Properties

Label 6525.2.a.bt.1.5
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,14,0,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.337383424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.30229\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30229 q^{2} +3.30056 q^{4} +3.91261 q^{7} +2.99427 q^{8} -2.65427 q^{11} +5.62692 q^{13} +9.00799 q^{14} +0.292570 q^{16} +1.86794 q^{17} +1.69944 q^{19} -6.11092 q^{22} -0.691975 q^{23} +12.9548 q^{26} +12.9138 q^{28} +1.00000 q^{29} -0.654273 q^{31} -5.31495 q^{32} +4.30056 q^{34} -3.91261 q^{37} +3.91261 q^{38} +10.7155 q^{43} -8.76059 q^{44} -1.59313 q^{46} +4.93495 q^{47} +8.30855 q^{49} +18.5720 q^{52} +7.67159 q^{53} +11.7154 q^{56} +2.30229 q^{58} -10.0000 q^{59} -4.70743 q^{61} -1.50633 q^{62} -12.8217 q^{64} +6.47253 q^{67} +6.16526 q^{68} -2.00000 q^{71} +10.5619 q^{73} -9.00799 q^{74} +5.60911 q^{76} -10.3851 q^{77} -2.05316 q^{79} +1.86794 q^{83} +24.6703 q^{86} -7.94761 q^{88} -3.30855 q^{89} +22.0160 q^{91} -2.28390 q^{92} +11.3617 q^{94} -0.384703 q^{97} +19.1287 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{4} + 10 q^{11} + 8 q^{14} + 42 q^{16} + 16 q^{19} + 46 q^{26} + 6 q^{29} + 22 q^{31} + 20 q^{34} + 2 q^{44} - 44 q^{46} - 2 q^{49} - 16 q^{56} - 60 q^{59} + 12 q^{61} + 38 q^{64} - 12 q^{71}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30229 1.62797 0.813984 0.580887i \(-0.197294\pi\)
0.813984 + 0.580887i \(0.197294\pi\)
\(3\) 0 0
\(4\) 3.30056 1.65028
\(5\) 0 0
\(6\) 0 0
\(7\) 3.91261 1.47883 0.739415 0.673250i \(-0.235102\pi\)
0.739415 + 0.673250i \(0.235102\pi\)
\(8\) 2.99427 1.05863
\(9\) 0 0
\(10\) 0 0
\(11\) −2.65427 −0.800294 −0.400147 0.916451i \(-0.631041\pi\)
−0.400147 + 0.916451i \(0.631041\pi\)
\(12\) 0 0
\(13\) 5.62692 1.56063 0.780314 0.625388i \(-0.215059\pi\)
0.780314 + 0.625388i \(0.215059\pi\)
\(14\) 9.00799 2.40749
\(15\) 0 0
\(16\) 0.292570 0.0731426
\(17\) 1.86794 0.453043 0.226522 0.974006i \(-0.427265\pi\)
0.226522 + 0.974006i \(0.427265\pi\)
\(18\) 0 0
\(19\) 1.69944 0.389879 0.194939 0.980815i \(-0.437549\pi\)
0.194939 + 0.980815i \(0.437549\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.11092 −1.30285
\(23\) −0.691975 −0.144287 −0.0721433 0.997394i \(-0.522984\pi\)
−0.0721433 + 0.997394i \(0.522984\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 12.9548 2.54065
\(27\) 0 0
\(28\) 12.9138 2.44048
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −0.654273 −0.117511 −0.0587555 0.998272i \(-0.518713\pi\)
−0.0587555 + 0.998272i \(0.518713\pi\)
\(32\) −5.31495 −0.939560
\(33\) 0 0
\(34\) 4.30056 0.737540
\(35\) 0 0
\(36\) 0 0
\(37\) −3.91261 −0.643230 −0.321615 0.946871i \(-0.604226\pi\)
−0.321615 + 0.946871i \(0.604226\pi\)
\(38\) 3.91261 0.634710
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.7155 1.63410 0.817050 0.576567i \(-0.195608\pi\)
0.817050 + 0.576567i \(0.195608\pi\)
\(44\) −8.76059 −1.32071
\(45\) 0 0
\(46\) −1.59313 −0.234894
\(47\) 4.93495 0.719836 0.359918 0.932984i \(-0.382805\pi\)
0.359918 + 0.932984i \(0.382805\pi\)
\(48\) 0 0
\(49\) 8.30855 1.18694
\(50\) 0 0
\(51\) 0 0
\(52\) 18.5720 2.57547
\(53\) 7.67159 1.05377 0.526887 0.849935i \(-0.323359\pi\)
0.526887 + 0.849935i \(0.323359\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 11.7154 1.56554
\(57\) 0 0
\(58\) 2.30229 0.302306
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −4.70743 −0.602725 −0.301362 0.953510i \(-0.597441\pi\)
−0.301362 + 0.953510i \(0.597441\pi\)
\(62\) −1.50633 −0.191304
\(63\) 0 0
\(64\) −12.8217 −1.60272
\(65\) 0 0
\(66\) 0 0
\(67\) 6.47253 0.790746 0.395373 0.918521i \(-0.370615\pi\)
0.395373 + 0.918521i \(0.370615\pi\)
\(68\) 6.16526 0.747648
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 10.5619 1.23617 0.618087 0.786110i \(-0.287908\pi\)
0.618087 + 0.786110i \(0.287908\pi\)
\(74\) −9.00799 −1.04716
\(75\) 0 0
\(76\) 5.60911 0.643409
\(77\) −10.3851 −1.18350
\(78\) 0 0
\(79\) −2.05316 −0.230998 −0.115499 0.993308i \(-0.536847\pi\)
−0.115499 + 0.993308i \(0.536847\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.86794 0.205034 0.102517 0.994731i \(-0.467310\pi\)
0.102517 + 0.994731i \(0.467310\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 24.6703 2.66026
