Properties

Label 6525.2.a.bt.1.6
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,14,0,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.337383424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.77035\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.77035 q^{2} +5.67486 q^{4} -1.86960 q^{7} +10.1807 q^{8} +3.25230 q^{11} +3.40121 q^{13} -5.17945 q^{14} +16.8543 q^{16} +2.40939 q^{17} -0.674860 q^{19} +9.01001 q^{22} -7.41031 q^{23} +9.42256 q^{26} -10.6097 q^{28} +1.00000 q^{29} +5.25230 q^{31} +26.3311 q^{32} +6.67486 q^{34} +1.86960 q^{37} -1.86960 q^{38} -3.46931 q^{43} +18.4563 q^{44} -20.5292 q^{46} -4.00910 q^{47} -3.50459 q^{49} +19.3014 q^{52} -0.877777 q^{53} -19.0338 q^{56} +2.77035 q^{58} -10.0000 q^{59} +11.8543 q^{61} +14.5507 q^{62} +39.2378 q^{64} +7.95010 q^{67} +13.6729 q^{68} -2.00000 q^{71} -0.607882 q^{73} +5.17945 q^{74} -3.82973 q^{76} -6.08050 q^{77} +8.60202 q^{79} +2.40939 q^{83} -9.61121 q^{86} +33.1105 q^{88} +8.50459 q^{89} -6.35891 q^{91} -42.0525 q^{92} -11.1066 q^{94} -13.1332 q^{97} -9.70897 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{4} + 10 q^{11} + 8 q^{14} + 42 q^{16} + 16 q^{19} + 46 q^{26} + 6 q^{29} + 22 q^{31} + 20 q^{34} + 2 q^{44} - 44 q^{46} - 2 q^{49} - 16 q^{56} - 60 q^{59} + 12 q^{61} + 38 q^{64} - 12 q^{71}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.77035 1.95894 0.979468 0.201600i \(-0.0646141\pi\)
0.979468 + 0.201600i \(0.0646141\pi\)
\(3\) 0 0
\(4\) 5.67486 2.83743
\(5\) 0 0
\(6\) 0 0
\(7\) −1.86960 −0.706643 −0.353321 0.935502i \(-0.614948\pi\)
−0.353321 + 0.935502i \(0.614948\pi\)
\(8\) 10.1807 3.59941
\(9\) 0 0
\(10\) 0 0
\(11\) 3.25230 0.980605 0.490302 0.871552i \(-0.336886\pi\)
0.490302 + 0.871552i \(0.336886\pi\)
\(12\) 0 0
\(13\) 3.40121 0.943327 0.471663 0.881779i \(-0.343654\pi\)
0.471663 + 0.881779i \(0.343654\pi\)
\(14\) −5.17945 −1.38427
\(15\) 0 0
\(16\) 16.8543 4.21358
\(17\) 2.40939 0.584363 0.292181 0.956363i \(-0.405619\pi\)
0.292181 + 0.956363i \(0.405619\pi\)
\(18\) 0 0
\(19\) −0.674860 −0.154823 −0.0774117 0.996999i \(-0.524666\pi\)
−0.0774117 + 0.996999i \(0.524666\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 9.01001 1.92094
\(23\) −7.41031 −1.54516 −0.772578 0.634920i \(-0.781033\pi\)
−0.772578 + 0.634920i \(0.781033\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 9.42256 1.84792
\(27\) 0 0
\(28\) −10.6097 −2.00505
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 5.25230 0.943340 0.471670 0.881775i \(-0.343651\pi\)
0.471670 + 0.881775i \(0.343651\pi\)
\(32\) 26.3311 4.65472
\(33\) 0 0
\(34\) 6.67486 1.14473
\(35\) 0 0
\(36\) 0 0
\(37\) 1.86960 0.307360 0.153680 0.988121i \(-0.450887\pi\)
0.153680 + 0.988121i \(0.450887\pi\)
\(38\) −1.86960 −0.303289
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −3.46931 −0.529064 −0.264532 0.964377i \(-0.585218\pi\)
−0.264532 + 0.964377i \(0.585218\pi\)
\(44\) 18.4563 2.78240
\(45\) 0 0
\(46\) −20.5292 −3.02686
\(47\) −4.00910 −0.584787 −0.292393 0.956298i \(-0.594452\pi\)
−0.292393 + 0.956298i \(0.594452\pi\)
\(48\) 0 0
\(49\) −3.50459 −0.500656
\(50\) 0 0
\(51\) 0 0
\(52\) 19.3014 2.67662
\(53\) −0.877777 −0.120572 −0.0602859 0.998181i \(-0.519201\pi\)
−0.0602859 + 0.998181i \(0.519201\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −19.0338 −2.54349
\(57\) 0 0
\(58\) 2.77035 0.363765
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) 11.8543 1.51779 0.758895 0.651213i \(-0.225740\pi\)
0.758895 + 0.651213i \(0.225740\pi\)
\(62\) 14.5507 1.84794
\(63\) 0 0
\(64\) 39.2378 4.90473
\(65\) 0 0
\(66\) 0 0
\(67\) 7.95010 0.971259 0.485629 0.874165i \(-0.338590\pi\)
0.485629 + 0.874165i \(0.338590\pi\)
\(68\) 13.6729 1.65809
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −0.607882 −0.0711472 −0.0355736 0.999367i \(-0.511326\pi\)
−0.0355736 + 0.999367i \(0.511326\pi\)
\(74\) 5.17945 0.602099
\(75\) 0 0
\(76\) −3.82973 −0.439301
\(77\) −6.08050 −0.692937
\(78\) 0 0
\(79\) 8.60202 0.967803 0.483901 0.875123i \(-0.339219\pi\)
0.483901 + 0.875123i \(0.339219\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.40939 0.264465 0.132232 0.991219i \(-0.457785\pi\)
