Properties

Label 6525.2.a.by.1.4
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 12x^{6} + 23x^{5} + 36x^{4} - 62x^{3} - 15x^{2} + 14x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.510732\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.510732 q^{2} -1.73915 q^{4} -4.82343 q^{7} +1.90970 q^{8} +O(q^{10})\) \(q-0.510732 q^{2} -1.73915 q^{4} -4.82343 q^{7} +1.90970 q^{8} -4.88439 q^{11} -4.59669 q^{13} +2.46348 q^{14} +2.50296 q^{16} +6.50987 q^{17} +3.09205 q^{19} +2.49461 q^{22} -5.62549 q^{23} +2.34767 q^{26} +8.38869 q^{28} -1.00000 q^{29} +9.24375 q^{31} -5.09775 q^{32} -3.32480 q^{34} +11.1261 q^{37} -1.57921 q^{38} +2.84537 q^{41} +4.58611 q^{43} +8.49470 q^{44} +2.87311 q^{46} +3.62713 q^{47} +16.2655 q^{49} +7.99434 q^{52} -0.967845 q^{53} -9.21132 q^{56} +0.510732 q^{58} +0.298882 q^{59} -0.786908 q^{61} -4.72108 q^{62} -2.40234 q^{64} -4.86742 q^{67} -11.3217 q^{68} -0.741689 q^{71} -5.52981 q^{73} -5.68246 q^{74} -5.37755 q^{76} +23.5595 q^{77} -2.96278 q^{79} -1.45322 q^{82} -13.6633 q^{83} -2.34227 q^{86} -9.32773 q^{88} -3.67835 q^{89} +22.1718 q^{91} +9.78358 q^{92} -1.85249 q^{94} +2.87658 q^{97} -8.30730 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 12 q^{4} - 2 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 12 q^{4} - 2 q^{7} - 3 q^{8} - 6 q^{11} - 6 q^{13} - 9 q^{14} + 32 q^{16} - 12 q^{17} - 3 q^{22} - 14 q^{23} - 18 q^{26} - 14 q^{28} - 8 q^{29} + 8 q^{31} + 2 q^{32} - 13 q^{34} - 4 q^{37} - 26 q^{38} - 2 q^{41} - 2 q^{43} + 15 q^{44} + 24 q^{46} - 12 q^{47} + 38 q^{49} - 49 q^{52} - 4 q^{53} - 58 q^{56} + 2 q^{58} - 18 q^{59} + 12 q^{61} + 4 q^{62} + 21 q^{64} - 26 q^{67} - 81 q^{68} - 24 q^{71} + 14 q^{73} + 22 q^{74} + 26 q^{77} + 10 q^{79} - 48 q^{82} - 40 q^{83} - 8 q^{86} + 10 q^{88} - 34 q^{89} + 26 q^{91} + 18 q^{92} - 43 q^{94} - 30 q^{97} - 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.510732 −0.361142 −0.180571 0.983562i \(-0.557795\pi\)
−0.180571 + 0.983562i \(0.557795\pi\)
\(3\) 0 0
\(4\) −1.73915 −0.869577
\(5\) 0 0
\(6\) 0 0
\(7\) −4.82343 −1.82309 −0.911543 0.411205i \(-0.865108\pi\)
−0.911543 + 0.411205i \(0.865108\pi\)
\(8\) 1.90970 0.675182
\(9\) 0 0
\(10\) 0 0
\(11\) −4.88439 −1.47270 −0.736349 0.676602i \(-0.763452\pi\)
−0.736349 + 0.676602i \(0.763452\pi\)
\(12\) 0 0
\(13\) −4.59669 −1.27489 −0.637446 0.770495i \(-0.720009\pi\)
−0.637446 + 0.770495i \(0.720009\pi\)
\(14\) 2.46348 0.658392
\(15\) 0 0
\(16\) 2.50296 0.625740
\(17\) 6.50987 1.57888 0.789438 0.613830i \(-0.210372\pi\)
0.789438 + 0.613830i \(0.210372\pi\)
\(18\) 0 0
\(19\) 3.09205 0.709364 0.354682 0.934987i \(-0.384589\pi\)
0.354682 + 0.934987i \(0.384589\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.49461 0.531853
\(23\) −5.62549 −1.17299 −0.586497 0.809951i \(-0.699494\pi\)
−0.586497 + 0.809951i \(0.699494\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.34767 0.460416
\(27\) 0 0
\(28\) 8.38869 1.58531
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 9.24375 1.66023 0.830113 0.557595i \(-0.188276\pi\)
0.830113 + 0.557595i \(0.188276\pi\)
\(32\) −5.09775 −0.901163
\(33\) 0 0
\(34\) −3.32480 −0.570198
\(35\) 0 0
\(36\) 0 0
\(37\) 11.1261 1.82912 0.914561 0.404448i \(-0.132536\pi\)
0.914561 + 0.404448i \(0.132536\pi\)
\(38\) −1.57921 −0.256181
\(39\) 0 0
\(40\) 0 0
\(41\) 2.84537 0.444372 0.222186 0.975004i \(-0.428681\pi\)
0.222186 + 0.975004i \(0.428681\pi\)
\(42\) 0 0
\(43\) 4.58611 0.699375 0.349688 0.936866i \(-0.386288\pi\)
0.349688 + 0.936866i \(0.386288\pi\)
\(44\) 8.49470 1.28062
\(45\) 0 0
\(46\) 2.87311 0.423617
\(47\) 3.62713 0.529071 0.264536 0.964376i \(-0.414781\pi\)
0.264536 + 0.964376i \(0.414781\pi\)
\(48\) 0 0
\(49\) 16.2655 2.32364
\(50\) 0 0
\(51\) 0 0
\(52\) 7.99434 1.10862
\(53\) −0.967845 −0.132944 −0.0664719 0.997788i \(-0.521174\pi\)
−0.0664719 + 0.997788i \(0.521174\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −9.21132 −1.23091
\(57\) 0 0
\(58\) 0.510732 0.0670623
\(59\) 0.298882 0.0389112 0.0194556 0.999811i \(-0.493807\pi\)
0.0194556 + 0.999811i \(0.493807\pi\)
\(60\) 0 0
\(61\) −0.786908 −0.100753 −0.0503766 0.998730i \(-0.516042\pi\)
−0.0503766 + 0.998730i \(0.516042\pi\)
\(62\) −4.72108 −0.599577
\(63\) 0 0
\(64\) −2.40234 −0.300293
\(65\) 0 0
\(66\) 0 0
\(67\) −4.86742 −0.594650 −0.297325 0.954776i \(-0.596094\pi\)
