Properties

Label 6525.2.a.bx.1.6
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 10x^{5} + 19x^{4} + 24x^{3} - 44x^{2} - 3x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.26695\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.26695 q^{2} +3.13907 q^{4} -0.159887 q^{7} +2.58223 q^{8} +O(q^{10})\) \(q+2.26695 q^{2} +3.13907 q^{4} -0.159887 q^{7} +2.58223 q^{8} +3.24930 q^{11} -7.05679 q^{13} -0.362456 q^{14} -0.424361 q^{16} +7.63808 q^{17} -3.99028 q^{19} +7.36601 q^{22} +2.06402 q^{23} -15.9974 q^{26} -0.501897 q^{28} +1.00000 q^{29} +10.2044 q^{31} -6.12646 q^{32} +17.3152 q^{34} +4.27815 q^{37} -9.04576 q^{38} +5.12330 q^{41} +3.94180 q^{43} +10.1998 q^{44} +4.67903 q^{46} +5.61626 q^{47} -6.97444 q^{49} -22.1518 q^{52} +12.0822 q^{53} -0.412864 q^{56} +2.26695 q^{58} +7.06781 q^{59} +11.4310 q^{61} +23.1329 q^{62} -13.0397 q^{64} +14.9512 q^{67} +23.9765 q^{68} -3.43347 q^{71} +12.0772 q^{73} +9.69836 q^{74} -12.5258 q^{76} -0.519521 q^{77} -12.7441 q^{79} +11.6143 q^{82} -2.59792 q^{83} +8.93586 q^{86} +8.39044 q^{88} -4.33165 q^{89} +1.12829 q^{91} +6.47910 q^{92} +12.7318 q^{94} +3.88355 q^{97} -15.8107 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 10 q^{4} + q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 2 q^{2} + 10 q^{4} + q^{7} + 3 q^{8} - 4 q^{11} + q^{13} - 15 q^{14} + 12 q^{16} + 8 q^{17} + 15 q^{19} - 3 q^{22} + 14 q^{23} - 6 q^{26} + 24 q^{28} + 7 q^{29} + 5 q^{31} + 18 q^{32} + 7 q^{34} + 6 q^{37} - 18 q^{38} - 22 q^{41} + 19 q^{43} - 15 q^{44} - 4 q^{46} + 22 q^{47} + 12 q^{49} - 11 q^{52} + 10 q^{53} - 14 q^{56} + 2 q^{58} - 6 q^{59} + 23 q^{61} + 40 q^{62} + 5 q^{64} + 13 q^{67} - 7 q^{68} - 26 q^{71} + 24 q^{73} + 10 q^{74} + 46 q^{76} + 4 q^{77} + 14 q^{79} - 16 q^{82} + 10 q^{83} - 44 q^{86} + 66 q^{88} - 14 q^{89} + 13 q^{91} + 58 q^{92} - 3 q^{94} + 31 q^{97} - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.26695 1.60298 0.801489 0.598010i \(-0.204042\pi\)
0.801489 + 0.598010i \(0.204042\pi\)
\(3\) 0 0
\(4\) 3.13907 1.56954
\(5\) 0 0
\(6\) 0 0
\(7\) −0.159887 −0.0604316 −0.0302158 0.999543i \(-0.509619\pi\)
−0.0302158 + 0.999543i \(0.509619\pi\)
\(8\) 2.58223 0.912955
\(9\) 0 0
\(10\) 0 0
\(11\) 3.24930 0.979701 0.489851 0.871806i \(-0.337051\pi\)
0.489851 + 0.871806i \(0.337051\pi\)
\(12\) 0 0
\(13\) −7.05679 −1.95720 −0.978600 0.205770i \(-0.934030\pi\)
−0.978600 + 0.205770i \(0.934030\pi\)
\(14\) −0.362456 −0.0968704
\(15\) 0 0
\(16\) −0.424361 −0.106090
\(17\) 7.63808 1.85251 0.926254 0.376901i \(-0.123010\pi\)
0.926254 + 0.376901i \(0.123010\pi\)
\(18\) 0 0
\(19\) −3.99028 −0.915432 −0.457716 0.889098i \(-0.651332\pi\)
−0.457716 + 0.889098i \(0.651332\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.36601 1.57044
\(23\) 2.06402 0.430377 0.215189 0.976572i \(-0.430963\pi\)
0.215189 + 0.976572i \(0.430963\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −15.9974 −3.13735
\(27\) 0 0
\(28\) −0.501897 −0.0948496
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 10.2044 1.83277 0.916383 0.400303i \(-0.131095\pi\)
0.916383 + 0.400303i \(0.131095\pi\)
\(32\) −6.12646 −1.08302
\(33\) 0 0
\(34\) 17.3152 2.96953
\(35\) 0 0
\(36\) 0 0
\(37\) 4.27815 0.703323 0.351662 0.936127i \(-0.385617\pi\)
0.351662 + 0.936127i \(0.385617\pi\)
\(38\) −9.04576 −1.46742
\(39\) 0 0
\(40\) 0 0
\(41\) 5.12330 0.800125 0.400063 0.916488i \(-0.368988\pi\)
0.400063 + 0.916488i \(0.368988\pi\)
\(42\) 0 0
\(43\) 3.94180 0.601118 0.300559 0.953763i \(-0.402827\pi\)
0.300559 + 0.953763i \(0.402827\pi\)
\(44\) 10.1998 1.53768
\(45\) 0 0
\(46\) 4.67903 0.689885
\(47\) 5.61626 0.819215 0.409608 0.912262i \(-0.365666\pi\)
0.409608 + 0.912262i \(0.365666\pi\)
\(48\) 0 0
\(49\) −6.97444 −0.996348
\(50\) 0 0
\(51\) 0 0
\(52\) −22.1518 −3.07190
\(53\) 12.0822 1.65962 0.829808 0.558049i \(-0.188450\pi\)
0.829808 + 0.558049i \(0.188450\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.412864 −0.0551713
\(57\) 0 0
\(58\) 2.26695 0.297665
\(59\) 7.06781 0.920151 0.460075 0.887880i \(-0.347822\pi\)
0.460075 + 0.887880i \(0.347822\pi\)
\(60\) 0 0
\(61\) 11.4310 1.46359 0.731796 0.681524i \(-0.238682\pi\)
0.731796 + 0.681524i \(0.238682\pi\)
\(62\) 23.1329 2.93788
\(63\) 0 0
\(64\) −13.0397 −1.62996
\(65\) 0 0
\(66\) 0 0
\(67\) 14.9512 1.82658 0.913289 0.407311i \(-0.133534\pi\)