0.132232 + 0.991219i \(0.457785\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −9.61121 −1.03640
\(87\) 0 0
\(88\) 33.1105 3.52960
\(89\) 8.50459 0.901485 0.450743 0.892654i \(-0.351159\pi\)
0.450743 + 0.892654i \(0.351159\pi\)
\(90\) 0 0
\(91\) −6.35891 −0.666595
\(92\) −42.0525 −4.38427
\(93\) 0 0
\(94\) −11.1066 −1.14556
\(95\) 0 0
\(96\) 0 0
\(97\) −13.1332 −1.33347 −0.666735 0.745295i \(-0.732309\pi\)
−0.666735 + 0.745295i \(0.732309\pi\)
\(98\) −9.70897 −0.980754
\(99\) 0 0
\(100\) 0 0
\(101\) −4.84513 −0.482108 −0.241054 0.970512i \(-0.577493\pi\)
−0.241054 + 0.970512i \(0.577493\pi\)
\(102\) 0 0
\(103\) 14.8887 1.46703 0.733514 0.679674i \(-0.237879\pi\)
0.733514 + 0.679674i \(0.237879\pi\)
\(104\) 34.6266 3.39542
\(105\) 0 0
\(106\) −2.43175 −0.236193
\(107\) −1.86960 −0.180741 −0.0903705 0.995908i \(-0.528805\pi\)
−0.0903705 + 0.995908i \(0.528805\pi\)
\(108\) 0 0
\(109\) −8.77228 −0.840232 −0.420116 0.907470i \(-0.638011\pi\)
−0.420116 + 0.907470i \(0.638011\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −31.5108 −2.97749
\(113\) −10.0699 −0.947299 −0.473650 0.880713i \(-0.657064\pi\)
−0.473650 + 0.880713i \(0.657064\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.67486 0.526898
\(117\) 0 0
\(118\) −27.7035 −2.55032
\(119\) −4.50459 −0.412936
\(120\) 0 0
\(121\) −0.422563 −0.0384148
\(122\) 32.8406 2.97325
\(123\) 0 0
\(124\) 29.8061 2.67666
\(125\) 0 0
\(126\) 0 0
\(127\) 18.6739 1.65704 0.828519 0.559961i \(-0.189184\pi\)
0.828519 + 0.559961i \(0.189184\pi\)
\(128\) 56.0404 4.95332
\(129\) 0 0
\(130\) 0 0
\(131\) 11.0338 0.964025 0.482012 0.876164i \(-0.339906\pi\)
0.482012 + 0.876164i \(0.339906\pi\)
\(132\) 0 0
\(133\) 1.26172 0.109405
\(134\) 22.0246 1.90263
\(135\) 0 0
\(136\) 24.5292 2.10336
\(137\) −11.8714 −1.01425 −0.507123 0.861874i \(-0.669291\pi\)
−0.507123 + 0.861874i \(0.669291\pi\)
\(138\) 0 0
\(139\) 14.8451 1.25915 0.629574 0.776941i \(-0.283230\pi\)
0.629574 + 0.776941i \(0.283230\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.54071 −0.464966
\(143\) 11.0618 0.925030
\(144\) 0 0
\(145\) 0 0
\(146\) −1.68405 −0.139373
\(147\) 0 0
\(148\) 10.6097 0.872114
\(149\) −17.2769 −1.41538 −0.707688 0.706525i \(-0.750262\pi\)
−0.707688 + 0.706525i \(0.750262\pi\)
\(150\) 0 0
\(151\) 0.504595 0.0410633 0.0205317 0.999789i \(-0.493464\pi\)
0.0205317 + 0.999789i \(0.493464\pi\)
\(152\) −6.87052 −0.557273
\(153\) 0 0
\(154\) −16.8451 −1.35742
\(155\) 0 0
\(156\) 0 0
\(157\) −17.9519 −1.43272 −0.716360 0.697731i \(-0.754193\pi\)
−0.716360 + 0.697731i \(0.754193\pi\)
\(158\) 23.8306 1.89586
\(159\) 0 0
\(160\) 0 0
\(161\) 13.8543 1.09187
\(162\) 0 0
\(163\) −5.45295 −0.427108 −0.213554 0.976931i \(-0.568504\pi\)
−0.213554 + 0.976931i \(0.568504\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 6.67486 0.518070
\(167\) 1.51195 0.116998 0.0584992 0.998287i \(-0.481368\pi\)
0.0584992 + 0.998287i \(0.481368\pi\)
\(168\) 0 0
\(169\) −1.43175 −0.110135
\(170\) 0 0
\(171\) 0 0
\(172\) −19.6878 −1.50118
\(173\) −8.74012 −0.664499 −0.332249 0.943192i \(-0.607808\pi\)
−0.332249 + 0.943192i \(0.607808\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 54.8152 4.13185
\(177\) 0 0
\(178\) 23.5607 1.76595
\(179\) 9.49541 0.709720 0.354860 0.934919i \(-0.384529\pi\)
0.354860 + 0.934919i \(0.384529\pi\)
\(180\) 0 0
\(181\) 14.9363 1.11021 0.555105 0.831780i \(-0.312678\pi\)
0.555105 + 0.831780i \(0.312678\pi\)
\(182\) −17.6164 −1.30582
\(183\) 0 0
\(184\) −75.4418 −5.56165
\(185\) 0 0
\(186\) 0 0
\(187\) 7.83605 0.573029
\(188\) −22.7511 −1.65929
\(189\) 0 0
\(190\) 0 0
\(191\) −10.5292 −0.761864 −0.380932 0.924603i \(-0.624397\pi\)
−0.380932 + 0.924603i \(0.624397\pi\)
\(192\) 0 0
\(193\) −18.1341 −1.30532 −0.652660 0.757651i \(-0.726347\pi\)
−0.652660 + 0.757651i \(0.726347\pi\)
\(194\) −36.3835 −2.61218
\(195\) 0 0
\(196\) −19.8881 −1.42058
\(197\) −16.9798 −1.20976 −0.604879 0.796317i \(-0.706779\pi\)
−0.604879 + 0.796317i \(0.706779\pi\)
\(198\) 0 0
\(199\) 7.49541 0.531335 0.265668 0.964065i \(-0.414408\pi\)
0.265668 + 0.964065i \(0.414408\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −13.4227 −0.944419
\(203\) −1.86960 −0.131220
\(204\) 0 0
\(205\) 0 0
\(206\) 41.2470 2.87381
\(207\) 0 0