\(87\) 0 0
\(88\) −7.94761 −0.847218
\(89\) −3.30855 −0.350705 −0.175353 0.984506i \(-0.556107\pi\)
−0.175353 + 0.984506i \(0.556107\pi\)
\(90\) 0 0
\(91\) 22.0160 2.30790
\(92\) −2.28390 −0.238113
\(93\) 0 0
\(94\) 11.3617 1.17187
\(95\) 0 0
\(96\) 0 0
\(97\) −0.384703 −0.0390607 −0.0195303 0.999809i \(-0.506217\pi\)
−0.0195303 + 0.999809i \(0.506217\pi\)
\(98\) 19.1287 1.93229
\(99\) 0 0
\(100\) 0 0
\(101\) −11.9097 −1.18506 −0.592528 0.805550i \(-0.701870\pi\)
−0.592528 + 0.805550i \(0.701870\pi\)
\(102\) 0 0
\(103\) −14.9585 −1.47390 −0.736951 0.675946i \(-0.763735\pi\)
−0.736951 + 0.675946i \(0.763735\pi\)
\(104\) 16.8485 1.65213
\(105\) 0 0
\(106\) 17.6623 1.71551
\(107\) 3.91261 0.378247 0.189123 0.981953i \(-0.439435\pi\)
0.189123 + 0.981953i \(0.439435\pi\)
\(108\) 0 0
\(109\) −7.55595 −0.723729 −0.361864 0.932231i \(-0.617860\pi\)
−0.361864 + 0.932231i \(0.617860\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.14472 0.108165
\(113\) 18.6944 1.75862 0.879309 0.476251i \(-0.158005\pi\)
0.879309 + 0.476251i \(0.158005\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.30056 0.306449
\(117\) 0 0
\(118\) −23.0229 −2.11943
\(119\) 7.30855 0.669973
\(120\) 0 0
\(121\) −3.95483 −0.359530
\(122\) −10.8379 −0.981216
\(123\) 0 0
\(124\) −2.15947 −0.193926
\(125\) 0 0
\(126\) 0 0
\(127\) 4.98929 0.442728 0.221364 0.975191i \(-0.428949\pi\)
0.221364 + 0.975191i \(0.428949\pi\)
\(128\) −18.8895 −1.66961
\(129\) 0 0
\(130\) 0 0
\(131\) −19.7154 −1.72254 −0.861272 0.508144i \(-0.830332\pi\)
−0.861272 + 0.508144i \(0.830332\pi\)
\(132\) 0 0
\(133\) 6.64926 0.576564
\(134\) 14.9017 1.28731
\(135\) 0 0
\(136\) 5.59313 0.479607
\(137\) 6.26455 0.535217 0.267608 0.963528i \(-0.413767\pi\)
0.267608 + 0.963528i \(0.413767\pi\)
\(138\) 0 0
\(139\) 21.9097 1.85835 0.929177 0.369636i \(-0.120518\pi\)
0.929177 + 0.369636i \(0.120518\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.60459 −0.386408
\(143\) −14.9354 −1.24896
\(144\) 0 0
\(145\) 0 0
\(146\) 24.3165 2.01245
\(147\) 0 0
\(148\) −12.9138 −1.06151
\(149\) −4.24740 −0.347961 −0.173980 0.984749i \(-0.555663\pi\)
−0.173980 + 0.984749i \(0.555663\pi\)
\(150\) 0 0
\(151\) −11.3085 −0.920277 −0.460138 0.887847i \(-0.652200\pi\)
−0.460138 + 0.887847i \(0.652200\pi\)
\(152\) 5.08858 0.412739
\(153\) 0 0
\(154\) −23.9097 −1.92670
\(155\) 0 0
\(156\) 0 0
\(157\) −4.12059 −0.328859 −0.164430 0.986389i \(-0.552578\pi\)
−0.164430 + 0.986389i \(0.552578\pi\)
\(158\) −4.72697 −0.376057
\(159\) 0 0
\(160\) 0 0
\(161\) −2.70743 −0.213375
\(162\) 0 0
\(163\) 3.19755 0.250452 0.125226 0.992128i \(-0.460034\pi\)
0.125226 + 0.992128i \(0.460034\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 4.30056 0.333788
\(167\) −14.6050 −1.13017 −0.565086 0.825032i \(-0.691157\pi\)
−0.565086 + 0.825032i \(0.691157\pi\)
\(168\) 0 0
\(169\) 18.6623 1.43556
\(170\) 0 0
\(171\) 0 0
\(172\) 35.3672 2.69672
\(173\) 9.00120 0.684348 0.342174 0.939637i \(-0.388837\pi\)
0.342174 + 0.939637i \(0.388837\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.776562 −0.0585356
\(177\) 0 0
\(178\) −7.61725 −0.570937
\(179\) 21.3085 1.59268 0.796338 0.604852i \(-0.206768\pi\)
0.796338 + 0.604852i \(0.206768\pi\)
\(180\) 0 0
\(181\) −16.9708 −1.26143 −0.630715 0.776014i \(-0.717238\pi\)
−0.630715 + 0.776014i \(0.717238\pi\)
\(182\) 50.6873 3.75719
\(183\) 0 0
\(184\) −2.07196 −0.152747
\(185\) 0 0
\(186\) 0 0
\(187\) −4.95804 −0.362568
\(188\) 16.2881 1.18793
\(189\) 0 0
\(190\) 0 0
\(191\) 8.40687 0.608300 0.304150 0.952624i \(-0.401628\pi\)
0.304150 + 0.952624i \(0.401628\pi\)
\(192\) 0 0
\(193\) 0.791267 0.0569567 0.0284783 0.999594i \(-0.490934\pi\)
0.0284783 + 0.999594i \(0.490934\pi\)
\(194\) −0.885700 −0.0635895
\(195\) 0 0
\(196\) 27.4228 1.95877
\(197\) −24.5062 −1.74599 −0.872997 0.487726i \(-0.837826\pi\)
−0.872997 + 0.487726i \(0.837826\pi\)
\(198\) 0 0
\(199\) 19.3085 1.36875 0.684373 0.729132i \(-0.260076\pi\)
0.684373 + 0.729132i \(0.260076\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −27.4196 −1.92923
\(203\) 3.91261 0.274612
\(204\) 0 0
\(205\) 0 0
\(206\) −34.4388 −2.39947
\(207\) 0 0
\(208\) 1.64627 0.114148
\(209\) −4.51078 −0.312017