−0.297325 + 0.954776i \(0.596094\pi\)
\(68\) −11.3217 −1.37295
\(69\) 0 0
\(70\) 0 0
\(71\) −0.741689 −0.0880223 −0.0440112 0.999031i \(-0.514014\pi\)
−0.0440112 + 0.999031i \(0.514014\pi\)
\(72\) 0 0
\(73\) −5.52981 −0.647215 −0.323608 0.946191i \(-0.604896\pi\)
−0.323608 + 0.946191i \(0.604896\pi\)
\(74\) −5.68246 −0.660572
\(75\) 0 0
\(76\) −5.37755 −0.616847
\(77\) 23.5595 2.68485
\(78\) 0 0
\(79\) −2.96278 −0.333339 −0.166669 0.986013i \(-0.553301\pi\)
−0.166669 + 0.986013i \(0.553301\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.45322 −0.160481
\(83\) −13.6633 −1.49975 −0.749874 0.661581i \(-0.769886\pi\)
−0.749874 + 0.661581i \(0.769886\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.34227 −0.252574
\(87\) 0 0
\(88\) −9.32773 −0.994339
\(89\) −3.67835 −0.389905 −0.194952 0.980813i \(-0.562455\pi\)
−0.194952 + 0.980813i \(0.562455\pi\)
\(90\) 0 0
\(91\) 22.1718 2.32424
\(92\) 9.78358 1.02001
\(93\) 0 0
\(94\) −1.85249 −0.191070
\(95\) 0 0
\(96\) 0 0
\(97\) 2.87658 0.292072 0.146036 0.989279i \(-0.453348\pi\)
0.146036 + 0.989279i \(0.453348\pi\)
\(98\) −8.30730 −0.839164
\(99\) 0 0
\(100\) 0 0
\(101\) 14.6780 1.46051 0.730255 0.683174i \(-0.239401\pi\)
0.730255 + 0.683174i \(0.239401\pi\)
\(102\) 0 0
\(103\) 2.48154 0.244514 0.122257 0.992498i \(-0.460987\pi\)
0.122257 + 0.992498i \(0.460987\pi\)
\(104\) −8.77831 −0.860784
\(105\) 0 0
\(106\) 0.494309 0.0480115
\(107\) −4.48423 −0.433507 −0.216753 0.976226i \(-0.569547\pi\)
−0.216753 + 0.976226i \(0.569547\pi\)
\(108\) 0 0
\(109\) 3.28140 0.314301 0.157151 0.987575i \(-0.449769\pi\)
0.157151 + 0.987575i \(0.449769\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −12.0729 −1.14078
\(113\) −17.9820 −1.69160 −0.845800 0.533500i \(-0.820877\pi\)
−0.845800 + 0.533500i \(0.820877\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.73915 0.161476
\(117\) 0 0
\(118\) −0.152649 −0.0140524
\(119\) −31.3999 −2.87843
\(120\) 0 0
\(121\) 12.8572 1.16884
\(122\) 0.401899 0.0363862
\(123\) 0 0
\(124\) −16.0763 −1.44369
\(125\) 0 0
\(126\) 0 0
\(127\) 13.5099 1.19881 0.599405 0.800446i \(-0.295404\pi\)
0.599405 + 0.800446i \(0.295404\pi\)
\(128\) 11.4224 1.00961
\(129\) 0 0
\(130\) 0 0
\(131\) −12.1450 −1.06111 −0.530556 0.847650i \(-0.678017\pi\)
−0.530556 + 0.847650i \(0.678017\pi\)
\(132\) 0 0
\(133\) −14.9143 −1.29323
\(134\) 2.48594 0.214753
\(135\) 0 0
\(136\) 12.4319 1.06603
\(137\) −9.97466 −0.852193 −0.426096 0.904678i \(-0.640112\pi\)
−0.426096 + 0.904678i \(0.640112\pi\)
\(138\) 0 0
\(139\) 2.82971 0.240013 0.120007 0.992773i \(-0.461708\pi\)
0.120007 + 0.992773i \(0.461708\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.378804 0.0317885
\(143\) 22.4520 1.87753
\(144\) 0 0
\(145\) 0 0
\(146\) 2.82425 0.233736
\(147\) 0 0
\(148\) −19.3500 −1.59056
\(149\) 22.5396 1.84652 0.923259 0.384178i \(-0.125515\pi\)
0.923259 + 0.384178i \(0.125515\pi\)
\(150\) 0 0
\(151\) −14.2205 −1.15725 −0.578626 0.815593i \(-0.696411\pi\)
−0.578626 + 0.815593i \(0.696411\pi\)
\(152\) 5.90490 0.478950
\(153\) 0 0
\(154\) −12.0326 −0.969613
\(155\) 0 0
\(156\) 0 0
\(157\) −10.7712 −0.859632 −0.429816 0.902917i \(-0.641421\pi\)
−0.429816 + 0.902917i \(0.641421\pi\)
\(158\) 1.51319 0.120383
\(159\) 0 0
\(160\) 0 0
\(161\) 27.1341 2.13847
\(162\) 0 0
\(163\) 10.6908 0.837365 0.418682 0.908133i \(-0.362492\pi\)
0.418682 + 0.908133i \(0.362492\pi\)
\(164\) −4.94853 −0.386415
\(165\) 0 0
\(166\) 6.97830 0.541621
\(167\) 7.90643 0.611818 0.305909 0.952061i \(-0.401040\pi\)
0.305909 + 0.952061i \(0.401040\pi\)
\(168\) 0 0
\(169\) 8.12952 0.625347
\(170\) 0 0
\(171\) 0 0
\(172\) −7.97595 −0.608160
\(173\) 3.76760 0.286445 0.143223 0.989690i \(-0.454253\pi\)
0.143223 + 0.989690i \(0.454253\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −12.2254 −0.921526
\(177\) 0 0
\(178\) 1.87865 0.140811
\(179\) −10.3282 −0.771964 −0.385982 0.922506i \(-0.626137\pi\)
−0.385982 + 0.922506i \(0.626137\pi\)
\(180\) 0 0
\(181\) 14.4533 1.07431 0.537154 0.843484i \(-0.319500\pi\)
0.537154 + 0.843484i \(0.319500\pi\)
\(182\) −11.3238 −0.839378
\(183\) 0 0
\(184\) −10.7430 −0.791985
\(185\) 0 0
\(186\) 0 0
\(187\) −31.7967 −2.32521
\(188\) −6.30813 −0.460068
\(189\) 0 0
\(190\) 0 0
\(191\) −8.81550 −0.637867 −0.318934 0.947777i \(-0.603325\pi\)
−0.318934 + 0.947777i \(0.603325\pi\)
\(192\) 0 0
