Properties

Label 650.6.b.j.599.4
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 390x^{3} + 32400x^{2} - 135000x + 281250 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.4
Root \(-9.94525 - 9.94525i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.j.599.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -27.8905i q^{3} -16.0000 q^{4} +111.562 q^{6} +240.426i q^{7} -64.0000i q^{8} -534.880 q^{9} +544.151 q^{11} +446.248i q^{12} +169.000i q^{13} -961.702 q^{14} +256.000 q^{16} -1629.30i q^{17} -2139.52i q^{18} +805.920 q^{19} +6705.59 q^{21} +2176.61i q^{22} +373.152i q^{23} -1784.99 q^{24} -676.000 q^{26} +8140.67i q^{27} -3846.81i q^{28} -1503.62 q^{29} -2200.08 q^{31} +1024.00i q^{32} -15176.7i q^{33} +6517.20 q^{34} +8558.08 q^{36} +13109.1i q^{37} +3223.68i q^{38} +4713.49 q^{39} -17099.9 q^{41} +26822.4i q^{42} -8935.58i q^{43} -8706.42 q^{44} -1492.61 q^{46} -15749.7i q^{47} -7139.97i q^{48} -40997.5 q^{49} -45442.0 q^{51} -2704.00i q^{52} +40379.7i q^{53} -32562.7 q^{54} +15387.2 q^{56} -22477.5i q^{57} -6014.46i q^{58} +47562.1 q^{59} -30280.0 q^{61} -8800.31i q^{62} -128599. i q^{63} -4096.00 q^{64} +60706.6 q^{66} -38769.4i q^{67} +26068.8i q^{68} +10407.4 q^{69} -10519.7 q^{71} +34232.3i q^{72} +1582.12i q^{73} -52436.5 q^{74} -12894.7 q^{76} +130828. i q^{77} +18854.0i q^{78} +6191.23 q^{79} +97071.7 q^{81} -68399.8i q^{82} +37849.2i q^{83} -107289. q^{84} +35742.3 q^{86} +41936.6i q^{87} -34825.7i q^{88} -49151.0 q^{89} -40631.9 q^{91} -5970.43i q^{92} +61361.3i q^{93} +62999.0 q^{94} +28559.9 q^{96} +15654.2i q^{97} -163990. i q^{98} -291056. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4} + 176 q^{6} - 310 q^{9} + 96 q^{11} - 1872 q^{14} + 1536 q^{16} + 720 q^{19} + 13808 q^{21} - 2816 q^{24} - 4056 q^{26} + 6156 q^{29} - 10776 q^{31} + 12048 q^{34} + 4960 q^{36} + 7436 q^{39}+ \cdots - 700680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) − 27.8905i − 1.78918i −0.446892 0.894588i \(-0.647469\pi\)
0.446892 0.894588i \(-0.352531\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 111.562 1.26514
\(7\) 240.426i 1.85454i 0.374397 + 0.927269i \(0.377850\pi\)
−0.374397 + 0.927269i \(0.622150\pi\)
\(8\) − 64.0000i − 0.353553i
\(9\) −534.880 −2.20115
\(10\) 0 0
\(11\) 544.151 1.35593 0.677966 0.735093i \(-0.262862\pi\)
0.677966 + 0.735093i \(0.262862\pi\)
\(12\) 446.248i 0.894588i
\(13\) 169.000i 0.277350i
\(14\) −961.702 −1.31136
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 1629.30i − 1.36735i −0.729788 0.683673i \(-0.760381\pi\)