0.913289 + 0.407311i \(0.133534\pi\)
\(68\) 23.9765 2.90758
\(69\) 0 0
\(70\) 0 0
\(71\) −3.43347 −0.407478 −0.203739 0.979025i \(-0.565309\pi\)
−0.203739 + 0.979025i \(0.565309\pi\)
\(72\) 0 0
\(73\) 12.0772 1.41353 0.706764 0.707449i \(-0.250154\pi\)
0.706764 + 0.707449i \(0.250154\pi\)
\(74\) 9.69836 1.12741
\(75\) 0 0
\(76\) −12.5258 −1.43680
\(77\) −0.519521 −0.0592049
\(78\) 0 0
\(79\) −12.7441 −1.43383 −0.716913 0.697163i \(-0.754446\pi\)
−0.716913 + 0.697163i \(0.754446\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 11.6143 1.28258
\(83\) −2.59792 −0.285159 −0.142580 0.989783i \(-0.545540\pi\)
−0.142580 + 0.989783i \(0.545540\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.93586 0.963579
\(87\) 0 0
\(88\) 8.39044 0.894423
\(89\) −4.33165 −0.459154 −0.229577 0.973290i \(-0.573734\pi\)
−0.229577 + 0.973290i \(0.573734\pi\)
\(90\) 0 0
\(91\) 1.12829 0.118277
\(92\) 6.47910 0.675493
\(93\) 0 0
\(94\) 12.7318 1.31318
\(95\) 0 0
\(96\) 0 0
\(97\) 3.88355 0.394315 0.197158 0.980372i \(-0.436829\pi\)
0.197158 + 0.980372i \(0.436829\pi\)
\(98\) −15.8107 −1.59712
\(99\) 0 0
\(100\) 0 0
\(101\) −15.4045 −1.53280 −0.766400 0.642363i \(-0.777954\pi\)
−0.766400 + 0.642363i \(0.777954\pi\)
\(102\) 0 0
\(103\) −7.68484 −0.757210 −0.378605 0.925558i \(-0.623596\pi\)
−0.378605 + 0.925558i \(0.623596\pi\)
\(104\) −18.2222 −1.78684
\(105\) 0 0
\(106\) 27.3897 2.66033
\(107\) −4.60924 −0.445592 −0.222796 0.974865i \(-0.571518\pi\)
−0.222796 + 0.974865i \(0.571518\pi\)
\(108\) 0 0
\(109\) −14.4509 −1.38415 −0.692073 0.721827i \(-0.743302\pi\)
−0.692073 + 0.721827i \(0.743302\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.0678498 0.00641120
\(113\) −4.08614 −0.384392 −0.192196 0.981357i \(-0.561561\pi\)
−0.192196 + 0.981357i \(0.561561\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.13907 0.291456
\(117\) 0 0
\(118\) 16.0224 1.47498
\(119\) −1.22123 −0.111950
\(120\) 0 0
\(121\) −0.442038 −0.0401853
\(122\) 25.9136 2.34610
\(123\) 0 0
\(124\) 32.0324 2.87659
\(125\) 0 0
\(126\) 0 0
\(127\) 3.69650 0.328011 0.164006 0.986459i \(-0.447559\pi\)
0.164006 + 0.986459i \(0.447559\pi\)
\(128\) −17.3074 −1.52977
\(129\) 0 0
\(130\) 0 0
\(131\) 9.92811 0.867423 0.433712 0.901052i \(-0.357204\pi\)
0.433712 + 0.901052i \(0.357204\pi\)
\(132\) 0 0
\(133\) 0.637993 0.0553210
\(134\) 33.8936 2.92797
\(135\) 0 0
\(136\) 19.7233 1.69126
\(137\) 3.82810 0.327057 0.163528 0.986539i \(-0.447712\pi\)
0.163528 + 0.986539i \(0.447712\pi\)
\(138\) 0 0
\(139\) −2.06987 −0.175564 −0.0877822 0.996140i \(-0.527978\pi\)
−0.0877822 + 0.996140i \(0.527978\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.78351 −0.653177
\(143\) −22.9296 −1.91747
\(144\) 0 0
\(145\) 0 0
\(146\) 27.3784 2.26585
\(147\) 0 0
\(148\) 13.4294 1.10389
\(149\) 1.46609 0.120107 0.0600536 0.998195i \(-0.480873\pi\)
0.0600536 + 0.998195i \(0.480873\pi\)
\(150\) 0 0
\(151\) −20.1279 −1.63799 −0.818995 0.573801i \(-0.805468\pi\)
−0.818995 + 0.573801i \(0.805468\pi\)
\(152\) −10.3038 −0.835748
\(153\) 0 0
\(154\) −1.17773 −0.0949041
\(155\) 0 0
\(156\) 0 0
\(157\) −7.09106 −0.565928 −0.282964 0.959131i \(-0.591318\pi\)
−0.282964 + 0.959131i \(0.591318\pi\)
\(158\) −28.8903 −2.29839
\(159\) 0 0
\(160\) 0 0
\(161\) −0.330009 −0.0260084
\(162\) 0 0
\(163\) 6.58715 0.515946 0.257973 0.966152i \(-0.416945\pi\)
0.257973 + 0.966152i \(0.416945\pi\)
\(164\) 16.0824 1.25583
\(165\) 0 0
\(166\) −5.88937 −0.457104
\(167\) −10.6638 −0.825192 −0.412596 0.910914i \(-0.635378\pi\)
−0.412596 + 0.910914i \(0.635378\pi\)
\(168\) 0 0
\(169\) 36.7983 2.83063
\(170\) 0 0
\(171\) 0 0
\(172\) 12.3736 0.943477
\(173\) −13.8799 −1.05527 −0.527633 0.849472i \(-0.676920\pi\)
−0.527633 + 0.849472i \(0.676920\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.37888 −0.103937
\(177\) 0 0
\(178\) −9.81965 −0.736014
\(179\) 11.1105 0.830439 0.415219 0.909721i \(-0.363705\pi\)
0.415219 + 0.909721i \(0.363705\pi\)
\(180\) 0 0
\(181\) 10.9453 0.813557 0.406778 0.913527i \(-0.366652\pi\)
0.406778 + 0.913527i \(0.366652\pi\)
\(182\) 2.55777 0.189595
\(183\) 0 0
\(184\) 5.32976 0.392915
\(185\) 0 0
\(186\) 0 0
\(187\) 24.8184 1.81490
\(188\) 17.6298 1.28579
\(189\) 0 0
\(190\) 0 0
\(191\) −18.1472 −1.31309 −0.656544 0.754287i \(-0.727983\pi\)
−0.656544 + 0.754287i \(0.727983\pi\)
\(192\) 0 0
\(193\) 17.3305 1.24747 0.623737 0.781634i \(-0.285614\pi\)