\(208\) 57.3251 3.97478
\(209\) −2.19484 −0.151821
\(210\) 0 0
\(211\) 18.0974 1.24588 0.622939 0.782270i \(-0.285938\pi\)
0.622939 + 0.782270i \(0.285938\pi\)
\(212\) −4.98126 −0.342114
\(213\) 0 0
\(214\) −5.17945 −0.354060
\(215\) 0 0
\(216\) 0 0
\(217\) −9.81970 −0.666604
\(218\) −24.3023 −1.64596
\(219\) 0 0
\(220\) 0 0
\(221\) 8.19484 0.551245
\(222\) 0 0
\(223\) −6.33073 −0.423937 −0.211969 0.977276i \(-0.567987\pi\)
−0.211969 + 0.977276i \(0.567987\pi\)
\(224\) −49.2286 −3.28923
\(225\) 0 0
\(226\) −27.8973 −1.85570
\(227\) 24.8905 1.65204 0.826022 0.563638i \(-0.190599\pi\)
0.826022 + 0.563638i \(0.190599\pi\)
\(228\) 0 0
\(229\) 2.14569 0.141791 0.0708955 0.997484i \(-0.477414\pi\)
0.0708955 + 0.997484i \(0.477414\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.1807 0.668393
\(233\) 5.33891 0.349763 0.174882 0.984589i \(-0.444046\pi\)
0.174882 + 0.984589i \(0.444046\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −56.7486 −3.69402
\(237\) 0 0
\(238\) −12.4793 −0.808914
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −6.77228 −0.436241 −0.218121 0.975922i \(-0.569993\pi\)
−0.218121 + 0.975922i \(0.569993\pi\)
\(242\) −1.17065 −0.0752521
\(243\) 0 0
\(244\) 67.2716 4.30662
\(245\) 0 0
\(246\) 0 0
\(247\) −2.29534 −0.146049
\(248\) 53.4719 3.39547
\(249\) 0 0
\(250\) 0 0
\(251\) −20.2615 −1.27889 −0.639447 0.768835i \(-0.720837\pi\)
−0.639447 + 0.768835i \(0.720837\pi\)
\(252\) 0 0
\(253\) −24.1005 −1.51519
\(254\) 51.7332 3.24603
\(255\) 0 0
\(256\) 76.7762 4.79851
\(257\) −19.4376 −1.21248 −0.606242 0.795280i \(-0.707324\pi\)
−0.606242 + 0.795280i \(0.707324\pi\)
\(258\) 0 0
\(259\) −3.49541 −0.217194
\(260\) 0 0
\(261\) 0 0
\(262\) 30.5674 1.88846
\(263\) 8.28808 0.511065 0.255533 0.966800i \(-0.417749\pi\)
0.255533 + 0.966800i \(0.417749\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.49541 0.214317
\(267\) 0 0
\(268\) 45.1157 2.75588
\(269\) 23.8543 1.45442 0.727212 0.686413i \(-0.240816\pi\)
0.727212 + 0.686413i \(0.240816\pi\)
\(270\) 0 0
\(271\) −0.893389 −0.0542695 −0.0271347 0.999632i \(-0.508638\pi\)
−0.0271347 + 0.999632i \(0.508638\pi\)
\(272\) 40.6086 2.46226
\(273\) 0 0
\(274\) −32.8881 −1.98684
\(275\) 0 0
\(276\) 0 0
\(277\) −3.55706 −0.213723 −0.106862 0.994274i \(-0.534080\pi\)
−0.106862 + 0.994274i \(0.534080\pi\)
\(278\) 41.1262 2.46659
\(279\) 0 0
\(280\) 0 0
\(281\) −7.76309 −0.463107 −0.231554 0.972822i \(-0.574381\pi\)
−0.231554 + 0.972822i \(0.574381\pi\)
\(282\) 0 0
\(283\) −30.7889 −1.83021 −0.915105 0.403215i \(-0.867893\pi\)
−0.915105 + 0.403215i \(0.867893\pi\)
\(284\) −11.3497 −0.673482
\(285\) 0 0
\(286\) 30.6450 1.81208
\(287\) 0 0
\(288\) 0 0
\(289\) −11.1948 −0.658520
\(290\) 0 0
\(291\) 0 0
\(292\) −3.44965 −0.201875
\(293\) 6.33073 0.369845 0.184923 0.982753i \(-0.440797\pi\)
0.184923 + 0.982753i \(0.440797\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 19.0338 1.10632
\(297\) 0 0
\(298\) −47.8631 −2.77263
\(299\) −25.2040 −1.45759
\(300\) 0 0
\(301\) 6.48622 0.373859
\(302\) 1.39791 0.0804404
\(303\) 0 0
\(304\) −11.3743 −0.652361
\(305\) 0 0
\(306\) 0 0
\(307\) −12.5671 −0.717241 −0.358620 0.933483i \(-0.616753\pi\)
−0.358620 + 0.933483i \(0.616753\pi\)
\(308\) −34.5060 −1.96616
\(309\) 0 0
\(310\) 0 0
\(311\) −24.3835 −1.38266 −0.691330 0.722539i \(-0.742975\pi\)
−0.691330 + 0.722539i \(0.742975\pi\)
\(312\) 0 0
\(313\) 34.6618 1.95920 0.979601 0.200954i \(-0.0644042\pi\)
0.979601 + 0.200954i \(0.0644042\pi\)
\(314\) −49.7332 −2.80661
\(315\) 0 0
\(316\) 48.8152 2.74607
\(317\) −25.7880 −1.44840 −0.724199 0.689591i \(-0.757790\pi\)
−0.724199 + 0.689591i \(0.757790\pi\)
\(318\) 0 0
\(319\) 3.25230 0.182094
\(320\) 0 0
\(321\) 0 0
\(322\) 38.3814 2.13891
\(323\) −1.62600 −0.0904730
\(324\) 0 0
\(325\) 0 0
\(326\) −15.1066 −0.836678
\(327\) 0 0
\(328\) 0 0
\(329\) 7.49541 0.413235
\(330\) 0 0
\(331\) −16.9609 −0.932257 −0.466128 0.884717i \(-0.654352\pi\)
−0.466128 + 0.884717i \(0.654352\pi\)
\(332\) 13.6729 0.750400
\(333\) 0 0
\(334\) 4.18864 0.229192
\(335\) 0 0
\(336\) 0 0
\(337\) 22.5952 1.23084 0.615420 0.788200i \(-0.288987\pi\)
0.615420 + 0.788200i \(0.288987\pi\)
\(338\) −3.96646 −0.215747
\(339\) 0 0