0.729788 0.683673i \(-0.239619\pi\)
\(18\) − 2139.52i − 1.55645i
\(19\) 805.920 0.512162 0.256081 0.966655i \(-0.417569\pi\)
0.256081 + 0.966655i \(0.417569\pi\)
\(20\) 0 0
\(21\) 6705.59 3.31809
\(22\) 2176.61i 0.958789i
\(23\) 373.152i 0.147084i 0.997292 + 0.0735421i \(0.0234303\pi\)
−0.997292 + 0.0735421i \(0.976570\pi\)
\(24\) −1784.99 −0.632569
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) 8140.67i 2.14907i
\(28\) − 3846.81i − 0.927269i
\(29\) −1503.62 −0.332003 −0.166001 0.986126i \(-0.553086\pi\)
−0.166001 + 0.986126i \(0.553086\pi\)
\(30\) 0 0
\(31\) −2200.08 −0.411182 −0.205591 0.978638i \(-0.565912\pi\)
−0.205591 + 0.978638i \(0.565912\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 15176.7i − 2.42600i
\(34\) 6517.20 0.966860
\(35\) 0 0
\(36\) 8558.08 1.10058
\(37\) 13109.1i 1.57423i 0.616804 + 0.787117i \(0.288427\pi\)
−0.616804 + 0.787117i \(0.711573\pi\)
\(38\) 3223.68i 0.362154i
\(39\) 4713.49 0.496228
\(40\) 0 0
\(41\) −17099.9 −1.58867 −0.794337 0.607477i \(-0.792182\pi\)
−0.794337 + 0.607477i \(0.792182\pi\)
\(42\) 26822.4i 2.34625i
\(43\) − 8935.58i − 0.736973i −0.929633 0.368487i \(-0.879876\pi\)
0.929633 0.368487i \(-0.120124\pi\)
\(44\) −8706.42 −0.677966
\(45\) 0 0
\(46\) −1492.61 −0.104004
\(47\) − 15749.7i − 1.03999i −0.854170 0.519995i \(-0.825934\pi\)
0.854170 0.519995i \(-0.174066\pi\)
\(48\) − 7139.97i − 0.447294i
\(49\) −40997.5 −2.43931
\(50\) 0 0
\(51\) −45442.0 −2.44642
\(52\) − 2704.00i − 0.138675i
\(53\) 40379.7i 1.97457i 0.158951 + 0.987286i \(0.449189\pi\)
−0.158951 + 0.987286i \(0.550811\pi\)
\(54\) −32562.7 −1.51962
\(55\) 0 0
\(56\) 15387.2 0.655678
\(57\) − 22477.5i − 0.916349i
\(58\) − 6014.46i − 0.234761i
\(59\) 47562.1 1.77881 0.889407 0.457116i \(-0.151118\pi\)
0.889407 + 0.457116i \(0.151118\pi\)
\(60\) 0 0
\(61\) −30280.0 −1.04191 −0.520956 0.853584i \(-0.674424\pi\)
−0.520956 + 0.853584i \(0.674424\pi\)
\(62\) − 8800.31i − 0.290749i
\(63\) − 128599.i − 4.08212i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 60706.6 1.71544
\(67\) − 38769.4i − 1.05512i −0.849517 0.527561i \(-0.823107\pi\)
0.849517 0.527561i \(-0.176893\pi\)
\(68\) 26068.8i 0.683673i
\(69\) 10407.4 0.263160
\(70\) 0 0
\(71\) −10519.7 −0.247660 −0.123830 0.992303i \(-0.539518\pi\)
−0.123830 + 0.992303i \(0.539518\pi\)
\(72\) 34232.3i 0.778225i
\(73\) 1582.12i 0.0347483i 0.999849 + 0.0173742i \(0.00553064\pi\)
−0.999849 + 0.0173742i \(0.994469\pi\)
