374\pi\)
−0.676199 + 0.736719i \(0.736374\pi\)
\(674\) 47.9886 1.84845
\(675\) 0 0
\(676\) 92.9267 3.57410
\(677\) −42.1433 −1.61970 −0.809849 0.586638i \(-0.800451\pi\)
−0.809849 + 0.586638i \(0.800451\pi\)
\(678\) 0 0
\(679\) 37.1261 1.42477
\(680\) 0 0
\(681\) 0 0
\(682\) 41.9082 1.60475
\(683\) 31.8895 1.22022 0.610109 0.792318i \(-0.291126\pi\)
0.610109 + 0.792318i \(0.291126\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −92.1508 −3.51833
\(687\) 0 0
\(688\) 105.673 4.02876
\(689\) 6.29311 0.239748
\(690\) 0 0
\(691\) 11.2963 0.429732 0.214866 0.976644i \(-0.431069\pi\)
0.214866 + 0.976644i \(0.431069\pi\)
\(692\) −12.7860 −0.486052
\(693\) 0 0
\(694\) −57.5052 −2.18287
\(695\) 0 0
\(696\) 0 0
\(697\) 1.23561 0.0468022
\(698\) 1.97283 0.0746729
\(699\) 0 0
\(700\) 0 0
\(701\) 1.39354 0.0526332 0.0263166 0.999654i \(-0.491622\pi\)
0.0263166 + 0.999654i \(0.491622\pi\)
\(702\) 0 0
\(703\) 24.0927 0.908672
\(704\) 54.3717 2.04921
\(705\) 0 0
\(706\) 16.2019 0.609767
\(707\) 56.8986 2.13989
\(708\) 0 0
\(709\) 5.24967 0.197156 0.0985778 0.995129i \(-0.468571\pi\)
0.0985778 + 0.995129i \(0.468571\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 153.394 5.74867
\(713\) −1.12102 −0.0419826
\(714\) 0 0
\(715\) 0 0
\(716\) 96.7752 3.61666
\(717\) 0 0
\(718\) −6.30116 −0.235157
\(719\) −46.4801 −1.73341 −0.866707 0.498817i \(-0.833768\pi\)
−0.866707 + 0.498817i \(0.833768\pi\)
\(720\) 0 0
\(721\) −3.05140 −0.113640
\(722\) −27.8515 −1.03653
\(723\) 0 0
\(724\) −14.6878 −0.545866
\(725\) 0 0
\(726\) 0 0
\(727\) 43.3101 1.60628 0.803141 0.595790i \(-0.203161\pi\)
0.803141 + 0.595790i \(0.203161\pi\)
\(728\) −237.786 −8.81295
\(729\) 0 0
\(730\) 0 0
\(731\) 41.1664 1.52259
\(732\) 0 0
\(733\) 18.6793 0.689936 0.344968 0.938614i \(-0.387890\pi\)
0.344968 + 0.938614i \(0.387890\pi\)
\(734\) −62.5375 −2.30830
\(735\) 0 0
\(736\) −2.93461 −0.108171
\(737\) −12.2661 −0.451828
\(738\) 0 0
\(739\) 41.3256 1.52019 0.760093 0.649815i \(-0.225153\pi\)
0.760093 + 0.649815i \(0.225153\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −14.4538 −0.530616
\(743\) −32.3390 −1.18640 −0.593202 0.805054i \(-0.702136\pi\)
−0.593202 + 0.805054i \(0.702136\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 7.72547 0.282849
\(747\) 0 0
\(748\) 58.6612 2.14487
\(749\) 67.3464 2.46078
\(750\) 0 0
\(751\) −9.34454 −0.340987 −0.170494 0.985359i \(-0.554536\pi\)
−0.170494 + 0.985359i \(0.554536\pi\)
\(752\) 146.076 5.32685
\(753\) 0 0
\(754\) 14.9609 0.544843
\(755\) 0 0
\(756\) 0 0
\(757\) 5.01932 0.182430 0.0912151 0.995831i \(-0.470925\pi\)
