Properties

Label 6525.2.a.bs.1.5
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6525,2,Mod(1,6525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.246832.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.51908\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51908 q^{2} +4.34577 q^{4} -0.173311 q^{7} +5.90919 q^{8} -5.08250 q^{11} -1.82669 q^{13} -0.436584 q^{14} +6.19418 q^{16} -4.24598 q^{17} -8.62093 q^{19} -12.8032 q^{22} +3.16348 q^{23} -4.60158 q^{26} -0.753170 q^{28} -1.00000 q^{29} +3.22185 q^{31} +3.78527 q^{32} -10.6960 q^{34} -1.97828 q^{37} -21.7168 q^{38} +9.96541 q^{41} -7.91070 q^{43} -22.0874 q^{44} +7.96907 q^{46} -8.66893 q^{47} -6.96996 q^{49} -7.93837 q^{52} +5.40285 q^{53} -1.02413 q^{56} -2.51908 q^{58} -7.66286 q^{59} +2.76215 q^{61} +8.11611 q^{62} -2.85296 q^{64} -8.13872 q^{67} -18.4520 q^{68} +6.25938 q^{71} +6.74356 q^{73} -4.98345 q^{74} -37.4646 q^{76} +0.880853 q^{77} +4.54763 q^{79} +25.1037 q^{82} -11.6224 q^{83} -19.9277 q^{86} -30.0334 q^{88} +16.4911 q^{89} +0.316585 q^{91} +13.7478 q^{92} -21.8377 q^{94} -2.74419 q^{97} -17.5579 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 5 q^{4} - 8 q^{7} + 9 q^{8} - 12 q^{11} - 2 q^{13} - 6 q^{14} + q^{16} - 2 q^{19} - 14 q^{22} + 8 q^{23} + 6 q^{28} - 5 q^{29} + 2 q^{31} + q^{32} + 4 q^{34} - 16 q^{37} - 14 q^{38} + 14 q^{41}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51908 1.78126 0.890630 0.454729i \(-0.150264\pi\)
0.890630 + 0.454729i \(0.150264\pi\)
\(3\) 0 0
\(4\) 4.34577 2.17289
\(5\) 0 0
\(6\) 0 0
\(7\) −0.173311 −0.0655054 −0.0327527 0.999463i \(-0.510427\pi\)
−0.0327527 + 0.999463i \(0.510427\pi\)
\(8\) 5.90919 2.08921
\(9\) 0 0
\(10\) 0 0
\(11\) −5.08250 −1.53243 −0.766215 0.642584i \(-0.777862\pi\)
−0.766215 + 0.642584i \(0.777862\pi\)
\(12\) 0 0
\(13\) −1.82669 −0.506632 −0.253316 0.967384i \(-0.581521\pi\)
−0.253316 + 0.967384i \(0.581521\pi\)
\(14\) −0.436584 −0.116682
\(15\) 0 0
\(16\) 6.19418 1.54854
\(17\) −4.24598 −1.02980 −0.514901 0.857250i \(-0.672171\pi\)
−0.514901 + 0.857250i \(0.672171\pi\)
\(18\) 0 0
\(19\) −8.62093 −1.97778 −0.988889 0.148656i \(-0.952505\pi\)
−0.988889 + 0.148656i \(0.952505\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −12.8032 −2.72966
\(23\) 3.16348 0.659632 0.329816 0.944045i \(-0.393013\pi\)
0.329816 + 0.944045i \(0.393013\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.60158 −0.902444
\(27\) 0 0
\(28\) −0.753170 −0.142336
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 3.22185 0.578662 0.289331 0.957229i \(-0.406567\pi\)
0.289331 + 0.957229i \(0.406567\pi\)
\(32\) 3.78527 0.669147
\(33\) 0 0
\(34\) −10.6960 −1.83434
\(35\) 0 0
\(36\) 0 0
\(37\) −1.97828 −0.325227 −0.162614 0.986690i \(-0.551992\pi\)
−0.162614 + 0.986690i \(0.551992\pi\)
\(38\) −21.7168 −3.52294
\(39\) 0 0
\(40\) 0 0
\(41\) 9.96541 1.55634 0.778168 0.628056i \(-0.216149\pi\)
0.778168 + 0.628056i \(0.216149\pi\)
\(42\) 0 0
\(43\) −7.91070 −1.20637 −0.603185 0.797601i \(-0.706102\pi\)
−0.603185 + 0.797601i \(0.706102\pi\)
\(44\) −22.0874 −3.32980
\(45\) 0 0
\(46\) 7.96907 1.17497
\(47\) −8.66893 −1.26449 −0.632246 0.774767i \(-0.717867\pi\)
−0.632246 + 0.774767i \(0.717867\pi\)
\(48\) 0 0
\(49\) −6.96996 −0.995709
\(50\) 0 0
\(51\) 0 0
\(52\) −7.93837 −1.10085
\(53\) 5.40285 0.742138 0.371069 0.928605i \(-0.378991\pi\)
0.371069 + 0.928605i \(0.378991\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.02413 −0.136855
\(57\) 0 0
\(58\) −2.51908 −0.330772
\(59\) −7.66286 −0.997619 −0.498810 0.866712i \(-0.666229\pi\)
−0.498810 + 0.866712i \(0.666229\pi\)
\(60\) 0 0
\(61\) 2.76215 0.353657 0.176828 0.984242i \(-0.443416\pi\)
0.176828 + 0.984242i \(0.443416\pi\)
\(62\) 8.11611 1.03075
\(63\) 0 0
\(64\) −2.85296 −0.356620
\(65\) 0 0
\(66\) 0 0
\(67\) −8.13872 −0.994303 −0.497152 0.867664i \(-0.665621\pi\)
−0.497152 + 0.867664i \(0.665621\pi\)
\(68\) −18.4520 −2.23764
\(69\) 0 0
\(70\) 0 0
\(71\) 6.25938 0.742852 0.371426 0.928463i \(-0.378869\pi\)
0.371426 + 0.928463i \(0.378869\pi\)
\(72\) 0 0
\(73\) 6.74356 0.789274 0.394637 0.918837i \(-0.370870\pi\)
0.394637 + 0.918837i \(0.370870\pi\)
\(74\) −4.98345 −0.579314
\(75\) 0 0
\(76\) −37.4646 −4.29748
\(77\) 0.880853 0.100382
\(78\) 0 0
\(79\) 4.54763 0.511649 0.255824 0.966723i \(-0.417653\pi\)