\(74\) −52436.5 −1.11315
\(75\) 0 0
\(76\) −12894.7 −0.256081
\(77\) 130828.i 2.51463i
\(78\) 18854.0i 0.350886i
\(79\) 6191.23 0.111612 0.0558058 0.998442i \(-0.482227\pi\)
0.0558058 + 0.998442i \(0.482227\pi\)
\(80\) 0 0
\(81\) 97071.7 1.64392
\(82\) − 68399.8i − 1.12336i
\(83\) 37849.2i 0.603062i 0.953456 + 0.301531i \(0.0974977\pi\)
−0.953456 + 0.301531i \(0.902502\pi\)
\(84\) −107289. −1.65905
\(85\) 0 0
\(86\) 35742.3 0.521119
\(87\) 41936.6i 0.594011i
\(88\) − 34825.7i − 0.479394i
\(89\) −49151.0 −0.657744 −0.328872 0.944374i \(-0.606669\pi\)
−0.328872 + 0.944374i \(0.606669\pi\)
\(90\) 0 0
\(91\) −40631.9 −0.514356
\(92\) − 5970.43i − 0.0735421i
\(93\) 61361.3i 0.735677i
\(94\) 62999.0 0.735383
\(95\) 0 0
\(96\) 28559.9 0.316285
\(97\) 15654.2i 0.168928i 0.996427 + 0.0844641i \(0.0269178\pi\)
−0.996427 + 0.0844641i \(0.973082\pi\)
\(98\) − 163990.i − 1.72485i
\(99\) −291056. −2.98461
\(100\) 0 0
\(101\) −138108. −1.34714 −0.673572 0.739122i \(-0.735241\pi\)
−0.673572 + 0.739122i \(0.735241\pi\)
\(102\) − 181768.i − 1.72988i
\(103\) − 47642.1i − 0.442484i −0.975219 0.221242i \(-0.928989\pi\)
0.975219 0.221242i \(-0.0710111\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) −161519. −1.39623
\(107\) 186527.i 1.57500i 0.616313 + 0.787501i \(0.288626\pi\)
−0.616313 + 0.787501i \(0.711374\pi\)
\(108\) − 130251.i − 1.07454i
\(109\) −14407.1 −0.116147 −0.0580736 0.998312i \(-0.518496\pi\)
−0.0580736 + 0.998312i \(0.518496\pi\)
\(110\) 0 0
\(111\) 365620. 2.81658
\(112\) 61548.9i 0.463634i
\(113\) − 50802.0i − 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(114\) 89910.0 0.647957
\(115\) 0 0
\(116\) 24057.8 0.166001
\(117\) − 90394.7i − 0.610490i
\(118\) 190248.i 1.25781i
\(119\) 391725. 2.53580
\(120\) 0 0
\(121\) 135050. 0.838552
\(122\) − 121120.i − 0.736742i
\(123\) 476926.i 2.84242i
\(124\) 35201.3 0.205591
\(125\) 0 0
\(126\) 514395. 2.88649
\(127\) 182278.i 1.00282i 0.865209 + 0.501411i \(0.167186\pi\)
−0.865209 + 0.501411i \(0.832814\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) −249218. −1.31858
\(130\) 0 0
\(131\) 199714. 1.01679 0.508394 0.861124i \(-0.330239\pi\)
0.508394 + 0.861124i \(0.330239\pi\)
\(132\) 242826.i 1.21300i
\(133\) 193764.i 0.949824i
\(134\) 155078. 0.746083
\(135\) 0 0
\(136\) −104275. −0.483430
\(137\) 345418.i 1.57233i 0.618017 + 0.786165i \(0.287936\pi\)
−0.618017 + 0.786165i \(0.712064\pi\)
\(138\) 41629.6i 0.186082i
\(139\) −183088. −0.803754 −0.401877 0.915694i \(-0.631642\pi\)