0.623737 + 0.781634i \(0.285614\pi\)
\(194\) 8.80383 0.632078
\(195\) 0 0
\(196\) −21.8933 −1.56381
\(197\) −10.4273 −0.742915 −0.371458 0.928450i \(-0.621142\pi\)
−0.371458 + 0.928450i \(0.621142\pi\)
\(198\) 0 0
\(199\) 11.5570 0.819256 0.409628 0.912253i \(-0.365659\pi\)
0.409628 + 0.912253i \(0.365659\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −34.9212 −2.45704
\(203\) −0.159887 −0.0112219
\(204\) 0 0
\(205\) 0 0
\(206\) −17.4212 −1.21379
\(207\) 0 0
\(208\) 2.99463 0.207640
\(209\) −12.9656 −0.896850
\(210\) 0 0
\(211\) −21.1616 −1.45682 −0.728412 0.685140i \(-0.759741\pi\)
−0.728412 + 0.685140i \(0.759741\pi\)
\(212\) 37.9269 2.60483
\(213\) 0 0
\(214\) −10.4489 −0.714274
\(215\) 0 0
\(216\) 0 0
\(217\) −1.63155 −0.110757
\(218\) −32.7595 −2.21876
\(219\) 0 0
\(220\) 0 0
\(221\) −53.9003 −3.62573
\(222\) 0 0
\(223\) −9.46925 −0.634108 −0.317054 0.948408i \(-0.602694\pi\)
−0.317054 + 0.948408i \(0.602694\pi\)
\(224\) 0.979541 0.0654483
\(225\) 0 0
\(226\) −9.26310 −0.616172
\(227\) 22.4030 1.48694 0.743471 0.668768i \(-0.233178\pi\)
0.743471 + 0.668768i \(0.233178\pi\)
\(228\) 0 0
\(229\) 2.03117 0.134223 0.0671117 0.997745i \(-0.478622\pi\)
0.0671117 + 0.997745i \(0.478622\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.58223 0.169532
\(233\) 11.0704 0.725249 0.362624 0.931935i \(-0.381881\pi\)
0.362624 + 0.931935i \(0.381881\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 22.1864 1.44421
\(237\) 0 0
\(238\) −2.76847 −0.179453
\(239\) 2.24098 0.144957 0.0724786 0.997370i \(-0.476909\pi\)
0.0724786 + 0.997370i \(0.476909\pi\)
\(240\) 0 0
\(241\) 14.4838 0.932986 0.466493 0.884525i \(-0.345517\pi\)
0.466493 + 0.884525i \(0.345517\pi\)
\(242\) −1.00208 −0.0644161
\(243\) 0 0
\(244\) 35.8828 2.29716
\(245\) 0 0
\(246\) 0 0
\(247\) 28.1585 1.79168
\(248\) 26.3501 1.67323
\(249\) 0 0
\(250\) 0 0
\(251\) 16.2044 1.02281 0.511407 0.859339i \(-0.329125\pi\)
0.511407 + 0.859339i \(0.329125\pi\)
\(252\) 0 0
\(253\) 6.70661 0.421641
\(254\) 8.37978 0.525794
\(255\) 0 0
\(256\) −13.1557 −0.822232
\(257\) −3.36942 −0.210178 −0.105089 0.994463i \(-0.533513\pi\)
−0.105089 + 0.994463i \(0.533513\pi\)
\(258\) 0 0
\(259\) −0.684020 −0.0425029
\(260\) 0 0
\(261\) 0 0
\(262\) 22.5066 1.39046
\(263\) 1.79671 0.110790 0.0553950 0.998465i \(-0.482358\pi\)
0.0553950 + 0.998465i \(0.482358\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.44630 0.0886783
\(267\) 0 0
\(268\) 46.9329 2.86688
\(269\) 0.117055 0.00713699 0.00356849 0.999994i \(-0.498864\pi\)
0.00356849 + 0.999994i \(0.498864\pi\)
\(270\) 0 0
\(271\) −4.06294 −0.246806 −0.123403 0.992357i \(-0.539381\pi\)
−0.123403 + 0.992357i \(0.539381\pi\)
\(272\) −3.24131 −0.196533
\(273\) 0 0
\(274\) 8.67813 0.524265
\(275\) 0 0
\(276\) 0 0
\(277\) 12.5436 0.753674 0.376837 0.926279i \(-0.377012\pi\)
0.376837 + 0.926279i \(0.377012\pi\)
\(278\) −4.69231 −0.281426
\(279\) 0 0
\(280\) 0 0
\(281\) 2.83163 0.168921 0.0844605 0.996427i \(-0.473083\pi\)
0.0844605 + 0.996427i \(0.473083\pi\)
\(282\) 0 0
\(283\) −28.2249 −1.67780 −0.838898 0.544288i \(-0.816800\pi\)
−0.838898 + 0.544288i \(0.816800\pi\)
\(284\) −10.7779 −0.639551
\(285\) 0 0
\(286\) −51.9804 −3.07366
\(287\) −0.819148 −0.0483528
\(288\) 0 0
\(289\) 41.3403 2.43178
\(290\) 0 0
\(291\) 0 0
\(292\) 37.9112 2.21859
\(293\) 21.9337 1.28138 0.640691 0.767799i \(-0.278648\pi\)
0.640691 + 0.767799i \(0.278648\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 11.0472 0.642103
\(297\) 0 0
\(298\) 3.32357 0.192529
\(299\) −14.5653 −0.842335
\(300\) 0 0
\(301\) −0.630241 −0.0363265
\(302\) −45.6291 −2.62566
\(303\) 0 0
\(304\) 1.69332 0.0971185
\(305\) 0 0
\(306\) 0 0
\(307\) 0.461574 0.0263434 0.0131717 0.999913i \(-0.495807\pi\)
0.0131717 + 0.999913i \(0.495807\pi\)
\(308\) −1.63081 −0.0929243
\(309\) 0 0
\(310\) 0 0
\(311\) −27.5507 −1.56226 −0.781128 0.624371i \(-0.785355\pi\)
−0.781128 + 0.624371i \(0.785355\pi\)
\(312\) 0 0
\(313\) −14.9121 −0.842882 −0.421441 0.906856i \(-0.638476\pi\)
−0.421441 + 0.906856i \(0.638476\pi\)
\(314\) −16.0751 −0.907170
\(315\) 0 0
\(316\) −40.0048 −2.25044
\(317\) −22.9266 −1.28769 −0.643843 0.765157i \(-0.722661\pi\)
−0.643843 + 0.765157i \(0.722661\pi\)
\(318\) 0 0
\(319\) 3.24930 0.181926
\(320\) 0 0
\(321\) 0 0
\(322\) −0.748115 −0.0416908
\(323\) −30.4781 −1.69584