0.255824 + 0.966723i \(0.417653\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 25.1037 2.77224
\(83\) −11.6224 −1.27573 −0.637865 0.770149i \(-0.720182\pi\)
−0.637865 + 0.770149i \(0.720182\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −19.9277 −2.14886
\(87\) 0 0
\(88\) −30.0334 −3.20157
\(89\) 16.4911 1.74805 0.874024 0.485882i \(-0.161501\pi\)
0.874024 + 0.485882i \(0.161501\pi\)
\(90\) 0 0
\(91\) 0.316585 0.0331872
\(92\) 13.7478 1.43330
\(93\) 0 0
\(94\) −21.8377 −2.25239
\(95\) 0 0
\(96\) 0 0
\(97\) −2.74419 −0.278631 −0.139315 0.990248i \(-0.544490\pi\)
−0.139315 + 0.990248i \(0.544490\pi\)
\(98\) −17.5579 −1.77362
\(99\) 0 0
\(100\) 0 0
\(101\) −6.41474 −0.638290 −0.319145 0.947706i \(-0.603396\pi\)
−0.319145 + 0.947706i \(0.603396\pi\)
\(102\) 0 0
\(103\) 7.08642 0.698245 0.349123 0.937077i \(-0.386480\pi\)
0.349123 + 0.937077i \(0.386480\pi\)
\(104\) −10.7942 −1.05846
\(105\) 0 0
\(106\) 13.6102 1.32194
\(107\) 0.925187 0.0894412 0.0447206 0.999000i \(-0.485760\pi\)
0.0447206 + 0.999000i \(0.485760\pi\)
\(108\) 0 0
\(109\) 4.11700 0.394337 0.197169 0.980370i \(-0.436825\pi\)
0.197169 + 0.980370i \(0.436825\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.07352 −0.101438
\(113\) 6.84626 0.644042 0.322021 0.946732i \(-0.395638\pi\)
0.322021 + 0.946732i \(0.395638\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.34577 −0.403495
\(117\) 0 0
\(118\) −19.3034 −1.77702
\(119\) 0.735875 0.0674575
\(120\) 0 0
\(121\) 14.8318 1.34834
\(122\) 6.95807 0.629954
\(123\) 0 0
\(124\) 14.0014 1.25737
\(125\) 0 0
\(126\) 0 0
\(127\) 5.25850 0.466617 0.233308 0.972403i \(-0.425045\pi\)
0.233308 + 0.972403i \(0.425045\pi\)
\(128\) −14.7574 −1.30438
\(129\) 0 0
\(130\) 0 0
\(131\) −17.7157 −1.54783 −0.773913 0.633293i \(-0.781703\pi\)
−0.773913 + 0.633293i \(0.781703\pi\)
\(132\) 0 0
\(133\) 1.49410 0.129555
\(134\) −20.5021 −1.77111
\(135\) 0 0
\(136\) −25.0903 −2.15147
\(137\) −1.14479 −0.0978057 −0.0489028 0.998804i \(-0.515572\pi\)
−0.0489028 + 0.998804i \(0.515572\pi\)
\(138\) 0 0
\(139\) 4.08670 0.346630 0.173315 0.984866i \(-0.444552\pi\)
0.173315 + 0.984866i \(0.444552\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.7679 1.32321
\(143\) 9.28414 0.776379
\(144\) 0 0
\(145\) 0 0
\(146\) 16.9876 1.40590
\(147\) 0 0
\(148\) −8.59715 −0.706682
\(149\) −1.50268 −0.123105 −0.0615523 0.998104i \(-0.519605\pi\)
−0.0615523 + 0.998104i \(0.519605\pi\)
\(150\) 0 0
\(151\) −21.4897 −1.74881 −0.874404 0.485199i \(-0.838747\pi\)
−0.874404 + 0.485199i \(0.838747\pi\)
\(152\) −50.9427 −4.13200
\(153\) 0 0
\(154\) 2.21894 0.178807
\(155\) 0 0
\(156\) 0 0
\(157\) −11.1167 −0.887206 −0.443603 0.896223i \(-0.646300\pi\)
−0.443603 + 0.896223i \(0.646300\pi\)
\(158\) 11.4559 0.911379
\(159\) 0 0
\(160\) 0 0
\(161\) −0.548266 −0.0432094
\(162\) 0 0
\(163\) 12.2180 0.956988 0.478494 0.878091i \(-0.341183\pi\)
0.478494 + 0.878091i \(0.341183\pi\)
\(164\) 43.3074 3.38174
\(165\) 0 0
\(166\) −29.2779 −2.27240
\(167\) 21.3634 1.65315 0.826576 0.562826i \(-0.190286\pi\)
0.826576 + 0.562826i \(0.190286\pi\)
\(168\) 0 0
\(169\) −9.66321 −0.743324
\(170\) 0 0
\(171\) 0 0
\(172\) −34.3781 −2.62130
\(173\) 13.1686 1.00119 0.500594 0.865682i \(-0.333115\pi\)
0.500594 + 0.865682i \(0.333115\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −31.4819 −2.37304
\(177\) 0 0
\(178\) 41.5423 3.11373
\(179\) −10.6947 −0.799357 −0.399679 0.916655i \(-0.630878\pi\)
−0.399679 + 0.916655i \(0.630878\pi\)
\(180\) 0 0
\(181\) −15.2511 −1.13361 −0.566804 0.823852i \(-0.691820\pi\)
−0.566804 + 0.823852i \(0.691820\pi\)
\(182\) 0.797504 0.0591149
\(183\) 0 0
\(184\) 18.6936 1.37811
\(185\) 0 0
\(186\) 0 0
\(187\) 21.5802 1.57810
\(188\) −37.6732 −2.74760
\(189\) 0 0
\(190\) 0 0
\(191\) 25.7131 1.86053 0.930266 0.366885i \(-0.119576\pi\)
0.930266 + 0.366885i \(0.119576\pi\)
\(192\) 0 0
\(193\) 22.8935 1.64791 0.823953 0.566658i \(-0.191764\pi\)
0.823953 + 0.566658i \(0.191764\pi\)
\(194\) −6.91284 −0.496313
\(195\) 0 0
\(196\) −30.2899 −2.16356
\(197\) 0.840810 0.0599052 0.0299526 0.999551i \(-0.490464\pi\)
0.0299526 + 0.999551i \(0.490464\pi\)
\(198\) 0 0
\(199\) −26.5996 −1.88560 −0.942799 0.333361i \(-0.891817\pi\)
−0.942799 + 0.333361i \(0.891817\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −16.1592 −1.13696