\(193\) −17.2543 −1.24199 −0.620996 0.783814i \(-0.713272\pi\)
−0.620996 + 0.783814i \(0.713272\pi\)
\(194\) −1.46916 −0.105479
\(195\) 0 0
\(196\) −28.2882 −2.02058
\(197\) −22.5719 −1.60818 −0.804090 0.594508i \(-0.797347\pi\)
−0.804090 + 0.594508i \(0.797347\pi\)
\(198\) 0 0
\(199\) −13.7975 −0.978078 −0.489039 0.872262i \(-0.662652\pi\)
−0.489039 + 0.872262i \(0.662652\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.49649 −0.527451
\(203\) 4.82343 0.338538
\(204\) 0 0
\(205\) 0 0
\(206\) −1.26740 −0.0883041
\(207\) 0 0
\(208\) −11.5053 −0.797751
\(209\) −15.1028 −1.04468
\(210\) 0 0
\(211\) 16.4705 1.13387 0.566937 0.823761i \(-0.308128\pi\)
0.566937 + 0.823761i \(0.308128\pi\)
\(212\) 1.68323 0.115605
\(213\) 0 0
\(214\) 2.29024 0.156557
\(215\) 0 0
\(216\) 0 0
\(217\) −44.5866 −3.02674
\(218\) −1.67592 −0.113507
\(219\) 0 0
\(220\) 0 0
\(221\) −29.9238 −2.01289
\(222\) 0 0
\(223\) 4.58903 0.307304 0.153652 0.988125i \(-0.450896\pi\)
0.153652 + 0.988125i \(0.450896\pi\)
\(224\) 24.5886 1.64290
\(225\) 0 0
\(226\) 9.18396 0.610908
\(227\) −25.5254 −1.69418 −0.847089 0.531452i \(-0.821647\pi\)
−0.847089 + 0.531452i \(0.821647\pi\)
\(228\) 0 0
\(229\) −8.04982 −0.531947 −0.265974 0.963980i \(-0.585693\pi\)
−0.265974 + 0.963980i \(0.585693\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.90970 −0.125378
\(233\) 3.75903 0.246262 0.123131 0.992390i \(-0.460706\pi\)
0.123131 + 0.992390i \(0.460706\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.519802 −0.0338362
\(237\) 0 0
\(238\) 16.0369 1.03952
\(239\) 3.53192 0.228461 0.114231 0.993454i \(-0.463560\pi\)
0.114231 + 0.993454i \(0.463560\pi\)
\(240\) 0 0
\(241\) 3.05553 0.196824 0.0984118 0.995146i \(-0.468624\pi\)
0.0984118 + 0.995146i \(0.468624\pi\)
\(242\) −6.56659 −0.422117
\(243\) 0 0
\(244\) 1.36855 0.0876126
\(245\) 0 0
\(246\) 0 0
\(247\) −14.2132 −0.904363
\(248\) 17.6528 1.12096
\(249\) 0 0
\(250\) 0 0
\(251\) 23.3283 1.47247 0.736233 0.676728i \(-0.236603\pi\)
0.736233 + 0.676728i \(0.236603\pi\)
\(252\) 0 0
\(253\) 27.4770 1.72747
\(254\) −6.89994 −0.432941
\(255\) 0 0
\(256\) −1.02912 −0.0643202
\(257\) 28.2268 1.76074 0.880369 0.474289i \(-0.157295\pi\)
0.880369 + 0.474289i \(0.157295\pi\)
\(258\) 0 0
\(259\) −53.6660 −3.33465
\(260\) 0 0
\(261\) 0 0
\(262\) 6.20283 0.383212
\(263\) −27.6688 −1.70613 −0.853067 0.521802i \(-0.825260\pi\)
−0.853067 + 0.521802i \(0.825260\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 7.61719 0.467040
\(267\) 0 0
\(268\) 8.46519 0.517094
\(269\) −0.839052 −0.0511579 −0.0255790 0.999673i \(-0.508143\pi\)
−0.0255790 + 0.999673i \(0.508143\pi\)
\(270\) 0 0
\(271\) 1.27423 0.0774037 0.0387018 0.999251i \(-0.487678\pi\)
0.0387018 + 0.999251i \(0.487678\pi\)
\(272\) 16.2940 0.987966
\(273\) 0 0
\(274\) 5.09437 0.307762
\(275\) 0 0
\(276\) 0 0
\(277\) 26.7387 1.60657 0.803287 0.595592i \(-0.203083\pi\)
0.803287 + 0.595592i \(0.203083\pi\)
\(278\) −1.44522 −0.0866788
\(279\) 0 0
\(280\) 0 0
\(281\) 16.3446 0.975038 0.487519 0.873112i \(-0.337902\pi\)
0.487519 + 0.873112i \(0.337902\pi\)
\(282\) 0 0
\(283\) −23.7207 −1.41005 −0.705025 0.709183i \(-0.749064\pi\)
−0.705025 + 0.709183i \(0.749064\pi\)
\(284\) 1.28991 0.0765422
\(285\) 0 0
\(286\) −11.4669 −0.678054
\(287\) −13.7244 −0.810127
\(288\) 0 0
\(289\) 25.3784 1.49285
\(290\) 0 0
\(291\) 0 0
\(292\) 9.61718 0.562803
\(293\) −8.28535 −0.484035 −0.242018 0.970272i \(-0.577809\pi\)
−0.242018 + 0.970272i \(0.577809\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 21.2476 1.23499
\(297\) 0 0
\(298\) −11.5117 −0.666855
\(299\) 25.8586 1.49544
\(300\) 0 0
\(301\) −22.1208 −1.27502
\(302\) 7.26288 0.417932
\(303\) 0 0
\(304\) 7.73927 0.443878
\(305\) 0 0
\(306\) 0 0
\(307\) 16.3024 0.930425 0.465213 0.885199i \(-0.345978\pi\)
0.465213 + 0.885199i \(0.345978\pi\)
\(308\) −40.9736 −2.33469
\(309\) 0 0
\(310\) 0 0
\(311\) 7.72085 0.437809 0.218905 0.975746i \(-0.429752\pi\)
0.218905 + 0.975746i \(0.429752\pi\)
\(312\) 0 0
\(313\) 6.22393 0.351797 0.175899 0.984408i \(-0.443717\pi\)
0.175899 + 0.984408i \(0.443717\pi\)
\(314\) 5.50117 0.310449
\(315\) 0 0
\(316\) 5.15273 0.289864
\(317\) −31.0672 −1.74491 −0.872454 0.488696i \(-0.837473\pi\)
−0.872454 + 0.488696i \(0.837473\pi\)
\(318\) 0 0
\(319\) 4.88439 0.273473
\(320\) 0 0
\(321\) 0 0
\(322\) −13.8583 −0.772291
\(323\) 20.1288 1.12000