\(340\) 0 0
\(341\) 17.0820 0.925044
\(342\) 0 0
\(343\) 19.6394 1.06043
\(344\) −35.3198 −1.90432
\(345\) 0 0
\(346\) −24.2132 −1.30171
\(347\) 12.0469 0.646714 0.323357 0.946277i \(-0.395189\pi\)
0.323357 + 0.946277i \(0.395189\pi\)
\(348\) 0 0
\(349\) −1.56825 −0.0839464 −0.0419732 0.999119i \(-0.513364\pi\)
−0.0419732 + 0.999119i \(0.513364\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 85.6365 4.56444
\(353\) 7.66054 0.407730 0.203865 0.978999i \(-0.434650\pi\)
0.203865 + 0.978999i \(0.434650\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 48.2624 2.55790
\(357\) 0 0
\(358\) 26.3056 1.39030
\(359\) −17.5928 −0.928514 −0.464257 0.885701i \(-0.653679\pi\)
−0.464257 + 0.885701i \(0.653679\pi\)
\(360\) 0 0
\(361\) −18.5446 −0.976030
\(362\) 41.3790 2.17483
\(363\) 0 0
\(364\) −36.0859 −1.89142
\(365\) 0 0
\(366\) 0 0
\(367\) 9.88779 0.516138 0.258069 0.966126i \(-0.416914\pi\)
0.258069 + 0.966126i \(0.416914\pi\)
\(368\) −124.896 −6.51064
\(369\) 0 0
\(370\) 0 0
\(371\) 1.64109 0.0852012
\(372\) 0 0
\(373\) −16.2841 −0.843161 −0.421580 0.906791i \(-0.638524\pi\)
−0.421580 + 0.906791i \(0.638524\pi\)
\(374\) 21.7086 1.12253
\(375\) 0 0
\(376\) −40.8152 −2.10489
\(377\) 3.40121 0.175171
\(378\) 0 0
\(379\) −2.52917 −0.129915 −0.0649575 0.997888i \(-0.520691\pi\)
−0.0649575 + 0.997888i \(0.520691\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −29.1695 −1.49244
\(383\) −5.60880 −0.286596 −0.143298 0.989680i \(-0.545771\pi\)
−0.143298 + 0.989680i \(0.545771\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −50.2378 −2.55704
\(387\) 0 0
\(388\) −74.5288 −3.78363
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −17.8543 −0.902931
\(392\) −35.6791 −1.80207
\(393\) 0 0
\(394\) −47.0400 −2.36984
\(395\) 0 0
\(396\) 0 0
\(397\) −27.8660 −1.39856 −0.699278 0.714850i \(-0.746495\pi\)
−0.699278 + 0.714850i \(0.746495\pi\)
\(398\) 20.7649 1.04085
\(399\) 0 0
\(400\) 0 0
\(401\) 15.6174 0.779896 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(402\) 0 0
\(403\) 17.8642 0.889878
\(404\) −27.4954 −1.36795
\(405\) 0 0
\(406\) −5.17945 −0.257052
\(407\) 6.08050 0.301399
\(408\) 0 0
\(409\) −30.5538 −1.51079 −0.755393 0.655272i \(-0.772554\pi\)
−0.755393 + 0.655272i \(0.772554\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 84.4913 4.16259
\(413\) 18.6960 0.919970
\(414\) 0 0
\(415\) 0 0
\(416\) 89.5576 4.39092
\(417\) 0 0
\(418\) −6.08050 −0.297407
\(419\) 10.0492 0.490934 0.245467 0.969405i \(-0.421059\pi\)
0.245467 + 0.969405i \(0.421059\pi\)
\(420\) 0 0
\(421\) −16.1948 −0.789288 −0.394644 0.918834i \(-0.629132\pi\)
−0.394644 + 0.918834i \(0.629132\pi\)
\(422\) 50.1363 2.44060
\(423\) 0 0
\(424\) −8.93635 −0.433987
\(425\) 0 0
\(426\) 0 0
\(427\) −22.1628 −1.07253
\(428\) −10.6097 −0.512840
\(429\) 0 0
\(430\) 0 0
\(431\) −11.1857 −0.538794 −0.269397 0.963029i \(-0.586824\pi\)
−0.269397 + 0.963029i \(0.586824\pi\)
\(432\) 0 0
\(433\) −14.0306 −0.674267 −0.337134 0.941457i \(-0.609457\pi\)
−0.337134 + 0.941457i \(0.609457\pi\)
\(434\) −27.2040 −1.30584
\(435\) 0 0
\(436\) −49.7815 −2.38410
\(437\) 5.00092 0.239226
\(438\) 0 0
\(439\) 9.65947 0.461021 0.230511 0.973070i \(-0.425960\pi\)
0.230511 + 0.973070i \(0.425960\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 22.7026 1.07985
\(443\) −9.75160 −0.463313 −0.231656 0.972798i \(-0.574414\pi\)
−0.231656 + 0.972798i \(0.574414\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −17.5384 −0.830466
\(447\) 0 0
\(448\) −73.3590 −3.46589
\(449\) −8.86350 −0.418295 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −57.1454 −2.68790
\(453\) 0 0
\(454\) 68.9556 3.23625
\(455\) 0 0
\(456\) 0 0
\(457\) −24.5041 −1.14625 −0.573127 0.819466i \(-0.694270\pi\)
−0.573127 + 0.819466i \(0.694270\pi\)
\(458\) 5.94431 0.277759
\(459\) 0 0
\(460\) 0 0
\(461\) 37.4173 1.74270 0.871348 0.490666i \(-0.163247\pi\)
0.871348 + 0.490666i \(0.163247\pi\)
\(462\) 0 0
\(463\) −2.45534 −0.114109 −0.0570547 0.998371i \(-0.518171\pi\)
−0.0570547 + 0.998371i \(0.518171\pi\)
\(464\) 16.8543 0.782442
\(465\) 0 0
\(466\) 14.7907 0.685164
\(467\) −34.4182 −1.59268 −0.796342 0.604846i \(-0.793235\pi\)
−0.796342 + 0.604846i \(0.793235\pi\)
\(468\) 0 0