\(203\) 0.173311 0.0121640
\(204\) 0 0
\(205\) 0 0
\(206\) 17.8513 1.24376
\(207\) 0 0
\(208\) −11.3148 −0.784543
\(209\) 43.8159 3.03081
\(210\) 0 0
\(211\) 1.86360 0.128296 0.0641478 0.997940i \(-0.479567\pi\)
0.0641478 + 0.997940i \(0.479567\pi\)
\(212\) 23.4795 1.61258
\(213\) 0 0
\(214\) 2.33062 0.159318
\(215\) 0 0
\(216\) 0 0
\(217\) −0.558382 −0.0379055
\(218\) 10.3711 0.702417
\(219\) 0 0
\(220\) 0 0
\(221\) 7.75608 0.521731
\(222\) 0 0
\(223\) −25.0759 −1.67920 −0.839602 0.543202i \(-0.817212\pi\)
−0.839602 + 0.543202i \(0.817212\pi\)
\(224\) −0.656028 −0.0438327
\(225\) 0 0
\(226\) 17.2463 1.14721
\(227\) 20.3877 1.35318 0.676590 0.736360i \(-0.263457\pi\)
0.676590 + 0.736360i \(0.263457\pi\)
\(228\) 0 0
\(229\) −5.84179 −0.386037 −0.193018 0.981195i \(-0.561828\pi\)
−0.193018 + 0.981195i \(0.561828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.90919 −0.387957
\(233\) 14.1216 0.925134 0.462567 0.886584i \(-0.346928\pi\)
0.462567 + 0.886584i \(0.346928\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −33.3010 −2.16771
\(237\) 0 0
\(238\) 1.85373 0.120159
\(239\) 6.39059 0.413373 0.206686 0.978407i \(-0.433732\pi\)
0.206686 + 0.978407i \(0.433732\pi\)
\(240\) 0 0
\(241\) −10.1713 −0.655188 −0.327594 0.944819i \(-0.606238\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(242\) 37.3624 2.40175
\(243\) 0 0
\(244\) 12.0037 0.768455
\(245\) 0 0
\(246\) 0 0
\(247\) 15.7478 1.00201
\(248\) 19.0385 1.20895
\(249\) 0 0
\(250\) 0 0
\(251\) 15.7587 0.994678 0.497339 0.867556i \(-0.334310\pi\)
0.497339 + 0.867556i \(0.334310\pi\)
\(252\) 0 0
\(253\) −16.0784 −1.01084
\(254\) 13.2466 0.831165
\(255\) 0 0
\(256\) −31.4691 −1.96682
\(257\) 12.3486 0.770283 0.385142 0.922858i \(-0.374153\pi\)
0.385142 + 0.922858i \(0.374153\pi\)
\(258\) 0 0
\(259\) 0.342858 0.0213041
\(260\) 0 0
\(261\) 0 0
\(262\) −44.6272 −2.75708
\(263\) −4.16928 −0.257089 −0.128545 0.991704i \(-0.541031\pi\)
−0.128545 + 0.991704i \(0.541031\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.76377 0.230771
\(267\) 0 0
\(268\) −35.3690 −2.16051
\(269\) 1.36011 0.0829273 0.0414636 0.999140i \(-0.486798\pi\)
0.0414636 + 0.999140i \(0.486798\pi\)
\(270\) 0 0
\(271\) 11.1448 0.676998 0.338499 0.940967i \(-0.390081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(272\) −26.3003 −1.59469
\(273\) 0 0
\(274\) −2.88381 −0.174217
\(275\) 0 0
\(276\) 0 0
\(277\) −0.704673 −0.0423397 −0.0211699 0.999776i \(-0.506739\pi\)
−0.0211699 + 0.999776i \(0.506739\pi\)
\(278\) 10.2947 0.617437
\(279\) 0 0
\(280\) 0 0
\(281\) 13.8119 0.823950 0.411975 0.911195i \(-0.364839\pi\)
0.411975 + 0.911195i \(0.364839\pi\)
\(282\) 0 0
\(283\) −8.92142 −0.530324 −0.265162 0.964204i \(-0.585425\pi\)
−0.265162 + 0.964204i \(0.585425\pi\)
\(284\) 27.2018 1.61413
\(285\) 0 0
\(286\) 23.3875 1.38293
\(287\) −1.72712 −0.101948
\(288\) 0 0
\(289\) 1.02833 0.0604902
\(290\) 0 0
\(291\) 0 0
\(292\) 29.3060 1.71500
\(293\) −31.2817 −1.82750 −0.913749 0.406278i \(-0.866826\pi\)
−0.913749 + 0.406278i \(0.866826\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.6900 −0.679469
\(297\) 0 0
\(298\) −3.78538 −0.219281
\(299\) −5.77870 −0.334191
\(300\) 0 0
\(301\) 1.37101 0.0790238
\(302\) −54.1343 −3.11508
\(303\) 0 0
\(304\) −53.3996 −3.06268
\(305\) 0 0
\(306\) 0 0
\(307\) 21.8533 1.24723 0.623617 0.781730i \(-0.285662\pi\)
0.623617 + 0.781730i \(0.285662\pi\)
\(308\) 3.82798 0.218120
\(309\) 0 0
\(310\) 0 0
\(311\) −28.8838 −1.63785 −0.818925 0.573901i \(-0.805430\pi\)
−0.818925 + 0.573901i \(0.805430\pi\)
\(312\) 0 0
\(313\) −8.24232 −0.465884 −0.232942 0.972491i \(-0.574835\pi\)
−0.232942 + 0.972491i \(0.574835\pi\)
\(314\) −28.0038 −1.58034
\(315\) 0 0
\(316\) 19.7630 1.11175
\(317\) −7.15829 −0.402050 −0.201025 0.979586i \(-0.564427\pi\)
−0.201025 + 0.979586i \(0.564427\pi\)
\(318\) 0 0
\(319\) 5.08250 0.284565
\(320\) 0 0
\(321\) 0 0
\(322\) −1.38113 −0.0769672
\(323\) 36.6043 2.03672
\(324\) 0 0
\(325\) 0 0
\(326\) 30.7781 1.70464
\(327\) 0 0
\(328\) 58.8875 3.25152
\(329\) 1.50242 0.0828311
\(330\) 0 0
\(331\) −24.6936 −1.35728 −0.678642 0.734470i \(-0.737431\pi\)
−0.678642 + 0.734470i \(0.737431\pi\)
\(332\) −50.5085 −2.77201
\(333\) 0 0
\(334\) 53.8162 2.94469
\(335\) 0 0
\(336\) 0 0