\(210\) 0 0
\(211\) 19.2554 1.32560 0.662798 0.748798i \(-0.269369\pi\)
0.662798 + 0.748798i \(0.269369\pi\)
\(212\) 25.3205 1.73902
\(213\) 0 0
\(214\) 9.00799 0.615773
\(215\) 0 0
\(216\) 0 0
\(217\) −2.55992 −0.173779
\(218\) −17.3960 −1.17821
\(219\) 0 0
\(220\) 0 0
\(221\) 10.5108 0.707032
\(222\) 0 0
\(223\) 10.8691 0.727852 0.363926 0.931428i \(-0.381436\pi\)
0.363926 + 0.931428i \(0.381436\pi\)
\(224\) −20.7954 −1.38945
\(225\) 0 0
\(226\) 43.0399 2.86297
\(227\) −17.3104 −1.14893 −0.574467 0.818528i \(-0.694790\pi\)
−0.574467 + 0.818528i \(0.694790\pi\)
\(228\) 0 0
\(229\) 18.7074 1.23622 0.618111 0.786091i \(-0.287898\pi\)
0.618111 + 0.786091i \(0.287898\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.99427 0.196583
\(233\) −14.6281 −0.958320 −0.479160 0.877728i \(-0.659059\pi\)
−0.479160 + 0.877728i \(0.659059\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −33.0056 −2.14848
\(237\) 0 0
\(238\) 16.8264 1.09070
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −5.55595 −0.357890 −0.178945 0.983859i \(-0.557268\pi\)
−0.178945 + 0.983859i \(0.557268\pi\)
\(242\) −9.10519 −0.585304
\(243\) 0 0
\(244\) −15.5371 −0.994664
\(245\) 0 0
\(246\) 0 0
\(247\) 9.56263 0.608455
\(248\) −1.95907 −0.124401
\(249\) 0 0
\(250\) 0 0
\(251\) 9.27137 0.585204 0.292602 0.956234i \(-0.405479\pi\)
0.292602 + 0.956234i \(0.405479\pi\)
\(252\) 0 0
\(253\) 1.83669 0.115472
\(254\) 11.4868 0.720747
\(255\) 0 0
\(256\) −17.8457 −1.11536
\(257\) 14.1129 0.880337 0.440168 0.897915i \(-0.354919\pi\)
0.440168 + 0.897915i \(0.354919\pi\)
\(258\) 0 0
\(259\) −15.3085 −0.951227
\(260\) 0 0
\(261\) 0 0
\(262\) −45.3907 −2.80425
\(263\) −6.97962 −0.430382 −0.215191 0.976572i \(-0.569037\pi\)
−0.215191 + 0.976572i \(0.569037\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 15.3085 0.938627
\(267\) 0 0
\(268\) 21.3630 1.30495
\(269\) 7.29257 0.444636 0.222318 0.974974i \(-0.428638\pi\)
0.222318 + 0.974974i \(0.428638\pi\)
\(270\) 0 0
\(271\) −23.3617 −1.41912 −0.709561 0.704644i \(-0.751107\pi\)
−0.709561 + 0.704644i \(0.751107\pi\)
\(272\) 0.546506 0.0331368
\(273\) 0 0
\(274\) 14.4228 0.871316
\(275\) 0 0
\(276\) 0 0
\(277\) 2.91337 0.175047 0.0875236 0.996162i \(-0.472105\pi\)
0.0875236 + 0.996162i \(0.472105\pi\)
\(278\) 50.4425 3.02534
\(279\) 0 0
\(280\) 0 0
\(281\) −30.1730 −1.79997 −0.899986 0.435918i \(-0.856424\pi\)
−0.899986 + 0.435918i \(0.856424\pi\)
\(282\) 0 0
\(283\) 2.01341 0.119685 0.0598425 0.998208i \(-0.480940\pi\)
0.0598425 + 0.998208i \(0.480940\pi\)
\(284\) −6.60112 −0.391704
\(285\) 0 0
\(286\) −34.3857 −2.03327
\(287\) 0 0
\(288\) 0 0
\(289\) −13.5108 −0.794752
\(290\) 0 0
\(291\) 0 0
\(292\) 34.8601 2.04003
\(293\) −10.8691 −0.634982 −0.317491 0.948261i \(-0.602840\pi\)
−0.317491 + 0.948261i \(0.602840\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.7154 −0.680945
\(297\) 0 0
\(298\) −9.77877 −0.566469
\(299\) −3.89369 −0.225178
\(300\) 0 0
\(301\) 41.9256 2.41655
\(302\) −26.0356 −1.49818
\(303\) 0 0
\(304\) 0.497206 0.0285167
\(305\) 0 0
\(306\) 0 0
\(307\) 9.02429 0.515043 0.257522 0.966273i \(-0.417094\pi\)
0.257522 + 0.966273i \(0.417094\pi\)
\(308\) −34.2768 −1.95310
\(309\) 0 0
\(310\) 0 0
\(311\) 11.1143 0.630234 0.315117 0.949053i \(-0.397956\pi\)
0.315117 + 0.949053i \(0.397956\pi\)
\(312\) 0 0
\(313\) 25.7365 1.45471 0.727356 0.686260i \(-0.240749\pi\)
0.727356 + 0.686260i \(0.240749\pi\)
\(314\) −9.48682 −0.535372
\(315\) 0 0
\(316\) −6.77656 −0.381211
\(317\) 0.837444 0.0470355 0.0235178 0.999723i \(-0.492513\pi\)
0.0235178 + 0.999723i \(0.492513\pi\)
\(318\) 0 0
\(319\) −2.65427 −0.148611
\(320\) 0 0
\(321\) 0 0
\(322\) −6.23330 −0.347368
\(323\) 3.17446 0.176632
\(324\) 0 0
\(325\) 0 0
\(326\) 7.36170 0.407727
\(327\) 0 0
\(328\) 0 0
\(329\) 19.3085 1.06451
\(330\) 0 0
\(331\) 22.0691 1.21303 0.606515 0.795072i \(-0.292567\pi\)
0.606515 + 0.795072i \(0.292567\pi\)
\(332\) 6.16526 0.338363
\(333\) 0 0
\(334\) −33.6251 −1.83988
\(335\) 0 0
\(336\) 0 0
\(337\) −7.74780 −0.422049 −0.211025 0.977481i \(-0.567680\pi\)
−0.211025 + 0.977481i \(0.567680\pi\)
\(338\) 42.9660 2.33704
\(339\) 0 0
\(340\) 0 0
\(341\) 1.73662 0.0940433
\(342\) 0 0
\(343\) 5.11984 0.276445