\(324\) 0 0
\(325\) 0 0
\(326\) 14.9328 0.827049
\(327\) 0 0
\(328\) 13.2295 0.730478
\(329\) −0.897966 −0.0495065
\(330\) 0 0
\(331\) −3.23147 −0.177618 −0.0888088 0.996049i \(-0.528306\pi\)
−0.0888088 + 0.996049i \(0.528306\pi\)
\(332\) −8.15507 −0.447568
\(333\) 0 0
\(334\) −24.1744 −1.32277
\(335\) 0 0
\(336\) 0 0
\(337\) −28.8026 −1.56898 −0.784489 0.620143i \(-0.787075\pi\)
−0.784489 + 0.620143i \(0.787075\pi\)
\(338\) 83.4199 4.53744
\(339\) 0 0
\(340\) 0 0
\(341\) 33.1572 1.79556
\(342\) 0 0
\(343\) 2.23433 0.120642
\(344\) 10.1786 0.548794
\(345\) 0 0
\(346\) −31.4650 −1.69157
\(347\) −16.4175 −0.881337 −0.440669 0.897670i \(-0.645259\pi\)
−0.440669 + 0.897670i \(0.645259\pi\)
\(348\) 0 0
\(349\) −18.2107 −0.974796 −0.487398 0.873180i \(-0.662054\pi\)
−0.487398 + 0.873180i \(0.662054\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −19.9067 −1.06103
\(353\) −18.8790 −1.00483 −0.502414 0.864627i \(-0.667555\pi\)
−0.502414 + 0.864627i \(0.667555\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −13.5974 −0.720660
\(357\) 0 0
\(358\) 25.1870 1.33117
\(359\) −14.4500 −0.762640 −0.381320 0.924443i \(-0.624530\pi\)
−0.381320 + 0.924443i \(0.624530\pi\)
\(360\) 0 0
\(361\) −3.07770 −0.161984
\(362\) 24.8125 1.30411
\(363\) 0 0
\(364\) 3.54178 0.185640
\(365\) 0 0
\(366\) 0 0
\(367\) 21.1171 1.10231 0.551153 0.834404i \(-0.314188\pi\)
0.551153 + 0.834404i \(0.314188\pi\)
\(368\) −0.875889 −0.0456589
\(369\) 0 0
\(370\) 0 0
\(371\) −1.93178 −0.100293
\(372\) 0 0
\(373\) 17.1185 0.886361 0.443181 0.896432i \(-0.353850\pi\)
0.443181 + 0.896432i \(0.353850\pi\)
\(374\) 56.2622 2.90925
\(375\) 0 0
\(376\) 14.5025 0.747907
\(377\) −7.05679 −0.363443
\(378\) 0 0
\(379\) −0.206688 −0.0106169 −0.00530844 0.999986i \(-0.501690\pi\)
−0.00530844 + 0.999986i \(0.501690\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −41.1389 −2.10485
\(383\) 16.3701 0.836474 0.418237 0.908338i \(-0.362648\pi\)
0.418237 + 0.908338i \(0.362648\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 39.2873 1.99967
\(387\) 0 0
\(388\) 12.1908 0.618892
\(389\) −11.7627 −0.596393 −0.298197 0.954504i \(-0.596385\pi\)
−0.298197 + 0.954504i \(0.596385\pi\)
\(390\) 0 0
\(391\) 15.7651 0.797277
\(392\) −18.0096 −0.909621
\(393\) 0 0
\(394\) −23.6382 −1.19088
\(395\) 0 0
\(396\) 0 0
\(397\) 4.96134 0.249002 0.124501 0.992219i \(-0.460267\pi\)
0.124501 + 0.992219i \(0.460267\pi\)
\(398\) 26.1992 1.31325
\(399\) 0 0
\(400\) 0 0
\(401\) −36.1967 −1.80758 −0.903789 0.427979i \(-0.859226\pi\)
−0.903789 + 0.427979i \(0.859226\pi\)
\(402\) 0 0
\(403\) −72.0103 −3.58709
\(404\) −48.3557 −2.40579
\(405\) 0 0
\(406\) −0.362456 −0.0179884
\(407\) 13.9010 0.689047
\(408\) 0 0
\(409\) −16.1607 −0.799094 −0.399547 0.916713i \(-0.630832\pi\)
−0.399547 + 0.916713i \(0.630832\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −24.1233 −1.18847
\(413\) −1.13005 −0.0556061
\(414\) 0 0
\(415\) 0 0
\(416\) 43.2331 2.11968
\(417\) 0 0
\(418\) −29.3924 −1.43763
\(419\) 33.5544 1.63924 0.819621 0.572906i \(-0.194184\pi\)
0.819621 + 0.572906i \(0.194184\pi\)
\(420\) 0 0
\(421\) 26.9847 1.31515 0.657577 0.753388i \(-0.271582\pi\)
0.657577 + 0.753388i \(0.271582\pi\)
\(422\) −47.9723 −2.33526
\(423\) 0 0
\(424\) 31.1990 1.51515
\(425\) 0 0
\(426\) 0 0
\(427\) −1.82767 −0.0884471
\(428\) −14.4687 −0.699373
\(429\) 0 0
\(430\) 0 0
\(431\) −0.832366 −0.0400937 −0.0200468 0.999799i \(-0.506382\pi\)
−0.0200468 + 0.999799i \(0.506382\pi\)
\(432\) 0 0
\(433\) 22.5647 1.08439 0.542195 0.840253i \(-0.317593\pi\)
0.542195 + 0.840253i \(0.317593\pi\)
\(434\) −3.69865 −0.177541
\(435\) 0 0
\(436\) −45.3625 −2.17247
\(437\) −8.23600 −0.393981
\(438\) 0 0
\(439\) 23.9583 1.14347 0.571734 0.820439i \(-0.306271\pi\)
0.571734 + 0.820439i \(0.306271\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −122.190 −5.81196
\(443\) 17.4925 0.831092 0.415546 0.909572i \(-0.363591\pi\)
0.415546 + 0.909572i \(0.363591\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −21.4663 −1.01646
\(447\) 0 0
\(448\) 2.08487 0.0985010
\(449\) −4.22200 −0.199249 −0.0996243 0.995025i \(-0.531764\pi\)
−0.0996243 + 0.995025i \(0.531764\pi\)
\(450\) 0 0
\(451\) 16.6471 0.783884
\(452\) −12.8267 −0.603318
\(453\) 0 0
\(454\) 50.7866 2.38353
\(455\) 0 0
\(456\) 0 0
\(457\) 1.28562 0.0601389 0.0300694 0.999548i \(-0.490427\pi\)