\(337\) −11.7142 −0.638116 −0.319058 0.947735i \(-0.603366\pi\)
−0.319058 + 0.947735i \(0.603366\pi\)
\(338\) −24.3424 −1.32405
\(339\) 0 0
\(340\) 0 0
\(341\) −16.3751 −0.886759
\(342\) 0 0
\(343\) 2.42115 0.130730
\(344\) −46.7458 −2.52036
\(345\) 0 0
\(346\) 33.1727 1.78337
\(347\) 0.828990 0.0445025 0.0222513 0.999752i \(-0.492917\pi\)
0.0222513 + 0.999752i \(0.492917\pi\)
\(348\) 0 0
\(349\) −8.44370 −0.451981 −0.225991 0.974129i \(-0.572562\pi\)
−0.225991 + 0.974129i \(0.572562\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −19.2386 −1.02542
\(353\) −4.90553 −0.261095 −0.130547 0.991442i \(-0.541673\pi\)
−0.130547 + 0.991442i \(0.541673\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 71.6664 3.79831
\(357\) 0 0
\(358\) −26.9407 −1.42386
\(359\) −4.69044 −0.247552 −0.123776 0.992310i \(-0.539500\pi\)
−0.123776 + 0.992310i \(0.539500\pi\)
\(360\) 0 0
\(361\) 55.3205 2.91161
\(362\) −38.4189 −2.01925
\(363\) 0 0
\(364\) 1.37581 0.0721119
\(365\) 0 0
\(366\) 0 0
\(367\) −29.2460 −1.52663 −0.763314 0.646028i \(-0.776429\pi\)
−0.763314 + 0.646028i \(0.776429\pi\)
\(368\) 19.5952 1.02147
\(369\) 0 0
\(370\) 0 0
\(371\) −0.936373 −0.0486140
\(372\) 0 0
\(373\) −34.5171 −1.78723 −0.893613 0.448839i \(-0.851838\pi\)
−0.893613 + 0.448839i \(0.851838\pi\)
\(374\) 54.3622 2.81100
\(375\) 0 0
\(376\) −51.2263 −2.64179
\(377\) 1.82669 0.0940793
\(378\) 0 0
\(379\) −3.20131 −0.164440 −0.0822201 0.996614i \(-0.526201\pi\)
−0.0822201 + 0.996614i \(0.526201\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 64.7733 3.31409
\(383\) 19.4424 0.993458 0.496729 0.867906i \(-0.334534\pi\)
0.496729 + 0.867906i \(0.334534\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 57.6705 2.93535
\(387\) 0 0
\(388\) −11.9256 −0.605432
\(389\) −2.55875 −0.129734 −0.0648669 0.997894i \(-0.520662\pi\)
−0.0648669 + 0.997894i \(0.520662\pi\)
\(390\) 0 0
\(391\) −13.4321 −0.679289
\(392\) −41.1868 −2.08025
\(393\) 0 0
\(394\) 2.11807 0.106707
\(395\) 0 0
\(396\) 0 0
\(397\) −30.6583 −1.53869 −0.769347 0.638831i \(-0.779418\pi\)
−0.769347 + 0.638831i \(0.779418\pi\)
\(398\) −67.0067 −3.35874
\(399\) 0 0
\(400\) 0 0
\(401\) −11.1628 −0.557446 −0.278723 0.960372i \(-0.589911\pi\)
−0.278723 + 0.960372i \(0.589911\pi\)
\(402\) 0 0
\(403\) −5.88532 −0.293169
\(404\) −27.8770 −1.38693
\(405\) 0 0
\(406\) 0.436584 0.0216673
\(407\) 10.0546 0.498388
\(408\) 0 0
\(409\) 13.3880 0.661994 0.330997 0.943632i \(-0.392615\pi\)
0.330997 + 0.943632i \(0.392615\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 30.7959 1.51721
\(413\) 1.32806 0.0653495
\(414\) 0 0
\(415\) 0 0
\(416\) −6.91451 −0.339012
\(417\) 0 0
\(418\) 110.376 5.39865
\(419\) −29.2982 −1.43131 −0.715655 0.698454i \(-0.753872\pi\)
−0.715655 + 0.698454i \(0.753872\pi\)
\(420\) 0 0
\(421\) 10.1098 0.492724 0.246362 0.969178i \(-0.420765\pi\)
0.246362 + 0.969178i \(0.420765\pi\)
\(422\) 4.69456 0.228528
\(423\) 0 0
\(424\) 31.9264 1.55048
\(425\) 0 0
\(426\) 0 0
\(427\) −0.478710 −0.0231664
\(428\) 4.02065 0.194345
\(429\) 0 0
\(430\) 0 0
\(431\) −30.3330 −1.46109 −0.730545 0.682865i \(-0.760734\pi\)
−0.730545 + 0.682865i \(0.760734\pi\)
\(432\) 0 0
\(433\) 6.50520 0.312620 0.156310 0.987708i \(-0.450040\pi\)
0.156310 + 0.987708i \(0.450040\pi\)
\(434\) −1.40661 −0.0675195
\(435\) 0 0
\(436\) 17.8915 0.856850
\(437\) −27.2722 −1.30460
\(438\) 0 0
\(439\) −9.40248 −0.448756 −0.224378 0.974502i \(-0.572035\pi\)
−0.224378 + 0.974502i \(0.572035\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 19.5382 0.929337
\(443\) 28.1657 1.33819 0.669097 0.743175i \(-0.266681\pi\)
0.669097 + 0.743175i \(0.266681\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −63.1682 −2.99110
\(447\) 0 0
\(448\) 0.494450 0.0233605
\(449\) 32.2625 1.52256 0.761281 0.648422i \(-0.224571\pi\)
0.761281 + 0.648422i \(0.224571\pi\)
\(450\) 0 0
\(451\) −50.6492 −2.38498
\(452\) 29.7523 1.39943
\(453\) 0 0
\(454\) 51.3583 2.41037
\(455\) 0 0
\(456\) 0 0
\(457\) −27.1466 −1.26986 −0.634932 0.772568i \(-0.718972\pi\)
−0.634932 + 0.772568i \(0.718972\pi\)
\(458\) −14.7160 −0.687631
\(459\) 0 0
\(460\) 0 0
\(461\) −7.00940 −0.326460 −0.163230 0.986588i \(-0.552191\pi\)
−0.163230 + 0.986588i \(0.552191\pi\)
\(462\) 0 0
\(463\) 21.7590 1.01123 0.505613 0.862760i \(-0.331266\pi\)