\(344\) 32.0851 1.72991
\(345\) 0 0
\(346\) 20.7234 1.11410
\(347\) 9.33972 0.501383 0.250691 0.968067i \(-0.419342\pi\)
0.250691 + 0.968067i \(0.419342\pi\)
\(348\) 0 0
\(349\) −21.6623 −1.15955 −0.579777 0.814775i \(-0.696860\pi\)
−0.579777 + 0.814775i \(0.696860\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 14.1073 0.751924
\(353\) −20.5623 −1.09442 −0.547211 0.836995i \(-0.684310\pi\)
−0.547211 + 0.836995i \(0.684310\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.9201 −0.578762
\(357\) 0 0
\(358\) 49.0585 2.59282
\(359\) −30.5639 −1.61310 −0.806551 0.591164i \(-0.798669\pi\)
−0.806551 + 0.591164i \(0.798669\pi\)
\(360\) 0 0
\(361\) −16.1119 −0.847995
\(362\) −39.0718 −2.05357
\(363\) 0 0
\(364\) 72.6650 3.80868
\(365\) 0 0
\(366\) 0 0
\(367\) −13.7825 −0.719441 −0.359721 0.933060i \(-0.617128\pi\)
−0.359721 + 0.933060i \(0.617128\pi\)
\(368\) −0.202451 −0.0105535
\(369\) 0 0
\(370\) 0 0
\(371\) 30.0160 1.55835
\(372\) 0 0
\(373\) −27.2659 −1.41178 −0.705888 0.708324i \(-0.749452\pi\)
−0.705888 + 0.708324i \(0.749452\pi\)
\(374\) −11.4149 −0.590248
\(375\) 0 0
\(376\) 14.7766 0.762043
\(377\) 5.62692 0.289801
\(378\) 0 0
\(379\) 16.4069 0.842764 0.421382 0.906883i \(-0.361545\pi\)
0.421382 + 0.906883i \(0.361545\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.3551 0.990293
\(383\) 11.7378 0.599776 0.299888 0.953974i \(-0.403051\pi\)
0.299888 + 0.953974i \(0.403051\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.82173 0.0927236
\(387\) 0 0
\(388\) −1.26974 −0.0644610
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −1.29257 −0.0653681
\(392\) 24.8780 1.25653
\(393\) 0 0
\(394\) −56.4204 −2.84242
\(395\) 0 0
\(396\) 0 0
\(397\) 6.03349 0.302812 0.151406 0.988472i \(-0.451620\pi\)
0.151406 + 0.988472i \(0.451620\pi\)
\(398\) 44.4540 2.22828
\(399\) 0 0
\(400\) 0 0
\(401\) 21.4656 1.07194 0.535971 0.844237i \(-0.319946\pi\)
0.535971 + 0.844237i \(0.319946\pi\)
\(402\) 0 0
\(403\) −3.68155 −0.183391
\(404\) −39.3085 −1.95567
\(405\) 0 0
\(406\) 9.00799 0.447059
\(407\) 10.3851 0.514773
\(408\) 0 0
\(409\) −4.49481 −0.222254 −0.111127 0.993806i \(-0.535446\pi\)
−0.111127 + 0.993806i \(0.535446\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −49.3713 −2.43235
\(413\) −39.1261 −1.92527
\(414\) 0 0
\(415\) 0 0
\(416\) −29.9068 −1.46630
\(417\) 0 0
\(418\) −10.3851 −0.507954
\(419\) −4.19665 −0.205020 −0.102510 0.994732i \(-0.532687\pi\)
−0.102510 + 0.994732i \(0.532687\pi\)
\(420\) 0 0
\(421\) −18.5108 −0.902160 −0.451080 0.892483i \(-0.648961\pi\)
−0.451080 + 0.892483i \(0.648961\pi\)
\(422\) 44.3316 2.15803
\(423\) 0 0
\(424\) 22.9708 1.11556
\(425\) 0 0
\(426\) 0 0
\(427\) −18.4184 −0.891327
\(428\) 12.9138 0.624213
\(429\) 0 0
\(430\) 0 0
\(431\) −37.1279 −1.78839 −0.894193 0.447681i \(-0.852250\pi\)
−0.894193 + 0.447681i \(0.852250\pi\)
\(432\) 0 0
\(433\) −16.8577 −0.810128 −0.405064 0.914288i \(-0.632751\pi\)
−0.405064 + 0.914288i \(0.632751\pi\)
\(434\) −5.89369 −0.282906
\(435\) 0 0
\(436\) −24.9389 −1.19435
\(437\) −1.17597 −0.0562543
\(438\) 0 0
\(439\) −9.21821 −0.439961 −0.219981 0.975504i \(-0.570599\pi\)
−0.219981 + 0.975504i \(0.570599\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.1989 1.15102
\(443\) −18.9023 −0.898078 −0.449039 0.893512i \(-0.648234\pi\)
−0.449039 + 0.893512i \(0.648234\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 25.0240 1.18492
\(447\) 0 0
\(448\) −50.1665 −2.37014
\(449\) 31.3245 1.47830 0.739148 0.673543i \(-0.235228\pi\)
0.739148 + 0.673543i \(0.235228\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 61.7019 2.90221
\(453\) 0 0
\(454\) −39.8537 −1.87043
\(455\) 0 0
\(456\) 0 0
\(457\) −36.6287 −1.71342 −0.856710 0.515799i \(-0.827495\pi\)
−0.856710 + 0.515799i \(0.827495\pi\)
\(458\) 43.0700 2.01253
\(459\) 0 0
\(460\) 0 0
\(461\) −28.8297 −1.34273 −0.671367 0.741125i \(-0.734293\pi\)
−0.671367 + 0.741125i \(0.734293\pi\)
\(462\) 0 0
\(463\) −29.6409 −1.37753 −0.688766 0.724984i \(-0.741847\pi\)
−0.688766 + 0.724984i \(0.741847\pi\)
\(464\) 0.292570 0.0135822
\(465\) 0 0
\(466\) −33.6782 −1.56011
\(467\) −26.4746 −1.22510 −0.612550 0.790432i \(-0.709856\pi\)
−0.612550 + 0.790432i \(0.709856\pi\)
\(468\) 0 0