\(324\) 0 0
\(325\) 0 0
\(326\) −5.46011 −0.302407
\(327\) 0 0
\(328\) 5.43381 0.300032
\(329\) −17.4952 −0.964542
\(330\) 0 0
\(331\) 34.8731 1.91680 0.958399 0.285431i \(-0.0921366\pi\)
0.958399 + 0.285431i \(0.0921366\pi\)
\(332\) 23.7627 1.30415
\(333\) 0 0
\(334\) −4.03806 −0.220953
\(335\) 0 0
\(336\) 0 0
\(337\) 16.5875 0.903579 0.451790 0.892124i \(-0.350786\pi\)
0.451790 + 0.892124i \(0.350786\pi\)
\(338\) −4.15200 −0.225839
\(339\) 0 0
\(340\) 0 0
\(341\) −45.1500 −2.44501
\(342\) 0 0
\(343\) −44.6914 −2.41311
\(344\) 8.75811 0.472206
\(345\) 0 0
\(346\) −1.92423 −0.103447
\(347\) 0.413605 0.0222035 0.0111017 0.999938i \(-0.496466\pi\)
0.0111017 + 0.999938i \(0.496466\pi\)
\(348\) 0 0
\(349\) 35.5590 1.90343 0.951715 0.306982i \(-0.0993190\pi\)
0.951715 + 0.306982i \(0.0993190\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 24.8994 1.32714
\(353\) 3.08030 0.163948 0.0819740 0.996634i \(-0.473878\pi\)
0.0819740 + 0.996634i \(0.473878\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.39722 0.339052
\(357\) 0 0
\(358\) 5.27492 0.278788
\(359\) 14.3219 0.755879 0.377940 0.925830i \(-0.376633\pi\)
0.377940 + 0.925830i \(0.376633\pi\)
\(360\) 0 0
\(361\) −9.43924 −0.496802
\(362\) −7.38177 −0.387977
\(363\) 0 0
\(364\) −38.5601 −2.02110
\(365\) 0 0
\(366\) 0 0
\(367\) −17.3009 −0.903102 −0.451551 0.892245i \(-0.649129\pi\)
−0.451551 + 0.892245i \(0.649129\pi\)
\(368\) −14.0804 −0.733990
\(369\) 0 0
\(370\) 0 0
\(371\) 4.66833 0.242368
\(372\) 0 0
\(373\) −31.8314 −1.64817 −0.824083 0.566469i \(-0.808309\pi\)
−0.824083 + 0.566469i \(0.808309\pi\)
\(374\) 16.2396 0.839729
\(375\) 0 0
\(376\) 6.92674 0.357219
\(377\) 4.59669 0.236741
\(378\) 0 0
\(379\) −18.1855 −0.934127 −0.467064 0.884224i \(-0.654688\pi\)
−0.467064 + 0.884224i \(0.654688\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4.50236 0.230361
\(383\) 32.3026 1.65059 0.825293 0.564704i \(-0.191010\pi\)
0.825293 + 0.564704i \(0.191010\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 8.81232 0.448535
\(387\) 0 0
\(388\) −5.00281 −0.253979
\(389\) 26.5696 1.34713 0.673567 0.739126i \(-0.264761\pi\)
0.673567 + 0.739126i \(0.264761\pi\)
\(390\) 0 0
\(391\) −36.6212 −1.85201
\(392\) 31.0622 1.56888
\(393\) 0 0
\(394\) 11.5282 0.580781
\(395\) 0 0
\(396\) 0 0
\(397\) −8.87832 −0.445590 −0.222795 0.974865i \(-0.571518\pi\)
−0.222795 + 0.974865i \(0.571518\pi\)
\(398\) 7.04681 0.353225
\(399\) 0 0
\(400\) 0 0
\(401\) −25.6502 −1.28091 −0.640455 0.767995i \(-0.721254\pi\)
−0.640455 + 0.767995i \(0.721254\pi\)
\(402\) 0 0
\(403\) −42.4906 −2.11661
\(404\) −25.5272 −1.27003
\(405\) 0 0
\(406\) −2.46348 −0.122260
\(407\) −54.3442 −2.69374
\(408\) 0 0
\(409\) 9.92575 0.490797 0.245398 0.969422i \(-0.421081\pi\)
0.245398 + 0.969422i \(0.421081\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.31579 −0.212624
\(413\) −1.44164 −0.0709384
\(414\) 0 0
\(415\) 0 0
\(416\) 23.4327 1.14888
\(417\) 0 0
\(418\) 7.71345 0.377277
\(419\) −8.12620 −0.396991 −0.198495 0.980102i \(-0.563606\pi\)
−0.198495 + 0.980102i \(0.563606\pi\)
\(420\) 0 0
\(421\) −8.37826 −0.408332 −0.204166 0.978936i \(-0.565448\pi\)
−0.204166 + 0.978936i \(0.565448\pi\)
\(422\) −8.41198 −0.409489
\(423\) 0 0
\(424\) −1.84830 −0.0897612
\(425\) 0 0
\(426\) 0 0
\(427\) 3.79559 0.183682
\(428\) 7.79876 0.376967
\(429\) 0 0
\(430\) 0 0
\(431\) 32.3877 1.56006 0.780030 0.625742i \(-0.215204\pi\)
0.780030 + 0.625742i \(0.215204\pi\)
\(432\) 0 0
\(433\) −9.89328 −0.475441 −0.237720 0.971334i \(-0.576400\pi\)
−0.237720 + 0.971334i \(0.576400\pi\)
\(434\) 22.7718 1.09308
\(435\) 0 0
\(436\) −5.70686 −0.273309
\(437\) −17.3943 −0.832081
\(438\) 0 0
\(439\) 5.84726 0.279075 0.139537 0.990217i \(-0.455438\pi\)
0.139537 + 0.990217i \(0.455438\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 15.2830 0.726940
\(443\) 3.14176 0.149270 0.0746348 0.997211i \(-0.476221\pi\)
0.0746348 + 0.997211i \(0.476221\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2.34376 −0.110980
\(447\) 0 0
\(448\) 11.5875 0.547459
\(449\) −27.8643 −1.31500 −0.657500 0.753455i \(-0.728386\pi\)
−0.657500 + 0.753455i \(0.728386\pi\)
\(450\) 0 0
\(451\) −13.8979 −0.654425
\(452\) 31.2734 1.47098
\(453\) 0 0
\(454\) 13.0366 0.611838
\(455\) 0 0
\(456\) 0 0
\(457\) 31.8928 1.49188 0.745940 0.666013i \(-0.232000\pi\)