−0.401877 + 0.915694i \(0.631642\pi\)
\(140\) 0 0
\(141\) −439268. −1.86072
\(142\) − 42078.7i − 0.175122i
\(143\) 91961.6i 0.376068i
\(144\) −136929. −0.550288
\(145\) 0 0
\(146\) −6328.50 −0.0245708
\(147\) 1.14344e6i 4.36435i
\(148\) − 209746.i − 0.787117i
\(149\) 187082. 0.690344 0.345172 0.938540i \(-0.387821\pi\)
0.345172 + 0.938540i \(0.387821\pi\)
\(150\) 0 0
\(151\) −10616.3 −0.0378907 −0.0189454 0.999821i \(-0.506031\pi\)
−0.0189454 + 0.999821i \(0.506031\pi\)
\(152\) − 51578.9i − 0.181077i
\(153\) 871480.i 3.00974i
\(154\) −523312. −1.77811
\(155\) 0 0
\(156\) −75415.9 −0.248114
\(157\) 335884.i 1.08753i 0.839238 + 0.543764i \(0.183001\pi\)
−0.839238 + 0.543764i \(0.816999\pi\)
\(158\) 24764.9i 0.0789213i
\(159\) 1.12621e6 3.53286
\(160\) 0 0
\(161\) −89715.3 −0.272773
\(162\) 388287.i 1.16242i
\(163\) 201881.i 0.595150i 0.954698 + 0.297575i \(0.0961778\pi\)
−0.954698 + 0.297575i \(0.903822\pi\)
\(164\) 273599. 0.794337
\(165\) 0 0
\(166\) −151397. −0.426429
\(167\) 446050.i 1.23764i 0.785535 + 0.618818i \(0.212388\pi\)
−0.785535 + 0.618818i \(0.787612\pi\)
\(168\) − 429158.i − 1.17312i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) −431070. −1.12735
\(172\) 142969.i 0.368487i
\(173\) 57408.8i 0.145835i 0.997338 + 0.0729177i \(0.0232311\pi\)
−0.997338 + 0.0729177i \(0.976769\pi\)
\(174\) −167746. −0.420030
\(175\) 0 0
\(176\) 139303. 0.338983
\(177\) − 1.32653e6i − 3.18261i
\(178\) − 196604.i − 0.465095i
\(179\) −87439.4 −0.203974 −0.101987 0.994786i \(-0.532520\pi\)
−0.101987 + 0.994786i \(0.532520\pi\)
\(180\) 0 0
\(181\) 21341.6 0.0484206 0.0242103 0.999707i \(-0.492293\pi\)
0.0242103 + 0.999707i \(0.492293\pi\)
\(182\) − 162528.i − 0.363705i
\(183\) 844523.i 1.86416i
\(184\) 23881.7 0.0520021
\(185\) 0 0
\(186\) −245445. −0.520202
\(187\) − 886586.i − 1.85403i
\(188\) 251996.i 0.519995i
\(189\) −1.95723e6 −3.98553
\(190\) 0 0
\(191\) 307517. 0.609938 0.304969 0.952362i \(-0.401354\pi\)
0.304969 + 0.952362i \(0.401354\pi\)
\(192\) 114239.i 0.223647i
\(193\) 182409.i 0.352496i 0.984346 + 0.176248i \(0.0563960\pi\)
−0.984346 + 0.176248i \(0.943604\pi\)
\(194\) −62616.9 −0.119450
\(195\) 0 0
\(196\) 655959. 1.21965
\(197\) 152508.i 0.279980i 0.990153 + 0.139990i \(0.0447070\pi\)
−0.990153 + 0.139990i \(0.955293\pi\)
\(198\) − 1.16422e6i − 2.11044i
\(199\) 586606. 1.05006 0.525029 0.851084i \(-0.324054\pi\)
0.525029 + 0.851084i \(0.324054\pi\)
\(200\) 0 0
\(201\) −1.08130e6 −1.88780
\(202\) − 552430.i − 0.952574i