\(469\) 25.3245 1.16938
\(470\) 0 0
\(471\) 0 0
\(472\) −29.9427 −1.37822
\(473\) −28.4419 −1.30776
\(474\) 0 0
\(475\) 0 0
\(476\) 24.1223 1.10564
\(477\) 0 0
\(478\) 4.60459 0.210609
\(479\) −27.1810 −1.24193 −0.620967 0.783837i \(-0.713260\pi\)
−0.620967 + 0.783837i \(0.713260\pi\)
\(480\) 0 0
\(481\) −22.0160 −1.00384
\(482\) −12.7914 −0.582634
\(483\) 0 0
\(484\) −13.0532 −0.593325
\(485\) 0 0
\(486\) 0 0
\(487\) 32.0922 1.45424 0.727118 0.686513i \(-0.240859\pi\)
0.727118 + 0.686513i \(0.240859\pi\)
\(488\) −14.0953 −0.638065
\(489\) 0 0
\(490\) 0 0
\(491\) 10.0691 0.454414 0.227207 0.973847i \(-0.427041\pi\)
0.227207 + 0.973847i \(0.427041\pi\)
\(492\) 0 0
\(493\) 1.86794 0.0841280
\(494\) 22.0160 0.990546
\(495\) 0 0
\(496\) −0.191421 −0.00859506
\(497\) −7.82523 −0.351009
\(498\) 0 0
\(499\) −29.9416 −1.34037 −0.670185 0.742194i \(-0.733785\pi\)
−0.670185 + 0.742194i \(0.733785\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 21.3454 0.952693
\(503\) 24.0140 1.07073 0.535366 0.844620i \(-0.320174\pi\)
0.535366 + 0.844620i \(0.320174\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4.22860 0.187984
\(507\) 0 0
\(508\) 16.4674 0.730625
\(509\) 21.0771 0.934227 0.467113 0.884197i \(-0.345294\pi\)
0.467113 + 0.884197i \(0.345294\pi\)
\(510\) 0 0
\(511\) 41.3245 1.82809
\(512\) −3.30707 −0.146153
\(513\) 0 0
\(514\) 32.4920 1.43316
\(515\) 0 0
\(516\) 0 0
\(517\) −13.0987 −0.576080
\(518\) −35.2448 −1.54857
\(519\) 0 0
\(520\) 0 0
\(521\) −11.6623 −0.510933 −0.255466 0.966818i \(-0.582229\pi\)
−0.255466 + 0.966818i \(0.582229\pi\)
\(522\) 0 0
\(523\) −36.3895 −1.59120 −0.795601 0.605821i \(-0.792845\pi\)
−0.795601 + 0.605821i \(0.792845\pi\)
\(524\) −65.0719 −2.84268
\(525\) 0 0
\(526\) −16.0691 −0.700647
\(527\) −1.22215 −0.0532376
\(528\) 0 0
\(529\) −22.5212 −0.979181
\(530\) 0 0
\(531\) 0 0
\(532\) 21.9463 0.951491
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 19.3805 0.837110
\(537\) 0 0
\(538\) 16.7896 0.723853
\(539\) −22.0532 −0.949897
\(540\) 0 0
\(541\) 9.92564 0.426737 0.213368 0.976972i \(-0.431557\pi\)
0.213368 + 0.976972i \(0.431557\pi\)
\(542\) −53.7855 −2.31029
\(543\) 0 0
\(544\) −9.92804 −0.425661
\(545\) 0 0
\(546\) 0 0
\(547\) 9.03245 0.386200 0.193100 0.981179i \(-0.438146\pi\)
0.193100 + 0.981179i \(0.438146\pi\)
\(548\) 20.6765 0.883258
\(549\) 0 0
\(550\) 0 0
\(551\) 1.69944 0.0723986
\(552\) 0 0
\(553\) −8.03321 −0.341607
\(554\) 6.70743 0.284971
\(555\) 0 0
\(556\) 72.3141 3.06680
\(557\) −13.7145 −0.581101 −0.290550 0.956860i \(-0.593838\pi\)
−0.290550 + 0.956860i \(0.593838\pi\)
\(558\) 0 0
\(559\) 60.2953 2.55022
\(560\) 0 0
\(561\) 0 0
\(562\) −69.4672 −2.93030
\(563\) 20.2781 0.854621 0.427311 0.904105i \(-0.359461\pi\)
0.427311 + 0.904105i \(0.359461\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.63547 0.194843
\(567\) 0 0
\(568\) −5.98854 −0.251273
\(569\) −13.3085 −0.557923 −0.278962 0.960302i \(-0.589990\pi\)
−0.278962 + 0.960302i \(0.589990\pi\)
\(570\) 0 0
\(571\) −16.4204 −0.687174 −0.343587 0.939121i \(-0.611642\pi\)
−0.343587 + 0.939121i \(0.611642\pi\)
\(572\) −49.2951 −2.06113
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.7505 −0.614071 −0.307036 0.951698i \(-0.599337\pi\)
−0.307036 + 0.951698i \(0.599337\pi\)
\(578\) −31.1058 −1.29383
\(579\) 0 0
\(580\) 0 0
\(581\) 7.30855 0.303210
\(582\) 0 0
\(583\) −20.3625 −0.843329
\(584\) 31.6251 1.30866
\(585\) 0 0
\(586\) −25.0240 −1.03373
\(587\) 6.36385 0.262664 0.131332 0.991338i \(-0.458075\pi\)
0.131332 + 0.991338i \(0.458075\pi\)
\(588\) 0 0
\(589\) −1.11190 −0.0458150
\(590\) 0 0
\(591\) 0 0
\(592\) −1.14472 −0.0470475
\(593\) −30.0706 −1.23485 −0.617426 0.786629i \(-0.711824\pi\)
−0.617426 + 0.786629i \(0.711824\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14.0188 −0.574233
\(597\) 0 0
\(598\) −8.96442 −0.366582
\(599\) 25.0587 1.02387 0.511936 0.859023i \(-0.328928\pi\)
0.511936 + 0.859023i \(0.328928\pi\)
\(600\) 0 0
\(601\) 40.0320 1.63294 0.816469 0.577390i \(-0.195929\pi\)
0.816469 + 0.577390i \(0.195929\pi\)
\(602\) 96.5252 3.93407
\(603\) 0 0
\(604\) −37.3245 −1.51871
\(605\) 0 0
\(606\) 0 0
\(607\) −41.3557 −1.67858 −0.839288 0.543687i \(-0.817028\pi\)