\(469\) −14.8635 −0.686333
\(470\) 0 0
\(471\) 0 0
\(472\) −101.807 −4.68603
\(473\) −11.2832 −0.518803
\(474\) 0 0
\(475\) 0 0
\(476\) −25.5629 −1.17168
\(477\) 0 0
\(478\) 5.54071 0.253426
\(479\) 9.41636 0.430245 0.215122 0.976587i \(-0.430985\pi\)
0.215122 + 0.976587i \(0.430985\pi\)
\(480\) 0 0
\(481\) 6.35891 0.289941
\(482\) −18.7616 −0.854568
\(483\) 0 0
\(484\) −2.39798 −0.108999
\(485\) 0 0
\(486\) 0 0
\(487\) −33.0909 −1.49949 −0.749745 0.661726i \(-0.769824\pi\)
−0.749745 + 0.661726i \(0.769824\pi\)
\(488\) 120.685 5.46314
\(489\) 0 0
\(490\) 0 0
\(491\) −28.9609 −1.30699 −0.653494 0.756932i \(-0.726698\pi\)
−0.653494 + 0.756932i \(0.726698\pi\)
\(492\) 0 0
\(493\) 2.40939 0.108513
\(494\) −6.35891 −0.286101
\(495\) 0 0
\(496\) 88.5239 3.97484
\(497\) 3.73920 0.167726
\(498\) 0 0
\(499\) 33.8727 1.51635 0.758175 0.652051i \(-0.226091\pi\)
0.758175 + 0.652051i \(0.226091\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −56.1315 −2.50527
\(503\) −0.945870 −0.0421743 −0.0210871 0.999778i \(-0.506713\pi\)
−0.0210871 + 0.999778i \(0.506713\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −66.7670 −2.96815
\(507\) 0 0
\(508\) 105.972 4.70173
\(509\) −32.1404 −1.42460 −0.712299 0.701877i \(-0.752346\pi\)
−0.712299 + 0.701877i \(0.752346\pi\)
\(510\) 0 0
\(511\) 1.13650 0.0502757
\(512\) 100.616 4.44665
\(513\) 0 0
\(514\) −53.8490 −2.37518
\(515\) 0 0
\(516\) 0 0
\(517\) −13.0388 −0.573444
\(518\) −9.68351 −0.425469
\(519\) 0 0
\(520\) 0 0
\(521\) 8.43175 0.369402 0.184701 0.982795i \(-0.440868\pi\)
0.184701 + 0.982795i \(0.440868\pi\)
\(522\) 0 0
\(523\) 21.8273 0.954442 0.477221 0.878783i \(-0.341644\pi\)
0.477221 + 0.878783i \(0.341644\pi\)
\(524\) 62.6151 2.73535
\(525\) 0 0
\(526\) 22.9609 1.00114
\(527\) 12.6548 0.551253
\(528\) 0 0
\(529\) 31.9127 1.38751
\(530\) 0 0
\(531\) 0 0
\(532\) 7.16007 0.310429
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 80.9372 3.49596
\(537\) 0 0
\(538\) 66.0849 2.84912
\(539\) −11.3980 −0.490946
\(540\) 0 0
\(541\) −25.5138 −1.09692 −0.548462 0.836176i \(-0.684786\pi\)
−0.548462 + 0.836176i \(0.684786\pi\)
\(542\) −2.47500 −0.106310
\(543\) 0 0
\(544\) 63.4418 2.72005
\(545\) 0 0
\(546\) 0 0
\(547\) 17.7698 0.759781 0.379891 0.925031i \(-0.375962\pi\)
0.379891 + 0.925031i \(0.375962\pi\)
\(548\) −67.3687 −2.87785
\(549\) 0 0
\(550\) 0 0
\(551\) −0.674860 −0.0287500
\(552\) 0 0
\(553\) −16.0823 −0.683890
\(554\) −9.85431 −0.418670
\(555\) 0 0
\(556\) 84.2440 3.57274
\(557\) −42.1665 −1.78665 −0.893326 0.449409i \(-0.851635\pi\)
−0.893326 + 0.449409i \(0.851635\pi\)
\(558\) 0 0
\(559\) −11.7998 −0.499080
\(560\) 0 0
\(561\) 0 0
\(562\) −21.5065 −0.907198
\(563\) −5.76465 −0.242951 −0.121475 0.992594i \(-0.538763\pi\)
−0.121475 + 0.992594i \(0.538763\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −85.2961 −3.58526
\(567\) 0 0
\(568\) −20.3613 −0.854342
\(569\) −1.49541 −0.0626907 −0.0313453 0.999509i \(-0.509979\pi\)
−0.0313453 + 0.999509i \(0.509979\pi\)
\(570\) 0 0
\(571\) −7.03997 −0.294614 −0.147307 0.989091i \(-0.547060\pi\)
−0.147307 + 0.989091i \(0.547060\pi\)
\(572\) 62.7739 2.62471
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 34.7102 1.44501 0.722503 0.691368i \(-0.242991\pi\)
0.722503 + 0.691368i \(0.242991\pi\)
\(578\) −31.0137 −1.29000
\(579\) 0 0
\(580\) 0 0
\(581\) −4.50459 −0.186882
\(582\) 0 0
\(583\) −2.85479 −0.118233
\(584\) −6.18864 −0.256088
\(585\) 0 0
\(586\) 17.5384 0.724503
\(587\) −37.4158 −1.54432 −0.772158 0.635430i \(-0.780823\pi\)
−0.772158 + 0.635430i \(0.780823\pi\)
\(588\) 0 0
\(589\) −3.54456 −0.146051
\(590\) 0 0
\(591\) 0 0
\(592\) 31.5108 1.29509
\(593\) 32.6388 1.34032 0.670158 0.742218i \(-0.266226\pi\)
0.670158 + 0.742218i \(0.266226\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −98.0439 −4.01603
\(597\) 0 0
\(598\) −69.8241 −2.85532
\(599\) 38.1466 1.55863 0.779314 0.626634i \(-0.215568\pi\)
0.779314 + 0.626634i \(0.215568\pi\)
\(600\) 0 0
\(601\) −16.7178 −0.681934 −0.340967 0.940075i \(-0.610754\pi\)
−0.340967 + 0.940075i \(0.610754\pi\)
\(602\) 17.9691 0.732366
\(603\) 0 0
\(604\) 2.86350 0.116514
\(605\) 0 0
\(606\) 0 0
\(607\) −0.673496 −0.0273364 −0.0136682 0.999907i \(-0.504351\pi\)