0.0300694 + 0.999548i \(0.490427\pi\)
\(458\) 4.60456 0.215157
\(459\) 0 0
\(460\) 0 0
\(461\) 23.8534 1.11097 0.555483 0.831528i \(-0.312534\pi\)
0.555483 + 0.831528i \(0.312534\pi\)
\(462\) 0 0
\(463\) −14.1402 −0.657152 −0.328576 0.944478i \(-0.606569\pi\)
−0.328576 + 0.944478i \(0.606569\pi\)
\(464\) −0.424361 −0.0197005
\(465\) 0 0
\(466\) 25.0962 1.16256
\(467\) 7.06487 0.326923 0.163462 0.986550i \(-0.447734\pi\)
0.163462 + 0.986550i \(0.447734\pi\)
\(468\) 0 0
\(469\) −2.39050 −0.110383
\(470\) 0 0
\(471\) 0 0
\(472\) 18.2507 0.840056
\(473\) 12.8081 0.588916
\(474\) 0 0
\(475\) 0 0
\(476\) −3.83353 −0.175710
\(477\) 0 0
\(478\) 5.08020 0.232363
\(479\) −22.9561 −1.04889 −0.524444 0.851445i \(-0.675727\pi\)
−0.524444 + 0.851445i \(0.675727\pi\)
\(480\) 0 0
\(481\) −30.1900 −1.37654
\(482\) 32.8342 1.49556
\(483\) 0 0
\(484\) −1.38759 −0.0630723
\(485\) 0 0
\(486\) 0 0
\(487\) 27.0319 1.22493 0.612467 0.790496i \(-0.290177\pi\)
0.612467 + 0.790496i \(0.290177\pi\)
\(488\) 29.5175 1.33619
\(489\) 0 0
\(490\) 0 0
\(491\) 11.5498 0.521235 0.260617 0.965442i \(-0.416074\pi\)
0.260617 + 0.965442i \(0.416074\pi\)
\(492\) 0 0
\(493\) 7.63808 0.344002
\(494\) 63.8340 2.87203
\(495\) 0 0
\(496\) −4.33036 −0.194439
\(497\) 0.548966 0.0246245
\(498\) 0 0
\(499\) 3.77942 0.169190 0.0845950 0.996415i \(-0.473040\pi\)
0.0845950 + 0.996415i \(0.473040\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 36.7346 1.63955
\(503\) −14.7684 −0.658489 −0.329244 0.944245i \(-0.606794\pi\)
−0.329244 + 0.944245i \(0.606794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 15.2036 0.675881
\(507\) 0 0
\(508\) 11.6036 0.514826
\(509\) 42.4182 1.88015 0.940077 0.340962i \(-0.110753\pi\)
0.940077 + 0.340962i \(0.110753\pi\)
\(510\) 0 0
\(511\) −1.93098 −0.0854217
\(512\) 4.79143 0.211753
\(513\) 0 0
\(514\) −7.63831 −0.336911
\(515\) 0 0
\(516\) 0 0
\(517\) 18.2489 0.802586
\(518\) −1.55064 −0.0681312
\(519\) 0 0
\(520\) 0 0
\(521\) −20.3409 −0.891152 −0.445576 0.895244i \(-0.647001\pi\)
−0.445576 + 0.895244i \(0.647001\pi\)
\(522\) 0 0
\(523\) −1.52190 −0.0665481 −0.0332740 0.999446i \(-0.510593\pi\)
−0.0332740 + 0.999446i \(0.510593\pi\)
\(524\) 31.1651 1.36145
\(525\) 0 0
\(526\) 4.07306 0.177594
\(527\) 77.9421 3.39521
\(528\) 0 0
\(529\) −18.7398 −0.814775
\(530\) 0 0
\(531\) 0 0
\(532\) 2.00271 0.0868283
\(533\) −36.1540 −1.56601
\(534\) 0 0
\(535\) 0 0
\(536\) 38.6074 1.66758
\(537\) 0 0
\(538\) 0.265359 0.0114404
\(539\) −22.6620 −0.976123
\(540\) 0 0
\(541\) −9.40679 −0.404430 −0.202215 0.979341i \(-0.564814\pi\)
−0.202215 + 0.979341i \(0.564814\pi\)
\(542\) −9.21049 −0.395624
\(543\) 0 0
\(544\) −46.7944 −2.00629
\(545\) 0 0
\(546\) 0 0
\(547\) −19.7232 −0.843304 −0.421652 0.906758i \(-0.638550\pi\)
−0.421652 + 0.906758i \(0.638550\pi\)
\(548\) 12.0167 0.513328
\(549\) 0 0
\(550\) 0 0
\(551\) −3.99028 −0.169991
\(552\) 0 0
\(553\) 2.03762 0.0866483
\(554\) 28.4358 1.20812
\(555\) 0 0
\(556\) −6.49749 −0.275555
\(557\) 9.01986 0.382184 0.191092 0.981572i \(-0.438797\pi\)
0.191092 + 0.981572i \(0.438797\pi\)
\(558\) 0 0
\(559\) −27.8164 −1.17651
\(560\) 0 0
\(561\) 0 0
\(562\) 6.41918 0.270777
\(563\) 17.5283 0.738728 0.369364 0.929285i \(-0.379576\pi\)
0.369364 + 0.929285i \(0.379576\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −63.9845 −2.68947
\(567\) 0 0
\(568\) −8.86599 −0.372009
\(569\) −32.3981 −1.35820 −0.679099 0.734046i \(-0.737629\pi\)
−0.679099 + 0.734046i \(0.737629\pi\)
\(570\) 0 0
\(571\) −11.8393 −0.495458 −0.247729 0.968829i \(-0.579684\pi\)
−0.247729 + 0.968829i \(0.579684\pi\)
\(572\) −71.9778 −3.00954
\(573\) 0 0
\(574\) −1.85697 −0.0775085
\(575\) 0 0
\(576\) 0 0
\(577\) 0.192778 0.00802545 0.00401273 0.999992i \(-0.498723\pi\)
0.00401273 + 0.999992i \(0.498723\pi\)
\(578\) 93.7165 3.89809
\(579\) 0 0
\(580\) 0 0
\(581\) 0.415374 0.0172326
\(582\) 0 0
\(583\) 39.2587 1.62593
\(584\) 31.1861 1.29049
\(585\) 0 0
\(586\) 49.7227 2.05403
\(587\) 34.5089 1.42433 0.712167 0.702010i \(-0.247714\pi\)
0.712167 + 0.702010i \(0.247714\pi\)
\(588\) 0 0
\(589\) −40.7184 −1.67777
\(590\) 0 0
\(591\) 0 0
\(592\) −1.81548 −0.0746158
\(593\) 2.42748 0.0996846 0.0498423 0.998757i \(-0.484128\pi\)
0.0498423 + 0.998757i \(0.484128\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.60218 0.188513
\(597\) 0 0