−0.839288 + 0.543687i \(0.817028\pi\)
\(608\) −9.03245 −0.366314
\(609\) 0 0
\(610\) 0 0
\(611\) 27.7686 1.12340
\(612\) 0 0
\(613\) 40.5183 1.63652 0.818258 0.574851i \(-0.194940\pi\)
0.818258 + 0.574851i \(0.194940\pi\)
\(614\) 20.7766 0.838474
\(615\) 0 0
\(616\) −31.0959 −1.25289
\(617\) −1.76865 −0.0712033 −0.0356016 0.999366i \(-0.511335\pi\)
−0.0356016 + 0.999366i \(0.511335\pi\)
\(618\) 0 0
\(619\) −0.249804 −0.0100405 −0.00502023 0.999987i \(-0.501598\pi\)
−0.00502023 + 0.999987i \(0.501598\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 25.5884 1.02600
\(623\) −12.9451 −0.518633
\(624\) 0 0
\(625\) 0 0
\(626\) 59.2530 2.36823
\(627\) 0 0
\(628\) −13.6003 −0.542709
\(629\) −7.30855 −0.291411
\(630\) 0 0
\(631\) 9.48922 0.377760 0.188880 0.982000i \(-0.439514\pi\)
0.188880 + 0.982000i \(0.439514\pi\)
\(632\) −6.14770 −0.244542
\(633\) 0 0
\(634\) 1.92804 0.0765723
\(635\) 0 0
\(636\) 0 0
\(637\) 46.7516 1.85236
\(638\) −6.11092 −0.241934
\(639\) 0 0
\(640\) 0 0
\(641\) 49.9416 1.97258 0.986288 0.165035i \(-0.0527738\pi\)
0.986288 + 0.165035i \(0.0527738\pi\)
\(642\) 0 0
\(643\) 25.8589 1.01977 0.509887 0.860241i \(-0.329687\pi\)
0.509887 + 0.860241i \(0.329687\pi\)
\(644\) −8.93603 −0.352129
\(645\) 0 0
\(646\) 7.30855 0.287551
\(647\) 32.1384 1.26349 0.631745 0.775177i \(-0.282339\pi\)
0.631745 + 0.775177i \(0.282339\pi\)
\(648\) 0 0
\(649\) 26.5427 1.04189
\(650\) 0 0
\(651\) 0 0
\(652\) 10.5537 0.413315
\(653\) 9.79247 0.383209 0.191604 0.981472i \(-0.438631\pi\)
0.191604 + 0.981472i \(0.438631\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 44.4540 1.73300
\(659\) 7.55835 0.294432 0.147216 0.989104i \(-0.452969\pi\)
0.147216 + 0.989104i \(0.452969\pi\)
\(660\) 0 0
\(661\) −10.9041 −0.424119 −0.212060 0.977257i \(-0.568017\pi\)
−0.212060 + 0.977257i \(0.568017\pi\)
\(662\) 50.8096 1.97477
\(663\) 0 0
\(664\) 5.59313 0.217056
\(665\) 0 0
\(666\) 0 0
\(667\) −0.691975 −0.0267934
\(668\) −48.2048 −1.86510
\(669\) 0 0
\(670\) 0 0
\(671\) 12.4948 0.482357
\(672\) 0 0
\(673\) 12.6296 0.486836 0.243418 0.969921i \(-0.421731\pi\)
0.243418 + 0.969921i \(0.421731\pi\)
\(674\) −17.8377 −0.687083
\(675\) 0 0
\(676\) 61.5959 2.36907
\(677\) 8.87065 0.340927 0.170463 0.985364i \(-0.445474\pi\)
0.170463 + 0.985364i \(0.445474\pi\)
\(678\) 0 0
\(679\) −1.50519 −0.0577641
\(680\) 0 0
\(681\) 0 0
\(682\) 3.99821 0.153099
\(683\) −24.4749 −0.936507 −0.468254 0.883594i \(-0.655117\pi\)
−0.468254 + 0.883594i \(0.655117\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 11.7874 0.450044
\(687\) 0 0
\(688\) 3.13504 0.119522
\(689\) 43.1675 1.64455
\(690\) 0 0
\(691\) −3.30855 −0.125863 −0.0629315 0.998018i \(-0.520045\pi\)
−0.0629315 + 0.998018i \(0.520045\pi\)
\(692\) 29.7090 1.12937
\(693\) 0 0
\(694\) 21.5028 0.816235
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −49.8729 −1.88772
\(699\) 0 0
\(700\) 0 0
\(701\) 10.8485 0.409743 0.204871 0.978789i \(-0.434322\pi\)
0.204871 + 0.978789i \(0.434322\pi\)
\(702\) 0 0
\(703\) −6.64926 −0.250781
\(704\) 34.0324 1.28264
\(705\) 0 0
\(706\) −47.3405 −1.78168
\(707\) −46.5979 −1.75250
\(708\) 0 0
\(709\) −31.1675 −1.17052 −0.585259 0.810846i \(-0.699007\pi\)
−0.585259 + 0.810846i \(0.699007\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −9.90668 −0.371269
\(713\) 0.452741 0.0169553
\(714\) 0 0
\(715\) 0 0
\(716\) 70.3301 2.62836
\(717\) 0 0
\(718\) −70.3672 −2.62608
\(719\) 13.0056 0.485027 0.242513 0.970148i \(-0.422028\pi\)
0.242513 + 0.970148i \(0.422028\pi\)
\(720\) 0 0
\(721\) −58.5268 −2.17965
\(722\) −37.0943 −1.38051
\(723\) 0 0
\(724\) −56.0132 −2.08171
\(725\) 0 0
\(726\) 0 0
\(727\) 1.19089 0.0441677 0.0220839 0.999756i \(-0.492970\pi\)
0.0220839 + 0.999756i \(0.492970\pi\)
\(728\) 65.9218 2.44322
\(729\) 0 0
\(730\) 0 0
\(731\) 20.0160 0.740318
\(732\) 0 0
\(733\) −34.5990 −1.27794 −0.638971 0.769231i \(-0.720640\pi\)
−0.638971 + 0.769231i \(0.720640\pi\)
\(734\) −31.7314 −1.17123
\(735\) 0 0
\(736\) 3.67781 0.135566
\(737\) −17.1799 −0.632829
\(738\) 0 0
\(739\) −41.7821 −1.53698 −0.768491 0.639861i \(-0.778992\pi\)
−0.768491 + 0.639861i \(0.778992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 69.1056 2.53695