\(203\) − 361508.i − 0.615711i
\(204\) 727072. 1.22321
\(205\) 0 0
\(206\) 190568. 0.312884
\(207\) − 199592.i − 0.323755i
\(208\) 43264.0i 0.0693375i
\(209\) 438542. 0.694458
\(210\) 0 0
\(211\) −207041. −0.320147 −0.160073 0.987105i \(-0.551173\pi\)
−0.160073 + 0.987105i \(0.551173\pi\)
\(212\) − 646075.i − 0.987286i
\(213\) 293399.i 0.443108i
\(214\) −746106. −1.11369
\(215\) 0 0
\(216\) 521003. 0.759812
\(217\) − 528955.i − 0.762552i
\(218\) − 57628.2i − 0.0821285i
\(219\) 44126.3 0.0621708
\(220\) 0 0
\(221\) 275352. 0.379234
\(222\) 1.46248e6i 1.99162i
\(223\) − 1.04889e6i − 1.41243i −0.707998 0.706214i \(-0.750401\pi\)
0.707998 0.706214i \(-0.249599\pi\)
\(224\) −246196. −0.327839
\(225\) 0 0
\(226\) 203208. 0.264649
\(227\) 100709.i 0.129719i 0.997894 + 0.0648593i \(0.0206599\pi\)
−0.997894 + 0.0648593i \(0.979340\pi\)
\(228\) 359640.i 0.458174i
\(229\) −487174. −0.613896 −0.306948 0.951726i \(-0.599308\pi\)
−0.306948 + 0.951726i \(0.599308\pi\)
\(230\) 0 0
\(231\) 3.64886e6 4.49911
\(232\) 96231.4i 0.117381i
\(233\) − 832844.i − 1.00502i −0.864572 0.502509i \(-0.832410\pi\)
0.864572 0.502509i \(-0.167590\pi\)
\(234\) 361579. 0.431681
\(235\) 0 0
\(236\) −760993. −0.889407
\(237\) − 172677.i − 0.199693i
\(238\) 1.56690e6i 1.79308i
\(239\) −1.34919e6 −1.52785 −0.763923 0.645308i \(-0.776729\pi\)
−0.763923 + 0.645308i \(0.776729\pi\)
\(240\) 0 0
\(241\) −1.66283e6 −1.84419 −0.922096 0.386962i \(-0.873524\pi\)
−0.922096 + 0.386962i \(0.873524\pi\)
\(242\) 540199.i 0.592946i
\(243\) − 729193.i − 0.792185i
\(244\) 484479. 0.520956
\(245\) 0 0
\(246\) −1.90770e6 −2.00989
\(247\) 136200.i 0.142048i
\(248\) 140805.i 0.145375i
\(249\) 1.05563e6 1.07898
\(250\) 0 0
\(251\) −291273. −0.291820 −0.145910 0.989298i \(-0.546611\pi\)
−0.145910 + 0.989298i \(0.546611\pi\)
\(252\) 2.05758e6i 2.04106i
\(253\) 203051.i 0.199436i
\(254\) −729110. −0.709102
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 548204.i 0.517737i 0.965913 + 0.258868i \(0.0833496\pi\)
−0.965913 + 0.258868i \(0.916650\pi\)
\(258\) − 996872.i − 0.932374i
\(259\) −3.15177e6 −2.91947
\(260\) 0 0
\(261\) 804253. 0.730788
\(262\) 798857.i 0.718978i
\(263\) 818412.i 0.729596i 0.931087 + 0.364798i \(0.118862\pi\)
−0.931087 + 0.364798i \(0.881138\pi\)
\(264\) −971306. −0.857721
\(265\) 0 0
\(266\) −775055. −0.671627
\(267\) 1.37085e6i 1.17682i
\(268\) 620311.i 0.527561i
\(269\) 939455. 0.791581 0.395790 0.918341i \(-0.370471\pi\)
0.395790 + 0.918341i \(0.370471\pi\)