0.505613 + 0.862760i \(0.331266\pi\)
\(464\) −6.19418 −0.287558
\(465\) 0 0
\(466\) 35.5733 1.64790
\(467\) 30.7825 1.42445 0.712223 0.701953i \(-0.247688\pi\)
0.712223 + 0.701953i \(0.247688\pi\)
\(468\) 0 0
\(469\) 1.41053 0.0651322
\(470\) 0 0
\(471\) 0 0
\(472\) −45.2813 −2.08424
\(473\) 40.2061 1.84868
\(474\) 0 0
\(475\) 0 0
\(476\) 3.19794 0.146577
\(477\) 0 0
\(478\) 16.0984 0.736324
\(479\) 6.29237 0.287506 0.143753 0.989614i \(-0.454083\pi\)
0.143753 + 0.989614i \(0.454083\pi\)
\(480\) 0 0
\(481\) 3.61370 0.164771
\(482\) −25.6222 −1.16706
\(483\) 0 0
\(484\) 64.4555 2.92979
\(485\) 0 0
\(486\) 0 0
\(487\) 30.3406 1.37487 0.687433 0.726248i \(-0.258738\pi\)
0.687433 + 0.726248i \(0.258738\pi\)
\(488\) 16.3220 0.738864
\(489\) 0 0
\(490\) 0 0
\(491\) −17.7822 −0.802502 −0.401251 0.915968i \(-0.631424\pi\)
−0.401251 + 0.915968i \(0.631424\pi\)
\(492\) 0 0
\(493\) 4.24598 0.191229
\(494\) 39.6699 1.78483
\(495\) 0 0
\(496\) 19.9567 0.896083
\(497\) −1.08482 −0.0486608
\(498\) 0 0
\(499\) 0.262248 0.0117399 0.00586993 0.999983i \(-0.498132\pi\)
0.00586993 + 0.999983i \(0.498132\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 39.6974 1.77178
\(503\) −15.0486 −0.670986 −0.335493 0.942043i \(-0.608903\pi\)
−0.335493 + 0.942043i \(0.608903\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −40.5028 −1.80057
\(507\) 0 0
\(508\) 22.8522 1.01390
\(509\) −39.8752 −1.76744 −0.883719 0.468019i \(-0.844968\pi\)
−0.883719 + 0.468019i \(0.844968\pi\)
\(510\) 0 0
\(511\) −1.16873 −0.0517017
\(512\) −49.7585 −2.19904
\(513\) 0 0
\(514\) 31.1071 1.37207
\(515\) 0 0
\(516\) 0 0
\(517\) 44.0598 1.93775
\(518\) 0.863687 0.0379482
\(519\) 0 0
\(520\) 0 0
\(521\) −18.3187 −0.802557 −0.401279 0.915956i \(-0.631434\pi\)
−0.401279 + 0.915956i \(0.631434\pi\)
\(522\) 0 0
\(523\) 6.04576 0.264363 0.132181 0.991226i \(-0.457802\pi\)
0.132181 + 0.991226i \(0.457802\pi\)
\(524\) −76.9882 −3.36325
\(525\) 0 0
\(526\) −10.5028 −0.457942
\(527\) −13.6799 −0.595906
\(528\) 0 0
\(529\) −12.9924 −0.564886
\(530\) 0 0
\(531\) 0 0
\(532\) 6.49303 0.281508
\(533\) −18.2037 −0.788490
\(534\) 0 0
\(535\) 0 0
\(536\) −48.0932 −2.07731
\(537\) 0 0
\(538\) 3.42622 0.147715
\(539\) 35.4248 1.52585
\(540\) 0 0
\(541\) −35.6643 −1.53333 −0.766664 0.642049i \(-0.778085\pi\)
−0.766664 + 0.642049i \(0.778085\pi\)
\(542\) 28.0746 1.20591
\(543\) 0 0
\(544\) −16.0722 −0.689088
\(545\) 0 0
\(546\) 0 0
\(547\) 5.23087 0.223656 0.111828 0.993728i \(-0.464329\pi\)
0.111828 + 0.993728i \(0.464329\pi\)
\(548\) −4.97498 −0.212520
\(549\) 0 0
\(550\) 0 0
\(551\) 8.62093 0.367264
\(552\) 0 0
\(553\) −0.788155 −0.0335157
\(554\) −1.77513 −0.0754180
\(555\) 0 0
\(556\) 17.7599 0.753186
\(557\) 32.9893 1.39780 0.698900 0.715219i \(-0.253673\pi\)
0.698900 + 0.715219i \(0.253673\pi\)
\(558\) 0 0
\(559\) 14.4504 0.611186
\(560\) 0 0
\(561\) 0 0
\(562\) 34.7933 1.46767
\(563\) 5.94931 0.250734 0.125367 0.992110i \(-0.459989\pi\)
0.125367 + 0.992110i \(0.459989\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −22.4738 −0.944644
\(567\) 0 0
\(568\) 36.9878 1.55198
\(569\) 14.6940 0.616003 0.308002 0.951386i \(-0.400340\pi\)
0.308002 + 0.951386i \(0.400340\pi\)
\(570\) 0 0
\(571\) 7.86509 0.329144 0.164572 0.986365i \(-0.447376\pi\)
0.164572 + 0.986365i \(0.447376\pi\)
\(572\) 40.3467 1.68698
\(573\) 0 0
\(574\) −4.35074 −0.181597
\(575\) 0 0
\(576\) 0 0
\(577\) −29.7454 −1.23832 −0.619159 0.785265i \(-0.712526\pi\)
−0.619159 + 0.785265i \(0.712526\pi\)
\(578\) 2.59045 0.107749
\(579\) 0 0
\(580\) 0 0
\(581\) 2.01430 0.0835671
\(582\) 0 0
\(583\) −27.4599 −1.13727
\(584\) 39.8489 1.64896
\(585\) 0 0
\(586\) −78.8013 −3.25525
\(587\) −46.1639 −1.90539 −0.952695 0.303929i \(-0.901701\pi\)
−0.952695 + 0.303929i \(0.901701\pi\)
\(588\) 0 0
\(589\) −27.7754 −1.14446
\(590\) 0 0
\(591\) 0 0
\(592\) −12.2538 −0.503629
\(593\) −22.6806 −0.931382 −0.465691 0.884948i \(-0.654194\pi\)
−0.465691 + 0.884948i \(0.654194\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.53031 −0.267492
\(597\) 0 0
\(598\) −14.5570 −0.595280
\(599\) −22.8764 −0.934704 −0.467352 0.884071i \(-0.654792\pi\)
−0.467352 + 0.884071i \(0.654792\pi\)
\(600\) 0 0
\(601\) 14.6918 0.599291 0.299646 0.954051i \(-0.403132\pi\)
0.299646 + 0.954051i \(0.403132\pi\)
\(602\) 3.45369 0.140762