\(743\) −4.02130 −0.147527 −0.0737636 0.997276i \(-0.523501\pi\)
−0.0737636 + 0.997276i \(0.523501\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −62.7742 −2.29833
\(747\) 0 0
\(748\) −16.3643 −0.598338
\(749\) 15.3085 0.559362
\(750\) 0 0
\(751\) −0.497206 −0.0181433 −0.00907166 0.999959i \(-0.502888\pi\)
−0.00907166 + 0.999959i \(0.502888\pi\)
\(752\) 1.44382 0.0526507
\(753\) 0 0
\(754\) 12.9548 0.471787
\(755\) 0 0
\(756\) 0 0
\(757\) 18.6944 0.679458 0.339729 0.940523i \(-0.389665\pi\)
0.339729 + 0.940523i \(0.389665\pi\)
\(758\) 37.7734 1.37199
\(759\) 0 0
\(760\) 0 0
\(761\) 3.38291 0.122630 0.0613151 0.998118i \(-0.480471\pi\)
0.0613151 + 0.998118i \(0.480471\pi\)
\(762\) 0 0
\(763\) −29.5635 −1.07027
\(764\) 27.7474 1.00386
\(765\) 0 0
\(766\) 27.0240 0.976416
\(767\) −56.2692 −2.03176
\(768\) 0 0
\(769\) −7.41486 −0.267387 −0.133693 0.991023i \(-0.542684\pi\)
−0.133693 + 0.991023i \(0.542684\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.61162 0.0939944
\(773\) −33.2775 −1.19691 −0.598455 0.801156i \(-0.704218\pi\)
−0.598455 + 0.801156i \(0.704218\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.15190 −0.0413510
\(777\) 0 0
\(778\) 27.6275 0.990495
\(779\) 0 0
\(780\) 0 0
\(781\) 5.30855 0.189955
\(782\) −2.97588 −0.106417
\(783\) 0 0
\(784\) 2.43084 0.0868156
\(785\) 0 0
\(786\) 0 0
\(787\) −18.2878 −0.651890 −0.325945 0.945389i \(-0.605682\pi\)
−0.325945 + 0.945389i \(0.605682\pi\)
\(788\) −80.8841 −2.88138
\(789\) 0 0
\(790\) 0 0
\(791\) 73.1439 2.60070
\(792\) 0 0
\(793\) −26.4883 −0.940629
\(794\) 13.8909 0.492968
\(795\) 0 0
\(796\) 63.7290 2.25881
\(797\) −44.5845 −1.57926 −0.789632 0.613581i \(-0.789729\pi\)
−0.789632 + 0.613581i \(0.789729\pi\)
\(798\) 0 0
\(799\) 9.21821 0.326117
\(800\) 0 0
\(801\) 0 0
\(802\) 49.4202 1.74509
\(803\) −28.0341 −0.989302
\(804\) 0 0
\(805\) 0 0
\(806\) −8.47600 −0.298554
\(807\) 0 0
\(808\) −35.6607 −1.25454
\(809\) −14.1063 −0.495952 −0.247976 0.968766i \(-0.579765\pi\)
−0.247976 + 0.968766i \(0.579765\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 12.9138 0.453186
\(813\) 0 0
\(814\) 23.9097 0.838033
\(815\) 0 0
\(816\) 0 0
\(817\) 18.2104 0.637100
\(818\) −10.3484 −0.361822
\(819\) 0 0
\(820\) 0 0
\(821\) −18.1571 −0.633686 −0.316843 0.948478i \(-0.602623\pi\)
−0.316843 + 0.948478i \(0.602623\pi\)
\(822\) 0 0
\(823\) −3.25189 −0.113354 −0.0566770 0.998393i \(-0.518051\pi\)
−0.0566770 + 0.998393i \(0.518051\pi\)
\(824\) −44.7897 −1.56032
\(825\) 0 0
\(826\) −90.0799 −3.13428
\(827\) 10.7155 0.372615 0.186307 0.982492i \(-0.440348\pi\)
0.186307 + 0.982492i \(0.440348\pi\)
\(828\) 0 0
\(829\) 52.3461 1.81805 0.909027 0.416736i \(-0.136826\pi\)
0.909027 + 0.416736i \(0.136826\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −72.1469 −2.50124
\(833\) 15.5199 0.537733
\(834\) 0 0
\(835\) 0 0
\(836\) −14.8881 −0.514916
\(837\) 0 0
\(838\) −9.66192 −0.333765
\(839\) −24.6703 −0.851712 −0.425856 0.904791i \(-0.640027\pi\)
−0.425856 + 0.904791i \(0.640027\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −42.6173 −1.46869
\(843\) 0 0
\(844\) 63.5535 2.18760
\(845\) 0 0
\(846\) 0 0
\(847\) −15.4737 −0.531684
\(848\) 2.24448 0.0770758
\(849\) 0 0
\(850\) 0 0
\(851\) 2.70743 0.0928095
\(852\) 0 0
\(853\) 28.1115 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(854\) −42.4045 −1.45105
\(855\) 0 0
\(856\) 11.7154 0.400425
\(857\) 8.39482 0.286762 0.143381 0.989668i \(-0.454203\pi\)
0.143381 + 0.989668i \(0.454203\pi\)
\(858\) 0 0
\(859\) 17.8405 0.608711 0.304356 0.952559i \(-0.401559\pi\)
0.304356 + 0.952559i \(0.401559\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −85.4793 −2.91144
\(863\) −2.48249 −0.0845049 −0.0422524 0.999107i \(-0.513453\pi\)
−0.0422524 + 0.999107i \(0.513453\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −38.8113 −1.31886
\(867\) 0 0
\(868\) −8.44916 −0.286783
\(869\) 5.44964 0.184866
\(870\) 0 0
\(871\) 36.4204 1.23406
\(872\) −22.6245 −0.766164
\(873\) 0 0
\(874\) −2.70743 −0.0915802
\(875\) 0 0
\(876\) 0 0
\(877\) 25.9813 0.877325 0.438662 0.898652i \(-0.355452\pi\)
0.438662 + 0.898652i \(0.355452\pi\)
\(878\) −21.2230 −0.716243
\(879\) 0 0
\(880\) 0 0
\(881\) −25.1279 −0.846580 −0.423290 0.905994i \(-0.639125\pi\)