−0.0136682 + 0.999907i \(0.504351\pi\)
\(608\) −17.7698 −0.720660
\(609\) 0 0
\(610\) 0 0
\(611\) −13.6358 −0.551645
\(612\) 0 0
\(613\) 26.4615 1.06877 0.534385 0.845241i \(-0.320543\pi\)
0.534385 + 0.845241i \(0.320543\pi\)
\(614\) −34.8152 −1.40503
\(615\) 0 0
\(616\) −61.9035 −2.49416
\(617\) −27.9538 −1.12538 −0.562688 0.826669i \(-0.690233\pi\)
−0.562688 + 0.826669i \(0.690233\pi\)
\(618\) 0 0
\(619\) 24.6512 0.990814 0.495407 0.868661i \(-0.335019\pi\)
0.495407 + 0.868661i \(0.335019\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −67.5509 −2.70854
\(623\) −15.9002 −0.637028
\(624\) 0 0
\(625\) 0 0
\(626\) 96.0255 3.83795
\(627\) 0 0
\(628\) −101.875 −4.06524
\(629\) 4.50459 0.179610
\(630\) 0 0
\(631\) 11.8052 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(632\) 87.5742 3.48352
\(633\) 0 0
\(634\) −71.4418 −2.83732
\(635\) 0 0
\(636\) 0 0
\(637\) −11.9199 −0.472283
\(638\) 9.01001 0.356710
\(639\) 0 0
\(640\) 0 0
\(641\) −13.8727 −0.547938 −0.273969 0.961738i \(-0.588337\pi\)
−0.273969 + 0.961738i \(0.588337\pi\)
\(642\) 0 0
\(643\) 5.29047 0.208636 0.104318 0.994544i \(-0.466734\pi\)
0.104318 + 0.994544i \(0.466734\pi\)
\(644\) 78.6213 3.09811
\(645\) 0 0
\(646\) −4.50459 −0.177231
\(647\) −40.7448 −1.60184 −0.800921 0.598769i \(-0.795657\pi\)
−0.800921 + 0.598769i \(0.795657\pi\)
\(648\) 0 0
\(649\) −32.5230 −1.27664
\(650\) 0 0
\(651\) 0 0
\(652\) −30.9447 −1.21189
\(653\) −26.8742 −1.05167 −0.525834 0.850587i \(-0.676247\pi\)
−0.525834 + 0.850587i \(0.676247\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 20.7649 0.809501
\(659\) −29.1558 −1.13575 −0.567874 0.823116i \(-0.692234\pi\)
−0.567874 + 0.823116i \(0.692234\pi\)
\(660\) 0 0
\(661\) 19.9035 0.774155 0.387078 0.922047i \(-0.373485\pi\)
0.387078 + 0.922047i \(0.373485\pi\)
\(662\) −46.9878 −1.82623
\(663\) 0 0
\(664\) 24.5292 0.951917
\(665\) 0 0
\(666\) 0 0
\(667\) −7.41031 −0.286928
\(668\) 8.58012 0.331975
\(669\) 0 0
\(670\) 0 0
\(671\) 38.5538 1.48835
\(672\) 0 0
\(673\) −8.71383 −0.335893 −0.167947 0.985796i \(-0.553714\pi\)
−0.167947 + 0.985796i \(0.553714\pi\)
\(674\) 62.5967 2.41114
\(675\) 0 0
\(676\) −8.12499 −0.312500
\(677\) −9.70565 −0.373018 −0.186509 0.982453i \(-0.559717\pi\)
−0.186509 + 0.982453i \(0.559717\pi\)
\(678\) 0 0
\(679\) 24.5538 0.942287
\(680\) 0 0
\(681\) 0 0
\(682\) 47.3233 1.81210
\(683\) 9.53014 0.364661 0.182330 0.983237i \(-0.441636\pi\)
0.182330 + 0.983237i \(0.441636\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 54.4081 2.07731
\(687\) 0 0
\(688\) −58.4728 −2.22925
\(689\) −2.98550 −0.113739
\(690\) 0 0
\(691\) 8.50459 0.323530 0.161765 0.986829i \(-0.448281\pi\)
0.161765 + 0.986829i \(0.448281\pi\)
\(692\) −49.5990 −1.88547
\(693\) 0 0
\(694\) 33.3743 1.26687
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −4.34460 −0.164446
\(699\) 0 0
\(700\) 0 0
\(701\) 28.6266 1.08121 0.540606 0.841276i \(-0.318195\pi\)
0.540606 + 0.841276i \(0.318195\pi\)
\(702\) 0 0
\(703\) −1.26172 −0.0475866
\(704\) 127.613 4.80960
\(705\) 0 0
\(706\) 21.2224 0.798716
\(707\) 9.05845 0.340678
\(708\) 0 0
\(709\) 14.9855 0.562792 0.281396 0.959592i \(-0.409202\pi\)
0.281396 + 0.959592i \(0.409202\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 86.5824 3.24481
\(713\) −38.9211 −1.45761
\(714\) 0 0
\(715\) 0 0
\(716\) 53.8851 2.01378
\(717\) 0 0
\(718\) −48.7384 −1.81890
\(719\) 36.7486 1.37049 0.685246 0.728312i \(-0.259695\pi\)
0.685246 + 0.728312i \(0.259695\pi\)
\(720\) 0 0
\(721\) −27.8359 −1.03666
\(722\) −51.3750 −1.91198
\(723\) 0 0
\(724\) 84.7617 3.15014
\(725\) 0 0
\(726\) 0 0
\(727\) −39.1647 −1.45254 −0.726270 0.687410i \(-0.758748\pi\)
−0.726270 + 0.687410i \(0.758748\pi\)
\(728\) −64.7379 −2.39935
\(729\) 0 0
\(730\) 0 0
\(731\) −8.35891 −0.309165
\(732\) 0 0
\(733\) 5.38071 0.198741 0.0993705 0.995051i \(-0.468317\pi\)
0.0993705 + 0.995051i \(0.468317\pi\)
\(734\) 27.3927 1.01108
\(735\) 0 0
\(736\) −195.121 −7.19227
\(737\) 25.8561 0.952421
\(738\) 0 0
\(739\) −9.93336 −0.365404 −0.182702 0.983168i \(-0.558484\pi\)
−0.182702 + 0.983168i \(0.558484\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.54640 0.166904