0.0912151 + 0.995831i \(0.470925\pi\)
\(758\) 79.8074 2.89873
\(759\) 0 0
\(760\) 0 0
\(761\) 34.9103 1.26550 0.632748 0.774358i \(-0.281927\pi\)
0.632748 + 0.774358i \(0.281927\pi\)
\(762\) 0 0
\(763\) 71.5859 2.59159
\(764\) −58.7777 −2.12650
\(765\) 0 0
\(766\) −8.15872 −0.294787
\(767\) 1.34310 0.0484965
\(768\) 0 0
\(769\) 37.4889 1.35189 0.675943 0.736954i \(-0.263737\pi\)
0.675943 + 0.736954i \(0.263737\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −22.7740 −0.819655
\(773\) −33.7332 −1.21330 −0.606649 0.794970i \(-0.707487\pi\)
−0.606649 + 0.794970i \(0.707487\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −75.5197 −2.71100
\(777\) 0 0
\(778\) −23.3890 −0.838538
\(779\) −1.16329 −0.0416792
\(780\) 0 0
\(781\) 0.520862 0.0186379
\(782\) −2.14578 −0.0767330
\(783\) 0 0
\(784\) 210.962 7.53436
\(785\) 0 0
\(786\) 0 0
\(787\) −11.5508 −0.411740 −0.205870 0.978579i \(-0.566002\pi\)
−0.205870 + 0.978579i \(0.566002\pi\)
\(788\) −31.3955 −1.11842
\(789\) 0 0
\(790\) 0 0
\(791\) 36.0426 1.28153
\(792\) 0 0
\(793\) 48.0006 1.70455
\(794\) −25.3605 −0.900012
\(795\) 0 0
\(796\) −29.6668 −1.05151
\(797\) 9.11795 0.322974 0.161487 0.986875i \(-0.448371\pi\)
0.161487 + 0.986875i \(0.448371\pi\)
\(798\) 0 0
\(799\) 56.9058 2.01318
\(800\) 0 0
\(801\) 0 0
\(802\) 53.3047 1.88226
\(803\) −21.5795 −0.761525
\(804\) 0 0
\(805\) 0 0
\(806\) 122.405 4.31153
\(807\) 0 0
\(808\) −115.740 −4.07171
\(809\) 11.9809 0.421227 0.210613 0.977569i \(-0.432454\pi\)
0.210613 + 0.977569i \(0.432454\pi\)
\(810\) 0 0
\(811\) −19.2172 −0.674807 −0.337403 0.941360i \(-0.609549\pi\)
−0.337403 + 0.941360i \(0.609549\pi\)
\(812\) −25.1278 −0.881812
\(813\) 0 0
\(814\) 22.8340 0.800332
\(815\) 0 0
\(816\) 0 0
\(817\) −38.7568 −1.35593
\(818\) −103.554 −3.62067
\(819\) 0 0
\(820\) 0 0
\(821\) 10.5611 0.368585 0.184292 0.982871i \(-0.441001\pi\)
0.184292 + 0.982871i \(0.441001\pi\)
\(822\) 0 0
\(823\) 29.1655 1.01665 0.508323 0.861166i \(-0.330266\pi\)
0.508323 + 0.861166i \(0.330266\pi\)
\(824\) 6.20696 0.216230
\(825\) 0 0
\(826\) −3.08479 −0.107334
\(827\) 40.5140 1.40881 0.704405 0.709798i \(-0.251214\pi\)
0.704405 + 0.709798i \(0.251214\pi\)
\(828\) 0 0
\(829\) 51.3925 1.78494 0.892468 0.451111i \(-0.148972\pi\)
0.892468 + 0.451111i \(0.148972\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 158.808 5.50569
\(833\) 82.1829 2.84747
\(834\) 0 0
\(835\) 0 0
\(836\) −55.2276 −1.91009
\(837\) 0 0
\(838\) −27.5407 −0.951379
\(839\) 30.2352 1.04383 0.521917 0.852996i \(-0.325217\pi\)
0.521917 + 0.852996i \(0.325217\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −37.7899 −1.30233