\(603\) 0 0
\(604\) −93.3893 −3.79996
\(605\) 0 0
\(606\) 0 0
\(607\) 20.9484 0.850270 0.425135 0.905130i \(-0.360227\pi\)
0.425135 + 0.905130i \(0.360227\pi\)
\(608\) −32.6325 −1.32342
\(609\) 0 0
\(610\) 0 0
\(611\) 15.8354 0.640633
\(612\) 0 0
\(613\) 42.0373 1.69787 0.848936 0.528496i \(-0.177244\pi\)
0.848936 + 0.528496i \(0.177244\pi\)
\(614\) 55.0503 2.22165
\(615\) 0 0
\(616\) 5.20512 0.209720
\(617\) 44.6853 1.79896 0.899482 0.436958i \(-0.143944\pi\)
0.899482 + 0.436958i \(0.143944\pi\)
\(618\) 0 0
\(619\) −22.1966 −0.892157 −0.446079 0.894994i \(-0.647180\pi\)
−0.446079 + 0.894994i \(0.647180\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −72.7606 −2.91744
\(623\) −2.85808 −0.114507
\(624\) 0 0
\(625\) 0 0
\(626\) −20.7631 −0.829859
\(627\) 0 0
\(628\) −48.3104 −1.92780
\(629\) 8.39974 0.334919
\(630\) 0 0
\(631\) −5.29765 −0.210896 −0.105448 0.994425i \(-0.533628\pi\)
−0.105448 + 0.994425i \(0.533628\pi\)
\(632\) 26.8728 1.06894
\(633\) 0 0
\(634\) −18.0323 −0.716155
\(635\) 0 0
\(636\) 0 0
\(637\) 12.7320 0.504458
\(638\) 12.8032 0.506884
\(639\) 0 0
\(640\) 0 0
\(641\) −3.21592 −0.127021 −0.0635107 0.997981i \(-0.520230\pi\)
−0.0635107 + 0.997981i \(0.520230\pi\)
\(642\) 0 0
\(643\) −32.0630 −1.26444 −0.632221 0.774788i \(-0.717857\pi\)
−0.632221 + 0.774788i \(0.717857\pi\)
\(644\) −2.38264 −0.0938891
\(645\) 0 0
\(646\) 92.2092 3.62792
\(647\) 9.26571 0.364273 0.182136 0.983273i \(-0.441699\pi\)
0.182136 + 0.983273i \(0.441699\pi\)
\(648\) 0 0
\(649\) 38.9465 1.52878
\(650\) 0 0
\(651\) 0 0
\(652\) 53.0966 2.07942
\(653\) 22.2362 0.870171 0.435085 0.900389i \(-0.356718\pi\)
0.435085 + 0.900389i \(0.356718\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 61.7275 2.41006
\(657\) 0 0
\(658\) 3.78472 0.147544
\(659\) −34.6708 −1.35058 −0.675291 0.737552i \(-0.735982\pi\)
−0.675291 + 0.737552i \(0.735982\pi\)
\(660\) 0 0
\(661\) −9.67217 −0.376204 −0.188102 0.982150i \(-0.560234\pi\)
−0.188102 + 0.982150i \(0.560234\pi\)
\(662\) −62.2052 −2.41767
\(663\) 0 0
\(664\) −68.6792 −2.66527
\(665\) 0 0
\(666\) 0 0
\(667\) −3.16348 −0.122491
\(668\) 92.8405 3.59211
\(669\) 0 0
\(670\) 0 0
\(671\) −14.0386 −0.541954
\(672\) 0 0
\(673\) −24.7689 −0.954770 −0.477385 0.878694i \(-0.658415\pi\)
−0.477385 + 0.878694i \(0.658415\pi\)
\(674\) −29.5091 −1.13665
\(675\) 0 0
\(676\) −41.9941 −1.61516
\(677\) 33.3636 1.28227 0.641133 0.767430i \(-0.278465\pi\)
0.641133 + 0.767430i \(0.278465\pi\)
\(678\) 0 0
\(679\) 0.475599 0.0182518
\(680\) 0 0
\(681\) 0 0
\(682\) −41.2501 −1.57955
\(683\) −13.9516 −0.533842 −0.266921 0.963718i \(-0.586006\pi\)
−0.266921 + 0.963718i \(0.586006\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6.09907 0.232864
\(687\) 0 0
\(688\) −49.0003 −1.86812
\(689\) −9.86932 −0.375991
\(690\) 0 0
\(691\) 50.5611 1.92344 0.961718 0.274042i \(-0.0883607\pi\)
0.961718 + 0.274042i \(0.0883607\pi\)
\(692\) 57.2276 2.17547
\(693\) 0 0
\(694\) 2.08829 0.0792705
\(695\) 0 0
\(696\) 0 0
\(697\) −42.3129 −1.60272
\(698\) −21.2704 −0.805096
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0803 0.909499 0.454749 0.890620i \(-0.349729\pi\)
0.454749 + 0.890620i \(0.349729\pi\)
\(702\) 0 0
\(703\) 17.0546 0.643227
\(704\) 14.5002 0.546496
\(705\) 0 0
\(706\) −12.3574 −0.465078
\(707\) 1.11174 0.0418114
\(708\) 0 0
\(709\) 0.769569 0.0289018 0.0144509 0.999896i \(-0.495400\pi\)
0.0144509 + 0.999896i \(0.495400\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 97.4487 3.65205
\(713\) 10.1923 0.381703
\(714\) 0 0
\(715\) 0 0
\(716\) −46.4766 −1.73691
\(717\) 0 0
\(718\) −11.8156 −0.440955
\(719\) −4.92456 −0.183655 −0.0918275 0.995775i \(-0.529271\pi\)
−0.0918275 + 0.995775i \(0.529271\pi\)
\(720\) 0 0
\(721\) −1.22815 −0.0457388
\(722\) 139.357 5.18632
\(723\) 0 0
\(724\) −66.2780 −2.46320
\(725\) 0 0
\(726\) 0 0
\(727\) 41.8838 1.55339 0.776693 0.629880i \(-0.216896\pi\)
0.776693 + 0.629880i \(0.216896\pi\)
\(728\) 1.87076 0.0693350
\(729\) 0 0
\(730\) 0 0
\(731\) 33.5887 1.24232
\(732\) 0 0
\(733\) −27.1372 −1.00234 −0.501168 0.865350i \(-0.667096\pi\)
−0.501168 + 0.865350i \(0.667096\pi\)
\(734\) −73.6730 −2.71932
\(735\) 0 0
\(736\) 11.9746 0.441390
\(737\) 41.3650 1.52370
\(738\) 0 0
\(739\) −3.41445 −0.125603 −0.0628013 0.998026i \(-0.520003\pi\)