\(743\) −43.4963 −1.59573 −0.797863 0.602839i \(-0.794036\pi\)
−0.797863 + 0.602839i \(0.794036\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −45.1128 −1.65170
\(747\) 0 0
\(748\) 44.4685 1.62593
\(749\) 3.49541 0.127719
\(750\) 0 0
\(751\) 11.3743 0.415054 0.207527 0.978229i \(-0.433459\pi\)
0.207527 + 0.978229i \(0.433459\pi\)
\(752\) −67.5705 −2.46404
\(753\) 0 0
\(754\) 9.42256 0.343149
\(755\) 0 0
\(756\) 0 0
\(757\) −10.0699 −0.365998 −0.182999 0.983113i \(-0.558580\pi\)
−0.182999 + 0.983113i \(0.558580\pi\)
\(758\) −7.00671 −0.254495
\(759\) 0 0
\(760\) 0 0
\(761\) 27.0092 0.979082 0.489541 0.871980i \(-0.337164\pi\)
0.489541 + 0.871980i \(0.337164\pi\)
\(762\) 0 0
\(763\) 16.4007 0.593744
\(764\) −59.7516 −2.16174
\(765\) 0 0
\(766\) −15.5384 −0.561424
\(767\) −34.0121 −1.22811
\(768\) 0 0
\(769\) 25.7086 0.927077 0.463538 0.886077i \(-0.346580\pi\)
0.463538 + 0.886077i \(0.346580\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −102.908 −3.70375
\(773\) −32.8185 −1.18040 −0.590200 0.807257i \(-0.700951\pi\)
−0.590200 + 0.807257i \(0.700951\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −133.704 −4.79970
\(777\) 0 0
\(778\) 33.2442 1.19186
\(779\) 0 0
\(780\) 0 0
\(781\) −6.50459 −0.232753
\(782\) −49.4628 −1.76878
\(783\) 0 0
\(784\) −59.0675 −2.10955
\(785\) 0 0
\(786\) 0 0
\(787\) −21.1973 −0.755602 −0.377801 0.925887i \(-0.623320\pi\)
−0.377801 + 0.925887i \(0.623320\pi\)
\(788\) −96.3578 −3.43261
\(789\) 0 0
\(790\) 0 0
\(791\) 18.8267 0.669402
\(792\) 0 0
\(793\) 40.3190 1.43177
\(794\) −77.1987 −2.73968
\(795\) 0 0
\(796\) 42.5354 1.50763
\(797\) −21.7305 −0.769732 −0.384866 0.922972i \(-0.625752\pi\)
−0.384866 + 0.922972i \(0.625752\pi\)
\(798\) 0 0
\(799\) −9.65947 −0.341727
\(800\) 0 0
\(801\) 0 0
\(802\) 43.2657 1.52777
\(803\) −1.97701 −0.0697673
\(804\) 0 0
\(805\) 0 0
\(806\) 49.4901 1.74321
\(807\) 0 0
\(808\) −49.3266 −1.73530
\(809\) 7.20403 0.253280 0.126640 0.991949i \(-0.459581\pi\)
0.126640 + 0.991949i \(0.459581\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) −10.6097 −0.372328
\(813\) 0 0
\(814\) 16.8451 0.590421
\(815\) 0 0
\(816\) 0 0
\(817\) 2.34130 0.0819116
\(818\) −84.6447 −2.95953
\(819\) 0 0
\(820\) 0 0
\(821\) −24.1220 −0.841864 −0.420932 0.907092i \(-0.638297\pi\)
−0.420932 + 0.907092i \(0.638297\pi\)
\(822\) 0 0
\(823\) −17.2300 −0.600600 −0.300300 0.953845i \(-0.597087\pi\)
−0.300300 + 0.953845i \(0.597087\pi\)
\(824\) 151.577 5.28043
\(825\) 0 0
\(826\) 51.7945 1.80216
\(827\) −3.46931 −0.120640 −0.0603198 0.998179i \(-0.519212\pi\)
−0.0603198 + 0.998179i \(0.519212\pi\)
\(828\) 0 0
\(829\) 7.52619 0.261395 0.130698 0.991422i \(-0.458278\pi\)
0.130698 + 0.991422i \(0.458278\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 133.456 4.62676
\(833\) −8.44393 −0.292565
\(834\) 0 0
\(835\) 0 0
\(836\) −12.4554 −0.430780
\(837\) 0 0
\(838\) 27.8397 0.961707
\(839\) 9.61121 0.331816 0.165908 0.986141i \(-0.446945\pi\)
0.165908 + 0.986141i \(0.446945\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −44.8654 −1.54617
\(843\) 0 0
\(844\) 102.700 3.53509
\(845\) 0 0
\(846\) 0 0
\(847\) 0.790023 0.0271455
\(848\) −14.7943 −0.508039
\(849\) 0 0
\(850\) 0 0
\(851\) −13.8543 −0.474920
\(852\) 0 0
\(853\) 20.8330 0.713309 0.356654 0.934236i \(-0.383917\pi\)
0.356654 + 0.934236i \(0.383917\pi\)
\(854\) −61.3989 −2.10103
\(855\) 0 0
\(856\) −19.0338 −0.650561
\(857\) 33.0424 1.12871 0.564354 0.825533i \(-0.309125\pi\)
0.564354 + 0.825533i \(0.309125\pi\)
\(858\) 0 0
\(859\) 49.8061 1.69936 0.849680 0.527298i \(-0.176795\pi\)
0.849680 + 0.527298i \(0.176795\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −30.9882 −1.05546
\(863\) 9.03631 0.307599 0.153800 0.988102i \(-0.450849\pi\)
0.153800 + 0.988102i \(0.450849\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −38.8697 −1.32085
\(867\) 0 0
\(868\) −55.7254 −1.89144
\(869\) 27.9763 0.949032
\(870\) 0 0
\(871\) 27.0400 0.916214
\(872\) −89.3076 −3.02434
\(873\) 0 0
\(874\) 13.8543 0.468629
\(875\) 0 0
\(876\) 0 0
\(877\) −24.0809 −0.813153 −0.406576 0.913617i \(-0.633278\pi\)
−0.406576 + 0.913617i \(0.633278\pi\)
\(878\) 26.7601 0.903111
\(879\) 0 0
\(880\) 0 0