\(598\) −33.0189 −1.35024
\(599\) −29.3312 −1.19844 −0.599220 0.800585i \(-0.704522\pi\)
−0.599220 + 0.800585i \(0.704522\pi\)
\(600\) 0 0
\(601\) 29.5631 1.20590 0.602952 0.797778i \(-0.293991\pi\)
0.602952 + 0.797778i \(0.293991\pi\)
\(602\) −1.42873 −0.0582306
\(603\) 0 0
\(604\) −63.1831 −2.57089
\(605\) 0 0
\(606\) 0 0
\(607\) −33.1756 −1.34656 −0.673278 0.739390i \(-0.735114\pi\)
−0.673278 + 0.739390i \(0.735114\pi\)
\(608\) 24.4463 0.991427
\(609\) 0 0
\(610\) 0 0
\(611\) −39.6327 −1.60337
\(612\) 0 0
\(613\) 13.9979 0.565371 0.282686 0.959213i \(-0.408775\pi\)
0.282686 + 0.959213i \(0.408775\pi\)
\(614\) 1.04637 0.0422279
\(615\) 0 0
\(616\) −1.34152 −0.0540514
\(617\) −29.9344 −1.20511 −0.602556 0.798077i \(-0.705851\pi\)
−0.602556 + 0.798077i \(0.705851\pi\)
\(618\) 0 0
\(619\) −14.9032 −0.599009 −0.299505 0.954095i \(-0.596821\pi\)
−0.299505 + 0.954095i \(0.596821\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −62.4561 −2.50426
\(623\) 0.692574 0.0277474
\(624\) 0 0
\(625\) 0 0
\(626\) −33.8050 −1.35112
\(627\) 0 0
\(628\) −22.2594 −0.888245
\(629\) 32.6769 1.30291
\(630\) 0 0
\(631\) −28.8643 −1.14907 −0.574534 0.818480i \(-0.694817\pi\)
−0.574534 + 0.818480i \(0.694817\pi\)
\(632\) −32.9082 −1.30902
\(633\) 0 0
\(634\) −51.9735 −2.06413
\(635\) 0 0
\(636\) 0 0
\(637\) 49.2171 1.95005
\(638\) 7.36601 0.291623
\(639\) 0 0
\(640\) 0 0
\(641\) −44.0167 −1.73856 −0.869278 0.494324i \(-0.835415\pi\)
−0.869278 + 0.494324i \(0.835415\pi\)
\(642\) 0 0
\(643\) 29.6239 1.16825 0.584125 0.811663i \(-0.301438\pi\)
0.584125 + 0.811663i \(0.301438\pi\)
\(644\) −1.03592 −0.0408211
\(645\) 0 0
\(646\) −69.0923 −2.71840
\(647\) −39.3943 −1.54875 −0.774375 0.632727i \(-0.781936\pi\)
−0.774375 + 0.632727i \(0.781936\pi\)
\(648\) 0 0
\(649\) 22.9654 0.901473
\(650\) 0 0
\(651\) 0 0
\(652\) 20.6776 0.809796
\(653\) 22.3518 0.874692 0.437346 0.899293i \(-0.355918\pi\)
0.437346 + 0.899293i \(0.355918\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.17413 −0.0848855
\(657\) 0 0
\(658\) −2.03565 −0.0793577
\(659\) −42.1979 −1.64380 −0.821898 0.569634i \(-0.807085\pi\)
−0.821898 + 0.569634i \(0.807085\pi\)
\(660\) 0 0
\(661\) 8.38035 0.325958 0.162979 0.986630i \(-0.447890\pi\)
0.162979 + 0.986630i \(0.447890\pi\)
\(662\) −7.32559 −0.284717
\(663\) 0 0
\(664\) −6.70843 −0.260337
\(665\) 0 0
\(666\) 0 0
\(667\) 2.06402 0.0799191
\(668\) −33.4746 −1.29517
\(669\) 0 0
\(670\) 0 0
\(671\) 37.1428 1.43388
\(672\) 0 0
\(673\) 3.13725 0.120932 0.0604660 0.998170i \(-0.480741\pi\)
0.0604660 + 0.998170i \(0.480741\pi\)
\(674\) −65.2941 −2.51504
\(675\) 0 0
\(676\) 115.512 4.44279
\(677\) 16.2776 0.625600 0.312800 0.949819i \(-0.398733\pi\)
0.312800 + 0.949819i \(0.398733\pi\)
\(678\) 0 0
\(679\) −0.620929 −0.0238291
\(680\) 0 0
\(681\) 0 0
\(682\) 75.1658 2.87825
\(683\) −1.78249 −0.0682050 −0.0341025 0.999418i \(-0.510857\pi\)
−0.0341025 + 0.999418i \(0.510857\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.06512 0.193387
\(687\) 0 0
\(688\) −1.67275 −0.0637728
\(689\) −85.2614 −3.24820
\(690\) 0 0
\(691\) −20.8504 −0.793187 −0.396594 0.917994i \(-0.629808\pi\)
−0.396594 + 0.917994i \(0.629808\pi\)
\(692\) −43.5699 −1.65628
\(693\) 0 0
\(694\) −37.2177 −1.41276
\(695\) 0 0
\(696\) 0 0
\(697\) 39.1322 1.48224
\(698\) −41.2828 −1.56258
\(699\) 0 0
\(700\) 0 0
\(701\) −32.5504 −1.22941 −0.614707 0.788756i \(-0.710726\pi\)
−0.614707 + 0.788756i \(0.710726\pi\)
\(702\) 0 0
\(703\) −17.0710 −0.643845
\(704\) −42.3698 −1.59687
\(705\) 0 0
\(706\) −42.7978 −1.61072
\(707\) 2.46297 0.0926295
\(708\) 0 0
\(709\) 5.93195 0.222779 0.111390 0.993777i \(-0.464470\pi\)
0.111390 + 0.993777i \(0.464470\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.1853 −0.419187
\(713\) 21.0621 0.788781
\(714\) 0 0
\(715\) 0 0
\(716\) 34.8767 1.30340
\(717\) 0 0
\(718\) −32.7574 −1.22250
\(719\) 13.5279 0.504505 0.252252 0.967661i \(-0.418829\pi\)
0.252252 + 0.967661i \(0.418829\pi\)
\(720\) 0 0
\(721\) 1.22871 0.0457594
\(722\) −6.97701 −0.259657
\(723\) 0 0
\(724\) 34.3581 1.27691
\(725\) 0 0
\(726\) 0 0
\(727\) 12.7407 0.472525 0.236263 0.971689i \(-0.424077\pi\)
0.236263 + 0.971689i \(0.424077\pi\)
\(728\) 2.91350 0.107981
\(729\) 0 0
\(730\) 0 0
\(731\) 30.1078 1.11358
\(732\) 0 0
\(733\) −30.9422 −1.14288 −0.571438 0.820645i \(-0.693614\pi\)