\(843\) 0 0
\(844\) 4.69869 0.161736
\(845\) 0 0
\(846\) 0 0
\(847\) −34.5103 −1.18579
\(848\) 16.9100 0.580693
\(849\) 0 0
\(850\) 0 0
\(851\) −0.610797 −0.0209379
\(852\) 0 0
\(853\) −0.163336 −0.00559252 −0.00279626 0.999996i \(-0.500890\pi\)
−0.00279626 + 0.999996i \(0.500890\pi\)
\(854\) −110.246 −3.77255
\(855\) 0 0
\(856\) −136.992 −4.68229
\(857\) −0.869730 −0.0297094 −0.0148547 0.999890i \(-0.504729\pi\)
−0.0148547 + 0.999890i \(0.504729\pi\)
\(858\) 0 0
\(859\) −50.5362 −1.72427 −0.862136 0.506677i \(-0.830874\pi\)
−0.862136 + 0.506677i \(0.830874\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 49.6920 1.69251
\(863\) 43.1139 1.46761 0.733807 0.679358i \(-0.237742\pi\)
0.733807 + 0.679358i \(0.237742\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −18.3731 −0.624342
\(867\) 0 0
\(868\) −205.587 −6.97809
\(869\) 3.12096 0.105871
\(870\) 0 0
\(871\) −35.8267 −1.21394
\(872\) −145.616 −4.93117
\(873\) 0 0
\(874\) 2.02018 0.0683337
\(875\) 0 0
\(876\) 0 0
\(877\) −3.23901 −0.109374 −0.0546868 0.998504i \(-0.517416\pi\)
−0.0546868 + 0.998504i \(0.517416\pi\)
\(878\) −84.4590 −2.85035
\(879\) 0 0
\(880\) 0 0
\(881\) −9.49218 −0.319800 −0.159900 0.987133i \(-0.551117\pi\)
−0.159900 + 0.987133i \(0.551117\pi\)
\(882\) 0 0
\(883\) −40.4268 −1.36047 −0.680235 0.732994i \(-0.738122\pi\)
−0.680235 + 0.732994i \(0.738122\pi\)
\(884\) 171.337 5.76268
\(885\) 0 0
\(886\) 58.4991 1.96532
\(887\) −17.5249 −0.588430 −0.294215 0.955739i \(-0.595058\pi\)
−0.294215 + 0.955739i \(0.595058\pi\)
\(888\) 0 0
\(889\) 91.0026 3.05213
\(890\) 0 0
\(891\) 0 0
\(892\) −3.34822 −0.112107
\(893\) −53.5749 −1.79282
\(894\) 0 0
\(895\) 0 0
\(896\) −166.975 −5.57823
\(897\) 0 0
\(898\) 70.0833 2.33871
\(899\) 8.18167 0.272874
\(900\) 0 0
\(901\) 6.58752 0.219462
\(902\) −1.10252 −0.0367098
\(903\) 0 0
\(904\) −73.3157 −2.43844
\(905\) 0 0
\(906\) 0 0
\(907\) 34.8878 1.15843 0.579216 0.815174i \(-0.303359\pi\)
0.579216 + 0.815174i \(0.303359\pi\)
\(908\) 129.113 4.28475
\(909\) 0 0
\(910\) 0 0
\(911\) −43.5212 −1.44192 −0.720960 0.692976i \(-0.756299\pi\)
−0.720960 + 0.692976i \(0.756299\pi\)
\(912\) 0 0
\(913\) −17.9968 −0.595608
\(914\) −82.7373 −2.73671
\(915\) 0 0
\(916\) −114.188 −3.77289
\(917\) 4.88185 0.161213
\(918\) 0 0
\(919\) −38.2543 −1.26189 −0.630946 0.775827i \(-0.717333\pi\)
−0.630946 + 0.775827i \(0.717333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −84.5780 −2.78543
\(923\) 1.52133 0.0500751
\(924\) 0 0
\(925\) 0 0
\(926\) 75.5655 2.48324
\(927\) 0 0
\(928\) 21.4180 0.703079
\(929\) −40.3492 −1.32381 −0.661906 0.749586i \(-0.730252\pi\)