0.745940 + 0.666013i \(0.232000\pi\)
\(458\) 4.11130 0.192108
\(459\) 0 0
\(460\) 0 0
\(461\) −5.64660 −0.262989 −0.131494 0.991317i \(-0.541978\pi\)
−0.131494 + 0.991317i \(0.541978\pi\)
\(462\) 0 0
\(463\) −32.7602 −1.52250 −0.761248 0.648460i \(-0.775413\pi\)
−0.761248 + 0.648460i \(0.775413\pi\)
\(464\) −2.50296 −0.116197
\(465\) 0 0
\(466\) −1.91985 −0.0889355
\(467\) −37.4129 −1.73126 −0.865632 0.500680i \(-0.833083\pi\)
−0.865632 + 0.500680i \(0.833083\pi\)
\(468\) 0 0
\(469\) 23.4777 1.08410
\(470\) 0 0
\(471\) 0 0
\(472\) 0.570777 0.0262721
\(473\) −22.4003 −1.02997
\(474\) 0 0
\(475\) 0 0
\(476\) 54.6093 2.50301
\(477\) 0 0
\(478\) −1.80387 −0.0825069
\(479\) 13.0770 0.597503 0.298751 0.954331i \(-0.403430\pi\)
0.298751 + 0.954331i \(0.403430\pi\)
\(480\) 0 0
\(481\) −51.1432 −2.33193
\(482\) −1.56055 −0.0710813
\(483\) 0 0
\(484\) −22.3607 −1.01639
\(485\) 0 0
\(486\) 0 0
\(487\) −19.4492 −0.881328 −0.440664 0.897672i \(-0.645257\pi\)
−0.440664 + 0.897672i \(0.645257\pi\)
\(488\) −1.50276 −0.0680268
\(489\) 0 0
\(490\) 0 0
\(491\) −15.8221 −0.714041 −0.357020 0.934097i \(-0.616207\pi\)
−0.357020 + 0.934097i \(0.616207\pi\)
\(492\) 0 0
\(493\) −6.50987 −0.293190
\(494\) 7.25912 0.326603
\(495\) 0 0
\(496\) 23.1367 1.03887
\(497\) 3.57749 0.160472
\(498\) 0 0
\(499\) 4.88592 0.218724 0.109362 0.994002i \(-0.465119\pi\)
0.109362 + 0.994002i \(0.465119\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −11.9145 −0.531769
\(503\) −16.9719 −0.756742 −0.378371 0.925654i \(-0.623516\pi\)
−0.378371 + 0.925654i \(0.623516\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −14.0334 −0.623860
\(507\) 0 0
\(508\) −23.4958 −1.04246
\(509\) 7.53223 0.333860 0.166930 0.985969i \(-0.446615\pi\)
0.166930 + 0.985969i \(0.446615\pi\)
\(510\) 0 0
\(511\) 26.6726 1.17993
\(512\) −22.3193 −0.986383
\(513\) 0 0
\(514\) −14.4163 −0.635876
\(515\) 0 0
\(516\) 0 0
\(517\) −17.7163 −0.779162
\(518\) 27.4089 1.20428
\(519\) 0 0
\(520\) 0 0
\(521\) 0.748655 0.0327992 0.0163996 0.999866i \(-0.494780\pi\)
0.0163996 + 0.999866i \(0.494780\pi\)
\(522\) 0 0
\(523\) −18.3909 −0.804178 −0.402089 0.915601i \(-0.631716\pi\)
−0.402089 + 0.915601i \(0.631716\pi\)
\(524\) 21.1220 0.922719
\(525\) 0 0
\(526\) 14.1313 0.616156
\(527\) 60.1756 2.62129
\(528\) 0 0
\(529\) 8.64609 0.375917
\(530\) 0 0
\(531\) 0 0
\(532\) 25.9382 1.12456
\(533\) −13.0793 −0.566525
\(534\) 0 0
\(535\) 0 0
\(536\) −9.29533 −0.401497
\(537\) 0 0
\(538\) 0.428531 0.0184753
\(539\) −79.4469 −3.42202
\(540\) 0 0
\(541\) 33.4160 1.43667 0.718334 0.695698i \(-0.244905\pi\)
0.718334 + 0.695698i \(0.244905\pi\)
\(542\) −0.650787 −0.0279537
\(543\) 0 0
\(544\) −33.1857 −1.42282
\(545\) 0 0
\(546\) 0 0
\(547\) −3.00020 −0.128279 −0.0641396 0.997941i \(-0.520430\pi\)
−0.0641396 + 0.997941i \(0.520430\pi\)
\(548\) 17.3475 0.741047
\(549\) 0 0
\(550\) 0 0
\(551\) −3.09205 −0.131726
\(552\) 0 0
\(553\) 14.2908 0.607705
\(554\) −13.6563 −0.580201
\(555\) 0 0
\(556\) −4.92131 −0.208710
\(557\) 4.11112 0.174194 0.0870969 0.996200i \(-0.472241\pi\)
0.0870969 + 0.996200i \(0.472241\pi\)
\(558\) 0 0
\(559\) −21.0809 −0.891627
\(560\) 0 0
\(561\) 0 0
\(562\) −8.34771 −0.352127
\(563\) −11.5127 −0.485204 −0.242602 0.970126i \(-0.578001\pi\)
−0.242602 + 0.970126i \(0.578001\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 12.1149 0.509228
\(567\) 0 0
\(568\) −1.41641 −0.0594311
\(569\) −32.9470 −1.38121 −0.690605 0.723232i \(-0.742656\pi\)
−0.690605 + 0.723232i \(0.742656\pi\)
\(570\) 0 0
\(571\) −22.3213 −0.934117 −0.467059 0.884226i \(-0.654686\pi\)
−0.467059 + 0.884226i \(0.654686\pi\)
\(572\) −39.0474 −1.63266
\(573\) 0 0
\(574\) 7.00950 0.292571
\(575\) 0 0
\(576\) 0 0
\(577\) 39.8197 1.65772 0.828859 0.559458i \(-0.188991\pi\)
0.828859 + 0.559458i \(0.188991\pi\)
\(578\) −12.9616 −0.539130
\(579\) 0 0
\(580\) 0 0
\(581\) 65.9042 2.73417
\(582\) 0 0
\(583\) 4.72733 0.195786
\(584\) −10.5603 −0.436988
\(585\) 0 0
\(586\) 4.23159 0.174805
\(587\) −28.7487 −1.18659 −0.593293 0.804987i \(-0.702172\pi\)
−0.593293 + 0.804987i \(0.702172\pi\)
\(588\) 0 0
\(589\) 28.5821 1.17771
\(590\) 0 0
\(591\) 0 0
\(592\) 27.8482 1.14455
\(593\) 27.5400 1.13093 0.565467 0.824771i \(-0.308696\pi\)
0.565467 + 0.824771i \(0.308696\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −39.1999 −1.60569
\(597\) 0 0
\(598\) −13.2068 −0.540066