\(270\) 0 0
\(271\) −1.52416e6 −1.26069 −0.630345 0.776315i \(-0.717087\pi\)
−0.630345 + 0.776315i \(0.717087\pi\)
\(272\) − 417101.i − 0.341837i
\(273\) 1.13324e6i 0.920274i
\(274\) −1.38167e6 −1.11180
\(275\) 0 0
\(276\) −166518. −0.131580
\(277\) 439704.i 0.344319i 0.985069 + 0.172159i \(0.0550744\pi\)
−0.985069 + 0.172159i \(0.944926\pi\)
\(278\) − 732352.i − 0.568340i
\(279\) 1.17678e6 0.905074
\(280\) 0 0
\(281\) −592033. −0.447280 −0.223640 0.974672i \(-0.571794\pi\)
−0.223640 + 0.974672i \(0.571794\pi\)
\(282\) − 1.75707e6i − 1.31573i
\(283\) − 777226.i − 0.576875i −0.957499 0.288437i \(-0.906864\pi\)
0.957499 0.288437i \(-0.0931357\pi\)
\(284\) 168315. 0.123830
\(285\) 0 0
\(286\) −367846. −0.265920
\(287\) − 4.11126e6i − 2.94626i
\(288\) − 547717.i − 0.389112i
\(289\) −1.23476e6 −0.869637
\(290\) 0 0
\(291\) 436604. 0.302242
\(292\) − 25314.0i − 0.0173742i
\(293\) 609025.i 0.414444i 0.978294 + 0.207222i \(0.0664423\pi\)
−0.978294 + 0.207222i \(0.933558\pi\)
\(294\) −4.57376e6 −3.08606
\(295\) 0 0
\(296\) 838984. 0.556576
\(297\) 4.42976e6i 2.91400i
\(298\) 748326.i 0.488147i
\(299\) −63062.7 −0.0407938
\(300\) 0 0
\(301\) 2.14834e6 1.36674
\(302\) − 42465.4i − 0.0267928i
\(303\) 3.85189e6i 2.41028i
\(304\) 206315. 0.128041
\(305\) 0 0
\(306\) −3.48592e6 −2.12821
\(307\) 2.66761e6i 1.61538i 0.589604 + 0.807692i \(0.299284\pi\)
−0.589604 + 0.807692i \(0.700716\pi\)
\(308\) − 2.09325e6i − 1.25731i
\(309\) −1.32876e6 −0.791682
\(310\) 0 0
\(311\) −1.62320e6 −0.951634 −0.475817 0.879544i \(-0.657847\pi\)
−0.475817 + 0.879544i \(0.657847\pi\)
\(312\) − 301664.i − 0.175443i
\(313\) 592115.i 0.341622i 0.985304 + 0.170811i \(0.0546387\pi\)
−0.985304 + 0.170811i \(0.945361\pi\)
\(314\) −1.34354e6 −0.768998
\(315\) 0 0
\(316\) −99059.7 −0.0558058
\(317\) 2.61036e6i 1.45899i 0.683987 + 0.729494i \(0.260244\pi\)
−0.683987 + 0.729494i \(0.739756\pi\)
\(318\) 4.50484e6i 2.49811i
\(319\) −818194. −0.450173
\(320\) 0 0
\(321\) 5.20232e6 2.81796
\(322\) − 358861.i − 0.192880i
\(323\) − 1.31308e6i − 0.700304i
\(324\) −1.55315e6 −0.821959
\(325\) 0 0
\(326\) −807524. −0.420834
\(327\) 401820.i 0.207808i
\(328\) 1.09440e6i 0.561681i
\(329\) 3.78664e6 1.92870
\(330\) 0 0
\(331\) 818785. 0.410771 0.205386 0.978681i \(-0.434155\pi\)
0.205386 + 0.978681i \(0.434155\pi\)
\(332\) − 605588.i − 0.301531i
\(333\) − 7.01180e6i − 3.46513i
\(334\) −1.78420e6 −0.875140
\(335\) 0 0
\(336\) 1.71663e6 0.829523
\(337\) − 3.28910e6i − 1.57762i −0.614638 0.788809i \(-0.710698\pi\)