−0.0628013 + 0.998026i \(0.520003\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.35880 −0.0865942
\(743\) −3.73961 −0.137193 −0.0685966 0.997644i \(-0.521852\pi\)
−0.0685966 + 0.997644i \(0.521852\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −86.9513 −3.18351
\(747\) 0 0
\(748\) 93.7825 3.42903
\(749\) −0.160345 −0.00585888
\(750\) 0 0
\(751\) −24.1900 −0.882707 −0.441354 0.897333i \(-0.645502\pi\)
−0.441354 + 0.897333i \(0.645502\pi\)
\(752\) −53.6969 −1.95812
\(753\) 0 0
\(754\) 4.60158 0.167580
\(755\) 0 0
\(756\) 0 0
\(757\) −3.55451 −0.129191 −0.0645953 0.997912i \(-0.520576\pi\)
−0.0645953 + 0.997912i \(0.520576\pi\)
\(758\) −8.06436 −0.292911
\(759\) 0 0
\(760\) 0 0
\(761\) 44.2390 1.60366 0.801832 0.597550i \(-0.203859\pi\)
0.801832 + 0.597550i \(0.203859\pi\)
\(762\) 0 0
\(763\) −0.713522 −0.0258312
\(764\) 111.743 4.04272
\(765\) 0 0
\(766\) 48.9769 1.76961
\(767\) 13.9977 0.505426
\(768\) 0 0
\(769\) 6.30558 0.227385 0.113692 0.993516i \(-0.463732\pi\)
0.113692 + 0.993516i \(0.463732\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 99.4897 3.58071
\(773\) 24.2649 0.872747 0.436374 0.899766i \(-0.356263\pi\)
0.436374 + 0.899766i \(0.356263\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −16.2159 −0.582118
\(777\) 0 0
\(778\) −6.44570 −0.231090
\(779\) −85.9111 −3.07809
\(780\) 0 0
\(781\) −31.8133 −1.13837
\(782\) −33.8365 −1.20999
\(783\) 0 0
\(784\) −43.1732 −1.54190
\(785\) 0 0
\(786\) 0 0
\(787\) 39.1338 1.39497 0.697484 0.716600i \(-0.254303\pi\)
0.697484 + 0.716600i \(0.254303\pi\)
\(788\) 3.65397 0.130167
\(789\) 0 0
\(790\) 0 0
\(791\) −1.18653 −0.0421882
\(792\) 0 0
\(793\) −5.04558 −0.179174
\(794\) −77.2307 −2.74081
\(795\) 0 0
\(796\) −115.596 −4.09719
\(797\) 29.3166 1.03845 0.519224 0.854638i \(-0.326221\pi\)
0.519224 + 0.854638i \(0.326221\pi\)
\(798\) 0 0
\(799\) 36.8081 1.30218
\(800\) 0 0
\(801\) 0 0
\(802\) −28.1201 −0.992956
\(803\) −34.2741 −1.20951
\(804\) 0 0
\(805\) 0 0
\(806\) −14.8256 −0.522210
\(807\) 0 0
\(808\) −37.9059 −1.33352
\(809\) 28.7412 1.01049 0.505244 0.862977i \(-0.331403\pi\)
0.505244 + 0.862977i \(0.331403\pi\)
\(810\) 0 0
\(811\) 4.04326 0.141978 0.0709891 0.997477i \(-0.477384\pi\)
0.0709891 + 0.997477i \(0.477384\pi\)
\(812\) 0.753170 0.0264311
\(813\) 0 0
\(814\) 25.3284 0.887759
\(815\) 0 0
\(816\) 0 0
\(817\) 68.1976 2.38593
\(818\) 33.7255 1.17918
\(819\) 0 0
\(820\) 0 0
\(821\) −1.38325 −0.0482758 −0.0241379 0.999709i \(-0.507684\pi\)
−0.0241379 + 0.999709i \(0.507684\pi\)
\(822\) 0 0
\(823\) 11.7734 0.410395 0.205197 0.978721i \(-0.434216\pi\)
0.205197 + 0.978721i \(0.434216\pi\)
\(824\) 41.8749 1.45878
\(825\) 0 0
\(826\) 3.34549 0.116404
\(827\) 19.4700 0.677040 0.338520 0.940959i \(-0.390074\pi\)
0.338520 + 0.940959i \(0.390074\pi\)
\(828\) 0 0
\(829\) 16.9194 0.587634 0.293817 0.955862i \(-0.405074\pi\)
0.293817 + 0.955862i \(0.405074\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 5.21147 0.180675
\(833\) 29.5943 1.02538
\(834\) 0 0
\(835\) 0 0
\(836\) 190.414 6.58560
\(837\) 0 0
\(838\) −73.8045 −2.54953
\(839\) −17.9764 −0.620615 −0.310308 0.950636i \(-0.600432\pi\)
−0.310308 + 0.950636i \(0.600432\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 25.4675 0.877669
\(843\) 0 0
\(844\) 8.09878 0.278772
\(845\) 0 0
\(846\) 0 0
\(847\) −2.57051 −0.0883237
\(848\) 33.4662 1.14923
\(849\) 0 0
\(850\) 0 0
\(851\) −6.25826 −0.214530
\(852\) 0 0
\(853\) 25.1608 0.861489 0.430744 0.902474i \(-0.358251\pi\)
0.430744 + 0.902474i \(0.358251\pi\)
\(854\) −1.20591 −0.0412654
\(855\) 0 0
\(856\) 5.46710 0.186862
\(857\) 27.8748 0.952184 0.476092 0.879395i \(-0.342053\pi\)
0.476092 + 0.879395i \(0.342053\pi\)
\(858\) 0 0
\(859\) 21.0421 0.717947 0.358973 0.933348i \(-0.383127\pi\)
0.358973 + 0.933348i \(0.383127\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −76.4113 −2.60258
\(863\) −29.1647 −0.992779 −0.496390 0.868100i \(-0.665341\pi\)
−0.496390 + 0.868100i \(0.665341\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 16.3871 0.556858
\(867\) 0 0
\(868\) −2.42660 −0.0823642
\(869\) −23.1133 −0.784066
\(870\) 0 0
\(871\) 14.8669 0.503746
\(872\) 24.3281 0.823854
\(873\) 0 0
\(874\) −68.7008 −2.32384
\(875\) 0 0
\(876\) 0 0
\(877\) −11.5743 −0.390836 −0.195418 0.980720i \(-0.562606\pi\)