\(599\) 4.11339 0.168069 0.0840343 0.996463i \(-0.473219\pi\)
0.0840343 + 0.996463i \(0.473219\pi\)
\(600\) 0 0
\(601\) −0.656799 −0.0267914 −0.0133957 0.999910i \(-0.504264\pi\)
−0.0133957 + 0.999910i \(0.504264\pi\)
\(602\) 11.2978 0.460463
\(603\) 0 0
\(604\) 24.7317 1.00632
\(605\) 0 0
\(606\) 0 0
\(607\) 18.4210 0.747684 0.373842 0.927492i \(-0.378040\pi\)
0.373842 + 0.927492i \(0.378040\pi\)
\(608\) −15.7625 −0.639253
\(609\) 0 0
\(610\) 0 0
\(611\) −16.6728 −0.674508
\(612\) 0 0
\(613\) −21.3356 −0.861737 −0.430869 0.902415i \(-0.641793\pi\)
−0.430869 + 0.902415i \(0.641793\pi\)
\(614\) −8.32613 −0.336015
\(615\) 0 0
\(616\) 44.9917 1.81277
\(617\) −23.2463 −0.935861 −0.467931 0.883765i \(-0.655000\pi\)
−0.467931 + 0.883765i \(0.655000\pi\)
\(618\) 0 0
\(619\) −4.11413 −0.165361 −0.0826804 0.996576i \(-0.526348\pi\)
−0.0826804 + 0.996576i \(0.526348\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3.94328 −0.158111
\(623\) 17.7423 0.710830
\(624\) 0 0
\(625\) 0 0
\(626\) −3.17876 −0.127049
\(627\) 0 0
\(628\) 18.7327 0.747515
\(629\) 72.4296 2.88796
\(630\) 0 0
\(631\) −45.7221 −1.82017 −0.910083 0.414426i \(-0.863982\pi\)
−0.910083 + 0.414426i \(0.863982\pi\)
\(632\) −5.65803 −0.225065
\(633\) 0 0
\(634\) 15.8670 0.630159
\(635\) 0 0
\(636\) 0 0
\(637\) −74.7673 −2.96239
\(638\) −2.49461 −0.0987626
\(639\) 0 0
\(640\) 0 0
\(641\) −28.3443 −1.11953 −0.559767 0.828650i \(-0.689109\pi\)
−0.559767 + 0.828650i \(0.689109\pi\)
\(642\) 0 0
\(643\) 17.4545 0.688337 0.344168 0.938908i \(-0.388161\pi\)
0.344168 + 0.938908i \(0.388161\pi\)
\(644\) −47.1904 −1.85956
\(645\) 0 0
\(646\) −10.2804 −0.404478
\(647\) 17.3874 0.683569 0.341784 0.939778i \(-0.388969\pi\)
0.341784 + 0.939778i \(0.388969\pi\)
\(648\) 0 0
\(649\) −1.45986 −0.0573044
\(650\) 0 0
\(651\) 0 0
\(652\) −18.5929 −0.728153
\(653\) −30.2052 −1.18202 −0.591010 0.806664i \(-0.701271\pi\)
−0.591010 + 0.806664i \(0.701271\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7.12184 0.278061
\(657\) 0 0
\(658\) 8.93535 0.348336
\(659\) −26.3659 −1.02707 −0.513535 0.858069i \(-0.671664\pi\)
−0.513535 + 0.858069i \(0.671664\pi\)
\(660\) 0 0
\(661\) 15.8187 0.615274 0.307637 0.951504i \(-0.400462\pi\)
0.307637 + 0.951504i \(0.400462\pi\)
\(662\) −17.8108 −0.692236
\(663\) 0 0
\(664\) −26.0929 −1.01260
\(665\) 0 0
\(666\) 0 0
\(667\) 5.62549 0.217820
\(668\) −13.7505 −0.532023
\(669\) 0 0
\(670\) 0 0
\(671\) 3.84356 0.148379
\(672\) 0 0
\(673\) −43.1070 −1.66165 −0.830827 0.556530i \(-0.812132\pi\)
−0.830827 + 0.556530i \(0.812132\pi\)
\(674\) −8.47177 −0.326320
\(675\) 0 0
\(676\) −14.1385 −0.543788
\(677\) 40.6978 1.56415 0.782073 0.623187i \(-0.214163\pi\)
0.782073 + 0.623187i \(0.214163\pi\)
\(678\) 0 0
\(679\) −13.8750 −0.532472
\(680\) 0 0
\(681\) 0 0
\(682\) 23.0596 0.882996
\(683\) −21.0217 −0.804372 −0.402186 0.915558i \(-0.631750\pi\)
−0.402186 + 0.915558i \(0.631750\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 22.8253 0.871475
\(687\) 0 0
\(688\) 11.4789 0.437627
\(689\) 4.44888 0.169489
\(690\) 0 0
\(691\) 6.98613 0.265765 0.132882 0.991132i \(-0.457577\pi\)
0.132882 + 0.991132i \(0.457577\pi\)
\(692\) −6.55244 −0.249086
\(693\) 0 0
\(694\) −0.211241 −0.00801860
\(695\) 0 0
\(696\) 0 0
\(697\) 18.5230 0.701608
\(698\) −18.1611 −0.687408
\(699\) 0 0
\(700\) 0 0
\(701\) −1.40572 −0.0530934 −0.0265467 0.999648i \(-0.508451\pi\)
−0.0265467 + 0.999648i \(0.508451\pi\)
\(702\) 0 0
\(703\) 34.4025 1.29751
\(704\) 11.7340 0.442240
\(705\) 0 0
\(706\) −1.57321 −0.0592085
\(707\) −70.7981 −2.66264
\(708\) 0 0
\(709\) 1.27110 0.0477372 0.0238686 0.999715i \(-0.492402\pi\)
0.0238686 + 0.999715i \(0.492402\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −7.02457 −0.263257
\(713\) −52.0006 −1.94744
\(714\) 0 0
\(715\) 0 0
\(716\) 17.9623 0.671282
\(717\) 0 0
\(718\) −7.31463 −0.272979
\(719\) −27.8439 −1.03840 −0.519201 0.854652i \(-0.673770\pi\)
−0.519201 + 0.854652i \(0.673770\pi\)
\(720\) 0 0
\(721\) −11.9696 −0.445770
\(722\) 4.82092 0.179416
\(723\) 0 0
\(724\) −25.1365 −0.934192
\(725\) 0 0
\(726\) 0 0
\(727\) 8.97787 0.332971 0.166485 0.986044i \(-0.446758\pi\)
0.166485 + 0.986044i \(0.446758\pi\)
\(728\) 42.3416 1.56928
\(729\) 0 0
\(730\) 0 0
\(731\) 29.8550 1.10423
\(732\) 0 0
\(733\) 34.7466 1.28339 0.641697 0.766958i \(-0.278231\pi\)