0.614638 0.788809i \(-0.289302\pi\)
\(338\) − 114244.i − 0.0543928i
\(339\) −1.41689e6 −0.669634
\(340\) 0 0
\(341\) −1.19718e6 −0.557535
\(342\) − 1.72428e6i − 0.797155i
\(343\) − 5.81600e6i − 2.66925i
\(344\) −571877. −0.260559
\(345\) 0 0
\(346\) −229635. −0.103121
\(347\) − 139108.i − 0.0620195i −0.999519 0.0310098i \(-0.990128\pi\)
0.999519 0.0310098i \(-0.00987229\pi\)
\(348\) − 670985.i − 0.297006i
\(349\) −1.41781e6 −0.623097 −0.311549 0.950230i \(-0.600848\pi\)
−0.311549 + 0.950230i \(0.600848\pi\)
\(350\) 0 0
\(351\) −1.37577e6 −0.596045
\(352\) 557211.i 0.239697i
\(353\) 2.45675e6i 1.04936i 0.851300 + 0.524679i \(0.175815\pi\)
−0.851300 + 0.524679i \(0.824185\pi\)
\(354\) 5.30612e6 2.25045
\(355\) 0 0
\(356\) 786416. 0.328872
\(357\) − 1.09254e7i − 4.53698i
\(358\) − 349758.i − 0.144231i
\(359\) 2.88601e6 1.18185 0.590924 0.806727i \(-0.298763\pi\)
0.590924 + 0.806727i \(0.298763\pi\)
\(360\) 0 0
\(361\) −1.82659e6 −0.737690
\(362\) 85366.4i 0.0342386i
\(363\) − 3.76660e6i − 1.50032i
\(364\) 650111. 0.257178
\(365\) 0 0
\(366\) −3.37809e6 −1.31816
\(367\) 2.83587e6i 1.09906i 0.835474 + 0.549530i \(0.185193\pi\)
−0.835474 + 0.549530i \(0.814807\pi\)
\(368\) 95526.9i 0.0367711i
\(369\) 9.14641e6 3.49691
\(370\) 0 0
\(371\) −9.70831e6 −3.66192
\(372\) − 981781.i − 0.367838i
\(373\) 5.02691e6i 1.87081i 0.353583 + 0.935403i \(0.384963\pi\)
−0.353583 + 0.935403i \(0.615037\pi\)
\(374\) 3.54634e6 1.31100
\(375\) 0 0
\(376\) −1.00798e6 −0.367692
\(377\) − 254111.i − 0.0920810i
\(378\) − 7.82891e6i − 2.81820i
\(379\) −2.14892e6 −0.768462 −0.384231 0.923237i \(-0.625533\pi\)
−0.384231 + 0.923237i \(0.625533\pi\)
\(380\) 0 0
\(381\) 5.08381e6 1.79423
\(382\) 1.23007e6i 0.431291i
\(383\) 832971.i 0.290157i 0.989420 + 0.145078i \(0.0463434\pi\)
−0.989420 + 0.145078i \(0.953657\pi\)
\(384\) −456958. −0.158142
\(385\) 0 0
\(386\) −729637. −0.249252
\(387\) 4.77946e6i 1.62219i
\(388\) − 250468.i − 0.0844641i
\(389\) 725243. 0.243002 0.121501 0.992591i \(-0.461229\pi\)
0.121501 + 0.992591i \(0.461229\pi\)
\(390\) 0 0
\(391\) 607976. 0.201115
\(392\) 2.62384e6i 0.862426i
\(393\) − 5.57013e6i − 1.81921i
\(394\) −610032. −0.197976
\(395\) 0 0
\(396\) 4.65689e6 1.49231
\(397\) − 2.42654e6i − 0.772701i −0.922352 0.386351i \(-0.873735\pi\)
0.922352 0.386351i \(-0.126265\pi\)
\(398\) 2.34642e6i 0.742504i
\(399\) 5.40417e6 1.69940
\(400\) 0 0
\(401\) −2.14376e6 −0.665758 −0.332879 0.942970i \(-0.608020\pi\)