−0.195418 + 0.980720i \(0.562606\pi\)
\(878\) −23.6856 −0.799350
\(879\) 0 0
\(880\) 0 0
\(881\) −21.8843 −0.737299 −0.368650 0.929568i \(-0.620180\pi\)
−0.368650 + 0.929568i \(0.620180\pi\)
\(882\) 0 0
\(883\) 20.2591 0.681773 0.340887 0.940104i \(-0.389273\pi\)
0.340887 + 0.940104i \(0.389273\pi\)
\(884\) 33.7062 1.13366
\(885\) 0 0
\(886\) 70.9517 2.38367
\(887\) −37.5330 −1.26023 −0.630117 0.776500i \(-0.716993\pi\)
−0.630117 + 0.776500i \(0.716993\pi\)
\(888\) 0 0
\(889\) −0.911356 −0.0305659
\(890\) 0 0
\(891\) 0 0
\(892\) −108.974 −3.64872
\(893\) 74.7342 2.50089
\(894\) 0 0
\(895\) 0 0
\(896\) 2.55762 0.0854439
\(897\) 0 0
\(898\) 81.2719 2.71208
\(899\) −3.22185 −0.107455
\(900\) 0 0
\(901\) −22.9404 −0.764254
\(902\) −127.589 −4.24826
\(903\) 0 0
\(904\) 40.4558 1.34554
\(905\) 0 0
\(906\) 0 0
\(907\) −17.7096 −0.588037 −0.294018 0.955800i \(-0.594993\pi\)
−0.294018 + 0.955800i \(0.594993\pi\)
\(908\) 88.6004 2.94031
\(909\) 0 0
\(910\) 0 0
\(911\) 6.63407 0.219796 0.109898 0.993943i \(-0.464948\pi\)
0.109898 + 0.993943i \(0.464948\pi\)
\(912\) 0 0
\(913\) 59.0710 1.95497
\(914\) −68.3845 −2.26196
\(915\) 0 0
\(916\) −25.3871 −0.838813
\(917\) 3.07032 0.101391
\(918\) 0 0
\(919\) 4.71782 0.155626 0.0778132 0.996968i \(-0.475206\pi\)
0.0778132 + 0.996968i \(0.475206\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −17.6572 −0.581510
\(923\) −11.4339 −0.376353
\(924\) 0 0
\(925\) 0 0
\(926\) 54.8127 1.80126
\(927\) 0 0
\(928\) −3.78527 −0.124257
\(929\) −43.4668 −1.42610 −0.713049 0.701114i \(-0.752686\pi\)
−0.713049 + 0.701114i \(0.752686\pi\)
\(930\) 0 0
\(931\) 60.0876 1.96929
\(932\) 61.3690 2.01021
\(933\) 0 0
\(934\) 77.5437 2.53731
\(935\) 0 0
\(936\) 0 0
\(937\) −50.9680 −1.66505 −0.832526 0.553986i \(-0.813106\pi\)
−0.832526 + 0.553986i \(0.813106\pi\)
\(938\) 3.55324 0.116017
\(939\) 0 0
\(940\) 0 0
\(941\) −11.0790 −0.361165 −0.180583 0.983560i \(-0.557798\pi\)
−0.180583 + 0.983560i \(0.557798\pi\)
\(942\) 0 0
\(943\) 31.5254 1.02661
\(944\) −47.4651 −1.54486
\(945\) 0 0
\(946\) 101.282 3.29298
\(947\) 58.5923 1.90399 0.951997 0.306107i \(-0.0990264\pi\)
0.951997 + 0.306107i \(0.0990264\pi\)
\(948\) 0 0
\(949\) −12.3184 −0.399872
\(950\) 0 0
\(951\) 0 0
\(952\) 4.34842 0.140933
\(953\) 22.9017 0.741859 0.370929 0.928661i \(-0.379039\pi\)
0.370929 + 0.928661i \(0.379039\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 27.7720 0.898211
\(957\) 0 0
\(958\) 15.8510 0.512123
\(959\) 0.198404 0.00640680
\(960\) 0 0
\(961\) −20.6197 −0.665151
\(962\) 9.10321 0.293499
\(963\) 0 0
\(964\) −44.2019 −1.42365
\(965\) 0 0
\(966\) 0 0
\(967\) 49.6623 1.59703 0.798516 0.601973i \(-0.205619\pi\)
0.798516 + 0.601973i \(0.205619\pi\)
\(968\) 87.6437 2.81698
\(969\) 0 0
\(970\) 0 0
\(971\) 6.90899 0.221720 0.110860 0.993836i \(-0.464639\pi\)
0.110860 + 0.993836i \(0.464639\pi\)
\(972\) 0 0
\(973\) −0.708271 −0.0227061
\(974\) 76.4305 2.44899
\(975\) 0 0
\(976\) 17.1092 0.547653
\(977\) −8.17310 −0.261481 −0.130740 0.991417i \(-0.541735\pi\)
−0.130740 + 0.991417i \(0.541735\pi\)
\(978\) 0 0
\(979\) −83.8158 −2.67876
\(980\) 0 0
\(981\) 0 0
\(982\) −44.7949 −1.42946
\(983\) −24.1451 −0.770108 −0.385054 0.922894i \(-0.625817\pi\)
−0.385054 + 0.922894i \(0.625817\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 10.6960 0.340629
\(987\) 0 0
\(988\) 68.4362 2.17724
\(989\) −25.0253 −0.795760
\(990\) 0 0
\(991\) −51.7396 −1.64356 −0.821781 0.569803i \(-0.807020\pi\)
−0.821781 + 0.569803i \(0.807020\pi\)
\(992\) 12.1956 0.387210
\(993\) 0 0
\(994\) −2.73275 −0.0866775
\(995\) 0 0
\(996\) 0 0
\(997\) 9.07880 0.287528 0.143764 0.989612i \(-0.454079\pi\)
0.143764 + 0.989612i \(0.454079\pi\)
\(998\) 0.660625 0.0209117
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bs.1.5 5
3.2 odd 2 2175.2.a.w.1.1 5
5.2 odd 4 1305.2.c.j.784.10 10
5.3 odd 4 1305.2.c.j.784.1 10
5.4 even 2 6525.2.a.bl.1.1 5
15.2 even 4 435.2.c.e.349.1 10
15.8 even 4 435.2.c.e.349.10 yes 10
15.14 odd 2 2175.2.a.z.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.e.349.1 10 15.2 even 4
435.2.c.e.349.10 yes 10 15.8 even 4
1305.2.c.j.784.1 10 5.3 odd 4
1305.2.c.j.784.10 10 5.2 odd 4
2175.2.a.w.1.1 5 3.2 odd 2
2175.2.a.z.1.5 5 15.14 odd 2
6525.2.a.bl.1.1 5 5.4 even 2
6525.2.a.bs.1.5 5 1.1 even 1 trivial