0.641697 + 0.766958i \(0.278231\pi\)
\(734\) 8.83614 0.326148
\(735\) 0 0
\(736\) 28.6773 1.05706
\(737\) 23.7744 0.875740
\(738\) 0 0
\(739\) −3.32518 −0.122319 −0.0611594 0.998128i \(-0.519480\pi\)
−0.0611594 + 0.998128i \(0.519480\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.38426 −0.0875291
\(743\) −1.06314 −0.0390029 −0.0195015 0.999810i \(-0.506208\pi\)
−0.0195015 + 0.999810i \(0.506208\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 16.2573 0.595222
\(747\) 0 0
\(748\) 55.2994 2.02195
\(749\) 21.6294 0.790320
\(750\) 0 0
\(751\) −38.7756 −1.41494 −0.707472 0.706742i \(-0.750164\pi\)
−0.707472 + 0.706742i \(0.750164\pi\)
\(752\) 9.07856 0.331061
\(753\) 0 0
\(754\) −2.34767 −0.0854972
\(755\) 0 0
\(756\) 0 0
\(757\) −40.9695 −1.48906 −0.744531 0.667588i \(-0.767327\pi\)
−0.744531 + 0.667588i \(0.767327\pi\)
\(758\) 9.28792 0.337352
\(759\) 0 0
\(760\) 0 0
\(761\) −13.8561 −0.502283 −0.251142 0.967950i \(-0.580806\pi\)
−0.251142 + 0.967950i \(0.580806\pi\)
\(762\) 0 0
\(763\) −15.8276 −0.572998
\(764\) 15.3315 0.554675
\(765\) 0 0
\(766\) −16.4980 −0.596096
\(767\) −1.37387 −0.0496075
\(768\) 0 0
\(769\) −6.73919 −0.243021 −0.121511 0.992590i \(-0.538774\pi\)
−0.121511 + 0.992590i \(0.538774\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 30.0079 1.08001
\(773\) 7.45730 0.268220 0.134110 0.990966i \(-0.457182\pi\)
0.134110 + 0.990966i \(0.457182\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 5.49341 0.197202
\(777\) 0 0
\(778\) −13.5700 −0.486506
\(779\) 8.79801 0.315221
\(780\) 0 0
\(781\) 3.62270 0.129630
\(782\) 18.7036 0.668839
\(783\) 0 0
\(784\) 40.7119 1.45400
\(785\) 0 0
\(786\) 0 0
\(787\) 7.81608 0.278613 0.139307 0.990249i \(-0.455513\pi\)
0.139307 + 0.990249i \(0.455513\pi\)
\(788\) 39.2559 1.39844
\(789\) 0 0
\(790\) 0 0
\(791\) 86.7347 3.08393
\(792\) 0 0
\(793\) 3.61717 0.128449
\(794\) 4.53444 0.160921
\(795\) 0 0
\(796\) 23.9959 0.850514
\(797\) 21.8313 0.773305 0.386653 0.922225i \(-0.373631\pi\)
0.386653 + 0.922225i \(0.373631\pi\)
\(798\) 0 0
\(799\) 23.6121 0.835338
\(800\) 0 0
\(801\) 0 0
\(802\) 13.1004 0.462590
\(803\) 27.0097 0.953152
\(804\) 0 0
\(805\) 0 0
\(806\) 21.7013 0.764396
\(807\) 0 0
\(808\) 28.0305 0.986111
\(809\) −5.71715 −0.201004 −0.100502 0.994937i \(-0.532045\pi\)
−0.100502 + 0.994937i \(0.532045\pi\)
\(810\) 0 0
\(811\) −44.8661 −1.57546 −0.787732 0.616019i \(-0.788745\pi\)
−0.787732 + 0.616019i \(0.788745\pi\)
\(812\) −8.38869 −0.294385
\(813\) 0 0
\(814\) 27.7553 0.972823
\(815\) 0 0
\(816\) 0 0
\(817\) 14.1805 0.496112
\(818\) −5.06939 −0.177247
\(819\) 0 0
\(820\) 0 0
\(821\) −37.3699 −1.30422 −0.652110 0.758125i \(-0.726116\pi\)
−0.652110 + 0.758125i \(0.726116\pi\)
\(822\) 0 0
\(823\) 31.6982 1.10493 0.552464 0.833537i \(-0.313688\pi\)
0.552464 + 0.833537i \(0.313688\pi\)
\(824\) 4.73901 0.165091
\(825\) 0 0
\(826\) 0.736290 0.0256188
\(827\) −14.4089 −0.501046 −0.250523 0.968111i \(-0.580603\pi\)
−0.250523 + 0.968111i \(0.580603\pi\)
\(828\) 0 0
\(829\) −20.6622 −0.717630 −0.358815 0.933409i \(-0.616819\pi\)
−0.358815 + 0.933409i \(0.616819\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 11.0428 0.382840
\(833\) 105.886 3.66874
\(834\) 0 0
\(835\) 0 0
\(836\) 26.2660 0.908429
\(837\) 0 0
\(838\) 4.15031 0.143370
\(839\) −1.64970 −0.0569541 −0.0284771 0.999594i \(-0.509066\pi\)
−0.0284771 + 0.999594i \(0.509066\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 4.27904 0.147466
\(843\) 0 0
\(844\) −28.6447 −0.985990
\(845\) 0 0
\(846\) 0 0
\(847\) −62.0159 −2.13089
\(848\) −2.42248 −0.0831882
\(849\) 0 0
\(850\) 0 0
\(851\) −62.5898 −2.14555
\(852\) 0 0
\(853\) 23.4066 0.801428 0.400714 0.916203i \(-0.368762\pi\)
0.400714 + 0.916203i \(0.368762\pi\)
\(854\) −1.93853 −0.0663351
\(855\) 0 0
\(856\) −8.56355 −0.292696
\(857\) 18.7479 0.640415 0.320207 0.947347i \(-0.396247\pi\)
0.320207 + 0.947347i \(0.396247\pi\)
\(858\) 0 0
\(859\) −29.1326 −0.993990 −0.496995 0.867753i \(-0.665563\pi\)
−0.496995 + 0.867753i \(0.665563\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −16.5414 −0.563403
\(863\) 25.5033 0.868142 0.434071 0.900879i \(-0.357077\pi\)
0.434071 + 0.900879i \(0.357077\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 5.05281 0.171701
\(867\) 0 0
\(868\) 77.5429 2.63198
\(869\) 14.4714 0.490908
\(870\) 0 0
\(871\) 22.3740 0.758114