−0.423290 + 0.905994i \(0.639125\pi\)
\(882\) 0 0
\(883\) −10.9684 −0.369117 −0.184559 0.982822i \(-0.559086\pi\)
−0.184559 + 0.982822i \(0.559086\pi\)
\(884\) 34.6915 1.16680
\(885\) 0 0
\(886\) −43.5188 −1.46204
\(887\) 2.99897 0.100695 0.0503477 0.998732i \(-0.483967\pi\)
0.0503477 + 0.998732i \(0.483967\pi\)
\(888\) 0 0
\(889\) 19.5212 0.654719
\(890\) 0 0
\(891\) 0 0
\(892\) 35.8742 1.20116
\(893\) 8.38665 0.280649
\(894\) 0 0
\(895\) 0 0
\(896\) −73.9073 −2.46907
\(897\) 0 0
\(898\) 72.1183 2.40662
\(899\) −0.654273 −0.0218212
\(900\) 0 0
\(901\) 14.3301 0.477405
\(902\) 0 0
\(903\) 0 0
\(904\) 55.9760 1.86173
\(905\) 0 0
\(906\) 0 0
\(907\) −50.5567 −1.67871 −0.839354 0.543585i \(-0.817066\pi\)
−0.839354 + 0.543585i \(0.817066\pi\)
\(908\) −57.1341 −1.89606
\(909\) 0 0
\(910\) 0 0
\(911\) −35.9044 −1.18957 −0.594784 0.803886i \(-0.702762\pi\)
−0.594784 + 0.803886i \(0.702762\pi\)
\(912\) 0 0
\(913\) −4.95804 −0.164087
\(914\) −84.3301 −2.78939
\(915\) 0 0
\(916\) 61.7450 2.04011
\(917\) −77.1388 −2.54735
\(918\) 0 0
\(919\) 15.2022 0.501475 0.250738 0.968055i \(-0.419327\pi\)
0.250738 + 0.968055i \(0.419327\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −66.3745 −2.18593
\(923\) −11.2538 −0.370425
\(924\) 0 0
\(925\) 0 0
\(926\) −68.2422 −2.24258
\(927\) 0 0
\(928\) −5.31495 −0.174472
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 14.1199 0.462761
\(932\) −48.2810 −1.58150
\(933\) 0 0
\(934\) −60.9524 −1.99442
\(935\) 0 0
\(936\) 0 0
\(937\) 32.1859 1.05147 0.525734 0.850649i \(-0.323791\pi\)
0.525734 + 0.850649i \(0.323791\pi\)
\(938\) 58.3045 1.90371
\(939\) 0 0
\(940\) 0 0
\(941\) −22.3697 −0.729231 −0.364616 0.931158i \(-0.618800\pi\)
−0.364616 + 0.931158i \(0.618800\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −2.92570 −0.0952236
\(945\) 0 0
\(946\) −65.4816 −2.12899
\(947\) 0.122381 0.00397684 0.00198842 0.999998i \(-0.499367\pi\)
0.00198842 + 0.999998i \(0.499367\pi\)
\(948\) 0 0
\(949\) 59.4308 1.92921
\(950\) 0 0
\(951\) 0 0
\(952\) 21.8838 0.709257
\(953\) −55.4917 −1.79755 −0.898776 0.438409i \(-0.855542\pi\)
−0.898776 + 0.438409i \(0.855542\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.60112 0.213495
\(957\) 0 0
\(958\) −62.5787 −2.02183
\(959\) 24.5108 0.791494
\(960\) 0 0
\(961\) −30.5719 −0.986191
\(962\) −50.6873 −1.63422
\(963\) 0 0
\(964\) −18.3377 −0.590619
\(965\) 0 0
\(966\) 0 0
\(967\) −49.0722 −1.57806 −0.789028 0.614357i \(-0.789416\pi\)
−0.789028 + 0.614357i \(0.789416\pi\)
\(968\) −11.8418 −0.380611
\(969\) 0 0
\(970\) 0 0
\(971\) −2.08793 −0.0670050 −0.0335025 0.999439i \(-0.510666\pi\)
−0.0335025 + 0.999439i \(0.510666\pi\)
\(972\) 0 0
\(973\) 85.7241 2.74819
\(974\) 73.8856 2.36745
\(975\) 0 0
\(976\) −1.37725 −0.0440849
\(977\) −36.5119 −1.16812 −0.584059 0.811711i \(-0.698536\pi\)
−0.584059 + 0.811711i \(0.698536\pi\)
\(978\) 0 0
\(979\) 8.78179 0.280667
\(980\) 0 0
\(981\) 0 0
\(982\) 23.1821 0.739771
\(983\) 32.8698 1.04838 0.524191 0.851601i \(-0.324368\pi\)
0.524191 + 0.851601i \(0.324368\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.30056 0.136958
\(987\) 0 0
\(988\) 31.5620 1.00412
\(989\) −7.41486 −0.235779
\(990\) 0 0
\(991\) −36.0160 −1.14409 −0.572043 0.820224i \(-0.693849\pi\)
−0.572043 + 0.820224i \(0.693849\pi\)
\(992\) 3.47743 0.110409
\(993\) 0 0
\(994\) −18.0160 −0.571432
\(995\) 0 0
\(996\) 0 0
\(997\) 56.8063 1.79907 0.899537 0.436844i \(-0.143904\pi\)
0.899537 + 0.436844i \(0.143904\pi\)
\(998\) −68.9344 −2.18208
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bt.1.5 6
3.2 odd 2 725.2.a.l.1.2 6
5.2 odd 4 1305.2.c.h.784.5 6
5.3 odd 4 1305.2.c.h.784.2 6
5.4 even 2 inner 6525.2.a.bt.1.2 6
15.2 even 4 145.2.b.c.59.2 6
15.8 even 4 145.2.b.c.59.5 yes 6
15.14 odd 2 725.2.a.l.1.5 6
60.23 odd 4 2320.2.d.g.929.6 6
60.47 odd 4 2320.2.d.g.929.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.2 6 15.2 even 4
145.2.b.c.59.5 yes 6 15.8 even 4
725.2.a.l.1.2 6 3.2 odd 2
725.2.a.l.1.5 6 15.14 odd 2
1305.2.c.h.784.2 6 5.3 odd 4
1305.2.c.h.784.5 6 5.2 odd 4
2320.2.d.g.929.1 6 60.47 odd 4
2320.2.d.g.929.6 6 60.23 odd 4
6525.2.a.bt.1.2 6 5.4 even 2 inner
6525.2.a.bt.1.5 6 1.1 even 1 trivial