−0.571438 + 0.820645i \(0.693614\pi\)
\(734\) 47.8716 1.76697
\(735\) 0 0
\(736\) −12.6451 −0.466105
\(737\) 48.5809 1.78950
\(738\) 0 0
\(739\) 35.0047 1.28767 0.643834 0.765166i \(-0.277343\pi\)
0.643834 + 0.765166i \(0.277343\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −4.37926 −0.160768
\(743\) −12.5515 −0.460468 −0.230234 0.973135i \(-0.573949\pi\)
−0.230234 + 0.973135i \(0.573949\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 38.8068 1.42082
\(747\) 0 0
\(748\) 77.9069 2.84856
\(749\) 0.736956 0.0269278
\(750\) 0 0
\(751\) −33.8278 −1.23439 −0.617197 0.786809i \(-0.711732\pi\)
−0.617197 + 0.786809i \(0.711732\pi\)
\(752\) −2.38332 −0.0869108
\(753\) 0 0
\(754\) −15.9974 −0.582591
\(755\) 0 0
\(756\) 0 0
\(757\) 6.60568 0.240088 0.120044 0.992769i \(-0.461697\pi\)
0.120044 + 0.992769i \(0.461697\pi\)
\(758\) −0.468553 −0.0170186
\(759\) 0 0
\(760\) 0 0
\(761\) 22.8638 0.828814 0.414407 0.910092i \(-0.363989\pi\)
0.414407 + 0.910092i \(0.363989\pi\)
\(762\) 0 0
\(763\) 2.31051 0.0836461
\(764\) −56.9656 −2.06094
\(765\) 0 0
\(766\) 37.1103 1.34085
\(767\) −49.8760 −1.80092
\(768\) 0 0
\(769\) −35.0078 −1.26241 −0.631206 0.775615i \(-0.717440\pi\)
−0.631206 + 0.775615i \(0.717440\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 54.4016 1.95796
\(773\) 17.7019 0.636691 0.318346 0.947975i \(-0.396873\pi\)
0.318346 + 0.947975i \(0.396873\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.0282 0.359992
\(777\) 0 0
\(778\) −26.6655 −0.956005
\(779\) −20.4434 −0.732460
\(780\) 0 0
\(781\) −11.1564 −0.399206
\(782\) 35.7388 1.27802
\(783\) 0 0
\(784\) 2.95968 0.105703
\(785\) 0 0
\(786\) 0 0
\(787\) −5.13176 −0.182928 −0.0914638 0.995808i \(-0.529155\pi\)
−0.0914638 + 0.995808i \(0.529155\pi\)
\(788\) −32.7321 −1.16603
\(789\) 0 0
\(790\) 0 0
\(791\) 0.653321 0.0232294
\(792\) 0 0
\(793\) −80.6662 −2.86454
\(794\) 11.2471 0.399145
\(795\) 0 0
\(796\) 36.2783 1.28585
\(797\) 27.5492 0.975842 0.487921 0.872888i \(-0.337755\pi\)
0.487921 + 0.872888i \(0.337755\pi\)
\(798\) 0 0
\(799\) 42.8974 1.51760
\(800\) 0 0
\(801\) 0 0
\(802\) −82.0562 −2.89751
\(803\) 39.2424 1.38484
\(804\) 0 0
\(805\) 0 0
\(806\) −163.244 −5.75002
\(807\) 0 0
\(808\) −39.7778 −1.39938
\(809\) 5.51555 0.193917 0.0969583 0.995288i \(-0.469089\pi\)
0.0969583 + 0.995288i \(0.469089\pi\)
\(810\) 0 0
\(811\) −17.1711 −0.602959 −0.301479 0.953473i \(-0.597480\pi\)
−0.301479 + 0.953473i \(0.597480\pi\)
\(812\) −0.501897 −0.0176131
\(813\) 0 0
\(814\) 31.5129 1.10453
\(815\) 0 0
\(816\) 0 0
\(817\) −15.7288 −0.550283
\(818\) −36.6355 −1.28093
\(819\) 0 0
\(820\) 0 0
\(821\) −6.53740 −0.228157 −0.114078 0.993472i \(-0.536391\pi\)
−0.114078 + 0.993472i \(0.536391\pi\)
\(822\) 0 0
\(823\) 35.8588 1.24996 0.624979 0.780641i \(-0.285107\pi\)
0.624979 + 0.780641i \(0.285107\pi\)
\(824\) −19.8440 −0.691299
\(825\) 0 0
\(826\) −2.56177 −0.0891354
\(827\) −2.36177 −0.0821269 −0.0410635 0.999157i \(-0.513075\pi\)
−0.0410635 + 0.999157i \(0.513075\pi\)
\(828\) 0 0
\(829\) 54.0332 1.87665 0.938325 0.345754i \(-0.112377\pi\)
0.938325 + 0.345754i \(0.112377\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 92.0182 3.19016
\(833\) −53.2713 −1.84574
\(834\) 0 0
\(835\) 0 0
\(836\) −40.7000 −1.40764
\(837\) 0 0
\(838\) 76.0663 2.62767
\(839\) −27.6639 −0.955063 −0.477532 0.878615i \(-0.658468\pi\)
−0.477532 + 0.878615i \(0.658468\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 61.1730 2.10816
\(843\) 0 0
\(844\) −66.4278 −2.28654
\(845\) 0 0
\(846\) 0 0
\(847\) 0.0706761 0.00242846
\(848\) −5.12721 −0.176069
\(849\) 0 0
\(850\) 0 0
\(851\) 8.83017 0.302694
\(852\) 0 0
\(853\) −16.7180 −0.572413 −0.286207 0.958168i \(-0.592394\pi\)
−0.286207 + 0.958168i \(0.592394\pi\)
\(854\) −4.14324 −0.141779
\(855\) 0 0
\(856\) −11.9021 −0.406805
\(857\) −50.6304 −1.72950 −0.864750 0.502202i \(-0.832523\pi\)
−0.864750 + 0.502202i \(0.832523\pi\)
\(858\) 0 0
\(859\) −23.0473 −0.786363 −0.393182 0.919461i \(-0.628626\pi\)
−0.393182 + 0.919461i \(0.628626\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.88693 −0.0642692
\(863\) 45.4971 1.54874 0.774370 0.632733i \(-0.218067\pi\)
0.774370 + 0.632733i \(0.218067\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 51.1531 1.73825
\(867\) 0 0
\(868\) −5.12156 −0.173837
\(869\) −41.4095 −1.40472
\(870\) 0 0
\(871\) −105.507 −3.57498