\(881\) 0.814344 0.0274360 0.0137180 0.999906i \(-0.495633\pi\)
0.0137180 + 0.999906i \(0.495633\pi\)
\(882\) 0 0
\(883\) 31.8751 1.07268 0.536341 0.844001i \(-0.319806\pi\)
0.536341 + 0.844001i \(0.319806\pi\)
\(884\) 46.5046 1.56412
\(885\) 0 0
\(886\) −27.0154 −0.907600
\(887\) 45.6358 1.53230 0.766150 0.642661i \(-0.222170\pi\)
0.766150 + 0.642661i \(0.222170\pi\)
\(888\) 0 0
\(889\) −34.9127 −1.17093
\(890\) 0 0
\(891\) 0 0
\(892\) −35.9260 −1.20289
\(893\) 2.70558 0.0905387
\(894\) 0 0
\(895\) 0 0
\(896\) −104.773 −3.50023
\(897\) 0 0
\(898\) −24.5550 −0.819412
\(899\) 5.25230 0.175174
\(900\) 0 0
\(901\) −2.11491 −0.0704577
\(902\) 0 0
\(903\) 0 0
\(904\) −102.519 −3.40972
\(905\) 0 0
\(906\) 0 0
\(907\) 18.5820 0.617004 0.308502 0.951224i \(-0.400172\pi\)
0.308502 + 0.951224i \(0.400172\pi\)
\(908\) 141.250 4.68756
\(909\) 0 0
\(910\) 0 0
\(911\) 45.6296 1.51178 0.755888 0.654701i \(-0.227206\pi\)
0.755888 + 0.654701i \(0.227206\pi\)
\(912\) 0 0
\(913\) 7.83605 0.259335
\(914\) −67.8851 −2.24544
\(915\) 0 0
\(916\) 12.1765 0.402322
\(917\) −20.6287 −0.681221
\(918\) 0 0
\(919\) 24.6994 0.814759 0.407380 0.913259i \(-0.366443\pi\)
0.407380 + 0.913259i \(0.366443\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 103.659 3.41383
\(923\) −6.80243 −0.223905
\(924\) 0 0
\(925\) 0 0
\(926\) −6.80217 −0.223533
\(927\) 0 0
\(928\) 26.3311 0.864360
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 2.36511 0.0775133
\(932\) 30.2975 0.992429
\(933\) 0 0
\(934\) −95.3506 −3.11997
\(935\) 0 0
\(936\) 0 0
\(937\) 46.4389 1.51709 0.758546 0.651620i \(-0.225910\pi\)
0.758546 + 0.651620i \(0.225910\pi\)
\(938\) −41.1772 −1.34448
\(939\) 0 0
\(940\) 0 0
\(941\) 14.2861 0.465712 0.232856 0.972511i \(-0.425193\pi\)
0.232856 + 0.972511i \(0.425193\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −168.543 −5.48561
\(945\) 0 0
\(946\) −31.2585 −1.01630
\(947\) −29.3713 −0.954440 −0.477220 0.878784i \(-0.658356\pi\)
−0.477220 + 0.878784i \(0.658356\pi\)
\(948\) 0 0
\(949\) −2.06754 −0.0671151
\(950\) 0 0
\(951\) 0 0
\(952\) −45.8598 −1.48632
\(953\) 22.5911 0.731796 0.365898 0.930655i \(-0.380762\pi\)
0.365898 + 0.930655i \(0.380762\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 11.3497 0.367076
\(957\) 0 0
\(958\) 26.0867 0.842821
\(959\) 22.1948 0.716709
\(960\) 0 0
\(961\) −3.41337 −0.110109
\(962\) 17.6164 0.567976
\(963\) 0 0
\(964\) −38.4318 −1.23780
\(965\) 0 0
\(966\) 0 0
\(967\) 48.4316 1.55746 0.778728 0.627362i \(-0.215865\pi\)
0.778728 + 0.627362i \(0.215865\pi\)
\(968\) −4.30197 −0.138270
\(969\) 0 0
\(970\) 0 0
\(971\) −47.0829 −1.51096 −0.755482 0.655170i \(-0.772597\pi\)
−0.755482 + 0.655170i \(0.772597\pi\)
\(972\) 0 0
\(973\) −27.7545 −0.889767
\(974\) −91.6734 −2.93741
\(975\) 0 0
\(976\) 199.796 6.39532
\(977\) 51.1987 1.63799 0.818995 0.573800i \(-0.194532\pi\)
0.818995 + 0.573800i \(0.194532\pi\)
\(978\) 0 0
\(979\) 27.6595 0.884000
\(980\) 0 0
\(981\) 0 0
\(982\) −80.2320 −2.56031
\(983\) 23.5123 0.749926 0.374963 0.927040i \(-0.377655\pi\)
0.374963 + 0.927040i \(0.377655\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 6.67486 0.212571
\(987\) 0 0
\(988\) −13.0257 −0.414404
\(989\) 25.7086 0.817487
\(990\) 0 0
\(991\) −7.64109 −0.242727 −0.121364 0.992608i \(-0.538727\pi\)
−0.121364 + 0.992608i \(0.538727\pi\)
\(992\) 138.299 4.39099
\(993\) 0 0
\(994\) 10.3589 0.328565
\(995\) 0 0
\(996\) 0 0
\(997\) 3.71043 0.117510 0.0587552 0.998272i \(-0.481287\pi\)
0.0587552 + 0.998272i \(0.481287\pi\)
\(998\) 93.8393 2.97043
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bt.1.6 6
3.2 odd 2 725.2.a.l.1.1 6
5.2 odd 4 1305.2.c.h.784.6 6
5.3 odd 4 1305.2.c.h.784.1 6
5.4 even 2 inner 6525.2.a.bt.1.1 6
15.2 even 4 145.2.b.c.59.1 6
15.8 even 4 145.2.b.c.59.6 yes 6
15.14 odd 2 725.2.a.l.1.6 6
60.23 odd 4 2320.2.d.g.929.4 6
60.47 odd 4 2320.2.d.g.929.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.1 6 15.2 even 4
145.2.b.c.59.6 yes 6 15.8 even 4
725.2.a.l.1.1 6 3.2 odd 2
725.2.a.l.1.6 6 15.14 odd 2
1305.2.c.h.784.1 6 5.3 odd 4
1305.2.c.h.784.6 6 5.2 odd 4
2320.2.d.g.929.3 6 60.47 odd 4
2320.2.d.g.929.4 6 60.23 odd 4
6525.2.a.bt.1.1 6 5.4 even 2 inner
6525.2.a.bt.1.6 6 1.1 even 1 trivial