\(872\) 6.26651 0.212211
\(873\) 0 0
\(874\) 8.88380 0.300499
\(875\) 0 0
\(876\) 0 0
\(877\) −24.3134 −0.821005 −0.410502 0.911860i \(-0.634647\pi\)
−0.410502 + 0.911860i \(0.634647\pi\)
\(878\) −2.98638 −0.100786
\(879\) 0 0
\(880\) 0 0
\(881\) −51.3387 −1.72965 −0.864823 0.502077i \(-0.832569\pi\)
−0.864823 + 0.502077i \(0.832569\pi\)
\(882\) 0 0
\(883\) −17.1764 −0.578033 −0.289016 0.957324i \(-0.593328\pi\)
−0.289016 + 0.957324i \(0.593328\pi\)
\(884\) 52.0421 1.75037
\(885\) 0 0
\(886\) −1.60460 −0.0539075
\(887\) 38.2392 1.28395 0.641974 0.766727i \(-0.278116\pi\)
0.641974 + 0.766727i \(0.278116\pi\)
\(888\) 0 0
\(889\) −65.1641 −2.18553
\(890\) 0 0
\(891\) 0 0
\(892\) −7.98103 −0.267225
\(893\) 11.2153 0.375304
\(894\) 0 0
\(895\) 0 0
\(896\) −55.0954 −1.84061
\(897\) 0 0
\(898\) 14.2312 0.474901
\(899\) −9.24375 −0.308296
\(900\) 0 0
\(901\) −6.30055 −0.209902
\(902\) 7.09808 0.236340
\(903\) 0 0
\(904\) −34.3402 −1.14214
\(905\) 0 0
\(906\) 0 0
\(907\) −9.37007 −0.311128 −0.155564 0.987826i \(-0.549719\pi\)
−0.155564 + 0.987826i \(0.549719\pi\)
\(908\) 44.3925 1.47322
\(909\) 0 0
\(910\) 0 0
\(911\) 10.5220 0.348611 0.174305 0.984692i \(-0.444232\pi\)
0.174305 + 0.984692i \(0.444232\pi\)
\(912\) 0 0
\(913\) 66.7371 2.20867
\(914\) −16.2886 −0.538780
\(915\) 0 0
\(916\) 13.9999 0.462569
\(917\) 58.5805 1.93450
\(918\) 0 0
\(919\) −47.9043 −1.58022 −0.790109 0.612967i \(-0.789976\pi\)
−0.790109 + 0.612967i \(0.789976\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.88390 0.0949762
\(923\) 3.40931 0.112219
\(924\) 0 0
\(925\) 0 0
\(926\) 16.7317 0.549837
\(927\) 0 0
\(928\) 5.09775 0.167342
\(929\) −32.0568 −1.05175 −0.525875 0.850562i \(-0.676262\pi\)
−0.525875 + 0.850562i \(0.676262\pi\)
\(930\) 0 0
\(931\) 50.2937 1.64831
\(932\) −6.53752 −0.214144
\(933\) 0 0
\(934\) 19.1080 0.625232
\(935\) 0 0
\(936\) 0 0
\(937\) −23.8183 −0.778109 −0.389054 0.921215i \(-0.627198\pi\)
−0.389054 + 0.921215i \(0.627198\pi\)
\(938\) −11.9908 −0.391513
\(939\) 0 0
\(940\) 0 0
\(941\) −45.7836 −1.49250 −0.746251 0.665664i \(-0.768148\pi\)
−0.746251 + 0.665664i \(0.768148\pi\)
\(942\) 0 0
\(943\) −16.0066 −0.521246
\(944\) 0.748091 0.0243483
\(945\) 0 0
\(946\) 11.4406 0.371965
\(947\) −4.69130 −0.152447 −0.0762233 0.997091i \(-0.524286\pi\)
−0.0762233 + 0.997091i \(0.524286\pi\)
\(948\) 0 0
\(949\) 25.4188 0.825129
\(950\) 0 0
\(951\) 0 0
\(952\) −59.9645 −1.94346
\(953\) 56.4381 1.82821 0.914104 0.405479i \(-0.132895\pi\)
0.914104 + 0.405479i \(0.132895\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −6.14256 −0.198665
\(957\) 0 0
\(958\) −6.67883 −0.215783
\(959\) 48.1121 1.55362
\(960\) 0 0
\(961\) 54.4469 1.75635
\(962\) 26.1205 0.842158
\(963\) 0 0
\(964\) −5.31403 −0.171153
\(965\) 0 0
\(966\) 0 0
\(967\) 42.2611 1.35902 0.679512 0.733664i \(-0.262192\pi\)
0.679512 + 0.733664i \(0.262192\pi\)
\(968\) 24.5535 0.789179
\(969\) 0 0
\(970\) 0 0
\(971\) −25.6613 −0.823510 −0.411755 0.911295i \(-0.635084\pi\)
−0.411755 + 0.911295i \(0.635084\pi\)
\(972\) 0 0
\(973\) −13.6489 −0.437565
\(974\) 9.93333 0.318284
\(975\) 0 0
\(976\) −1.96960 −0.0630453
\(977\) 7.35242 0.235225 0.117612 0.993060i \(-0.462476\pi\)
0.117612 + 0.993060i \(0.462476\pi\)
\(978\) 0 0
\(979\) 17.9665 0.574212
\(980\) 0 0
\(981\) 0 0
\(982\) 8.08084 0.257870
\(983\) 3.23911 0.103312 0.0516558 0.998665i \(-0.483550\pi\)
0.0516558 + 0.998665i \(0.483550\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3.32480 0.105883
\(987\) 0 0
\(988\) 24.7189 0.786413
\(989\) −25.7991 −0.820364
\(990\) 0 0
\(991\) 3.19230 0.101407 0.0507034 0.998714i \(-0.483854\pi\)
0.0507034 + 0.998714i \(0.483854\pi\)
\(992\) −47.1223 −1.49614
\(993\) 0 0
\(994\) −1.82714 −0.0579532
\(995\) 0 0
\(996\) 0 0
\(997\) 49.0253 1.55265 0.776323 0.630335i \(-0.217083\pi\)
0.776323 + 0.630335i \(0.217083\pi\)
\(998\) −2.49539 −0.0789903
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.by.1.4 8
3.2 odd 2 2175.2.a.bd.1.5 yes 8
5.4 even 2 6525.2.a.bz.1.5 8
15.2 even 4 2175.2.c.p.349.11 16
15.8 even 4 2175.2.c.p.349.6 16
15.14 odd 2 2175.2.a.bc.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.bc.1.4 8 15.14 odd 2
2175.2.a.bd.1.5 yes 8 3.2 odd 2
2175.2.c.p.349.6 16 15.8 even 4
2175.2.c.p.349.11 16 15.2 even 4
6525.2.a.by.1.4 8 1.1 even 1 trivial
6525.2.a.bz.1.5 8 5.4 even 2