\(872\) −37.3155 −1.26366
\(873\) 0 0
\(874\) −18.6706 −0.631543
\(875\) 0 0
\(876\) 0 0
\(877\) −6.44199 −0.217531 −0.108765 0.994067i \(-0.534690\pi\)
−0.108765 + 0.994067i \(0.534690\pi\)
\(878\) 54.3124 1.83295
\(879\) 0 0
\(880\) 0 0
\(881\) 43.3346 1.45998 0.729990 0.683458i \(-0.239525\pi\)
0.729990 + 0.683458i \(0.239525\pi\)
\(882\) 0 0
\(883\) 24.6736 0.830333 0.415166 0.909745i \(-0.363723\pi\)
0.415166 + 0.909745i \(0.363723\pi\)
\(884\) −169.197 −5.69072
\(885\) 0 0
\(886\) 39.6546 1.33222
\(887\) 37.1527 1.24747 0.623733 0.781637i \(-0.285615\pi\)
0.623733 + 0.781637i \(0.285615\pi\)
\(888\) 0 0
\(889\) −0.591021 −0.0198222
\(890\) 0 0
\(891\) 0 0
\(892\) −29.7247 −0.995255
\(893\) −22.4104 −0.749936
\(894\) 0 0
\(895\) 0 0
\(896\) 2.76723 0.0924466
\(897\) 0 0
\(898\) −9.57108 −0.319391
\(899\) 10.2044 0.340336
\(900\) 0 0
\(901\) 92.2847 3.07445
\(902\) 37.7383 1.25655
\(903\) 0 0
\(904\) −10.5514 −0.350933
\(905\) 0 0
\(906\) 0 0
\(907\) −7.49457 −0.248853 −0.124427 0.992229i \(-0.539709\pi\)
−0.124427 + 0.992229i \(0.539709\pi\)
\(908\) 70.3248 2.33381
\(909\) 0 0
\(910\) 0 0
\(911\) −48.6818 −1.61290 −0.806449 0.591303i \(-0.798614\pi\)
−0.806449 + 0.591303i \(0.798614\pi\)
\(912\) 0 0
\(913\) −8.44143 −0.279371
\(914\) 2.91444 0.0964012
\(915\) 0 0
\(916\) 6.37598 0.210668
\(917\) −1.58737 −0.0524197
\(918\) 0 0
\(919\) −26.1563 −0.862816 −0.431408 0.902157i \(-0.641983\pi\)
−0.431408 + 0.902157i \(0.641983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 54.0746 1.78085
\(923\) 24.2293 0.797515
\(924\) 0 0
\(925\) 0 0
\(926\) −32.0552 −1.05340
\(927\) 0 0
\(928\) −6.12646 −0.201111
\(929\) 8.15366 0.267513 0.133756 0.991014i \(-0.457296\pi\)
0.133756 + 0.991014i \(0.457296\pi\)
\(930\) 0 0
\(931\) 27.8299 0.912089
\(932\) 34.7509 1.13830
\(933\) 0 0
\(934\) 16.0157 0.524051
\(935\) 0 0
\(936\) 0 0
\(937\) −41.9169 −1.36936 −0.684682 0.728842i \(-0.740059\pi\)
−0.684682 + 0.728842i \(0.740059\pi\)
\(938\) −5.41915 −0.176941
\(939\) 0 0
\(940\) 0 0
\(941\) −14.4789 −0.471998 −0.235999 0.971753i \(-0.575836\pi\)
−0.235999 + 0.971753i \(0.575836\pi\)
\(942\) 0 0
\(943\) 10.5746 0.344356
\(944\) −2.99931 −0.0976191
\(945\) 0 0
\(946\) 29.0353 0.944020
\(947\) 1.83838 0.0597392 0.0298696 0.999554i \(-0.490491\pi\)
0.0298696 + 0.999554i \(0.490491\pi\)
\(948\) 0 0
\(949\) −85.2262 −2.76656
\(950\) 0 0
\(951\) 0 0
\(952\) −3.15349 −0.102205
\(953\) −49.5140 −1.60391 −0.801957 0.597382i \(-0.796208\pi\)
−0.801957 + 0.597382i \(0.796208\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.03461 0.227516
\(957\) 0 0
\(958\) −52.0403 −1.68135
\(959\) −0.612063 −0.0197646
\(960\) 0 0
\(961\) 73.1299 2.35903
\(962\) −68.4393 −2.20657
\(963\) 0 0
\(964\) 45.4658 1.46436
\(965\) 0 0
\(966\) 0 0
\(967\) −5.90299 −0.189827 −0.0949137 0.995486i \(-0.530258\pi\)
−0.0949137 + 0.995486i \(0.530258\pi\)
\(968\) −1.14144 −0.0366874
\(969\) 0 0
\(970\) 0 0
\(971\) 35.7964 1.14876 0.574380 0.818588i \(-0.305243\pi\)
0.574380 + 0.818588i \(0.305243\pi\)
\(972\) 0 0
\(973\) 0.330946 0.0106096
\(974\) 61.2801 1.96354
\(975\) 0 0
\(976\) −4.85088 −0.155273
\(977\) −1.79673 −0.0574825 −0.0287412 0.999587i \(-0.509150\pi\)
−0.0287412 + 0.999587i \(0.509150\pi\)
\(978\) 0 0
\(979\) −14.0748 −0.449834
\(980\) 0 0
\(981\) 0 0
\(982\) 26.1828 0.835528
\(983\) 6.24151 0.199073 0.0995365 0.995034i \(-0.468264\pi\)
0.0995365 + 0.995034i \(0.468264\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 17.3152 0.551427
\(987\) 0 0
\(988\) 88.3917 2.81211
\(989\) 8.13593 0.258708
\(990\) 0 0
\(991\) 41.0410 1.30371 0.651855 0.758344i \(-0.273991\pi\)
0.651855 + 0.758344i \(0.273991\pi\)
\(992\) −62.5169 −1.98491
\(993\) 0 0
\(994\) 1.24448 0.0394725
\(995\) 0 0
\(996\) 0 0
\(997\) −29.8910 −0.946657 −0.473329 0.880886i \(-0.656948\pi\)
−0.473329 + 0.880886i \(0.656948\pi\)
\(998\) 8.56776 0.271208
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bx.1.6 7
3.2 odd 2 2175.2.a.ba.1.2 7
5.4 even 2 6525.2.a.bu.1.2 7
15.2 even 4 2175.2.c.o.349.3 14
15.8 even 4 2175.2.c.o.349.12 14
15.14 odd 2 2175.2.a.bb.1.6 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2175.2.a.ba.1.2 7 3.2 odd 2
2175.2.a.bb.1.6 yes 7 15.14 odd 2
2175.2.c.o.349.3 14 15.2 even 4
2175.2.c.o.349.12 14 15.8 even 4
6525.2.a.bu.1.2 7 5.4 even 2
6525.2.a.bx.1.6 7 1.1 even 1 trivial