−0.661906 + 0.749586i \(0.730252\pi\)
\(930\) 0 0
\(931\) −77.3725 −2.53578
\(932\) 43.2942 1.41815
\(933\) 0 0
\(934\) −11.0009 −0.359959
\(935\) 0 0
\(936\) 0 0
\(937\) −4.95384 −0.161835 −0.0809174 0.996721i \(-0.525785\pi\)
−0.0809174 + 0.996721i \(0.525785\pi\)
\(938\) 82.2857 2.68672
\(939\) 0 0
\(940\) 0 0
\(941\) 47.5220 1.54917 0.774587 0.632467i \(-0.217958\pi\)
0.774587 + 0.632467i \(0.217958\pi\)
\(942\) 0 0
\(943\) 0.0294917 0.000960383 0
\(944\) 3.60901 0.117463
\(945\) 0 0
\(946\) −36.7321 −1.19426
\(947\) 37.1547 1.20736 0.603682 0.797225i \(-0.293700\pi\)
0.603682 + 0.797225i \(0.293700\pi\)
\(948\) 0 0
\(949\) −63.0292 −2.04601
\(950\) 0 0
\(951\) 0 0
\(952\) −248.911 −8.06725
\(953\) −44.5351 −1.44263 −0.721316 0.692606i \(-0.756463\pi\)
−0.721316 + 0.692606i \(0.756463\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −95.1828 −3.07843
\(957\) 0 0
\(958\) 3.60616 0.116510
\(959\) −14.8420 −0.479272
\(960\) 0 0
\(961\) 35.9398 1.15935
\(962\) 66.6933 2.15028
\(963\) 0 0
\(964\) −80.4095 −2.58982
\(965\) 0 0
\(966\) 0 0
\(967\) 48.7291 1.56702 0.783511 0.621379i \(-0.213427\pi\)
0.783511 + 0.621379i \(0.213427\pi\)
\(968\) 70.1988 2.25627
\(969\) 0 0
\(970\) 0 0
\(971\) 51.7448 1.66057 0.830285 0.557339i \(-0.188178\pi\)
0.830285 + 0.557339i \(0.188178\pi\)
\(972\) 0 0
\(973\) 39.1706 1.25575
\(974\) 26.9915 0.864864
\(975\) 0 0
\(976\) 128.981 4.12858
\(977\) −37.7726 −1.20845 −0.604227 0.796813i \(-0.706518\pi\)
−0.604227 + 0.796813i \(0.706518\pi\)
\(978\) 0 0
\(979\) −30.6669 −0.980117
\(980\) 0 0
\(981\) 0 0
\(982\) 46.7337 1.49133
\(983\) 21.1318 0.673999 0.336999 0.941505i \(-0.390588\pi\)
0.336999 + 0.941505i \(0.390588\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 15.6608 0.498742
\(987\) 0 0
\(988\) −161.308 −5.13189
\(989\) 0.982563 0.0312437
\(990\) 0 0
\(991\) 11.0241 0.350191 0.175096 0.984551i \(-0.443977\pi\)
0.175096 + 0.984551i \(0.443977\pi\)
\(992\) 175.235 5.56371
\(993\) 0 0
\(994\) −3.49414 −0.110827
\(995\) 0 0
\(996\) 0 0
\(997\) 28.2785 0.895589 0.447795 0.894136i \(-0.352210\pi\)
0.447795 + 0.894136i \(0.352210\pi\)
\(998\) 21.7014 0.686945
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bz.1.1 8
3.2 odd 2 2175.2.a.bc.1.8 8
5.4 even 2 6525.2.a.by.1.8 8
15.2 even 4 2175.2.c.p.349.16 16
15.8 even 4 2175.2.c.p.349.1 16
15.14 odd 2 2175.2.a.bd.1.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.8 8 3.2 odd 2
2175.2.a.bd.1.1 yes 8 15.14 odd 2
2175.2.c.p.349.1 16 15.8 even 4
2175.2.c.p.349.16 16 15.2 even 4
6525.2.a.by.1.8 8 5.4 even 2
6525.2.a.bz.1.1 8 1.1 even 1 trivial