−0.332879 + 0.942970i \(0.608020\pi\)
\(402\) − 4.32519e6i − 1.33487i
\(403\) − 371813.i − 0.114041i
\(404\) 2.20972e6 0.673572
\(405\) 0 0
\(406\) 1.44603e6 0.435374
\(407\) 7.13335e6i 2.13455i
\(408\) 2.90829e6i 0.864942i
\(409\) 3.66144e6 1.08229 0.541145 0.840929i \(-0.317991\pi\)
0.541145 + 0.840929i \(0.317991\pi\)
\(410\) 0 0
\(411\) 9.63388e6 2.81317
\(412\) 762273.i 0.221242i
\(413\) 1.14351e7i 3.29888i
\(414\) 798366. 0.228929
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) 5.10642e6i 1.43806i
\(418\) 1.75417e6i 0.491056i
\(419\) −3.03786e6 −0.845341 −0.422671 0.906283i \(-0.638907\pi\)
−0.422671 + 0.906283i \(0.638907\pi\)
\(420\) 0 0
\(421\) −1.88663e6 −0.518777 −0.259389 0.965773i \(-0.583521\pi\)
−0.259389 + 0.965773i \(0.583521\pi\)
\(422\) − 828162.i − 0.226378i
\(423\) 8.42422e6i 2.28917i
\(424\) 2.58430e6 0.698117
\(425\) 0 0
\(426\) −1.17360e6 −0.313325
\(427\) − 7.28008e6i − 1.93226i
\(428\) − 2.98442e6i − 0.787501i
\(429\) 2.56485e6 0.672852
\(430\) 0 0
\(431\) 717193. 0.185970 0.0929850 0.995668i \(-0.470359\pi\)
0.0929850 + 0.995668i \(0.470359\pi\)
\(432\) 2.08401e6i 0.537268i
\(433\) 2.64569e6i 0.678140i 0.940761 + 0.339070i \(0.110112\pi\)
−0.940761 + 0.339070i \(0.889888\pi\)
\(434\) 2.11582e6 0.539206
\(435\) 0 0
\(436\) 230513. 0.0580736
\(437\) 300731.i 0.0753310i
\(438\) 176505.i 0.0439614i
\(439\) −4.47973e6 −1.10941 −0.554704 0.832048i \(-0.687168\pi\)
−0.554704 + 0.832048i \(0.687168\pi\)
\(440\) 0 0
\(441\) 2.19287e7 5.36929
\(442\) 1.10141e6i 0.268159i
\(443\) 4.30731e6i 1.04279i 0.853315 + 0.521395i \(0.174588\pi\)
−0.853315 + 0.521395i \(0.825412\pi\)
\(444\) −5.84992e6 −1.40829
\(445\) 0 0
\(446\) 4.19555e6 0.998738
\(447\) − 5.21780e6i − 1.23515i
\(448\) − 984783.i − 0.231817i
\(449\) 25272.9 0.00591615 0.00295808 0.999996i \(-0.499058\pi\)
0.00295808 + 0.999996i \(0.499058\pi\)
\(450\) 0 0
\(451\) −9.30495e6 −2.15413
\(452\) 812832.i 0.187135i
\(453\) 296095.i 0.0677932i
\(454\) −402835. −0.0917250
\(455\) 0 0
\(456\) −1.43856e6 −0.323978
\(457\) − 1.14360e6i − 0.256143i −0.991765 0.128072i \(-0.959121\pi\)
0.991765 0.128072i \(-0.0408787\pi\)
\(458\) − 1.94869e6i − 0.434090i
\(459\) 1.32636e7 2.93853
\(460\) 0 0
\(461\) −8.34911e6 −1.82973 −0.914867 0.403755i \(-0.867705\pi\)
−0.914867 + 0.403755i \(0.867705\pi\)
\(462\) 1.45954e7i 3.18135i
\(463\) − 3.41596e6i − 0.740561i −0.928920 0.370280i \(-0.879262\pi\)
0.928920 0.370280i \(-0.120738\pi\)
\(464\) −384925. −0.0830007
\(465\) 0 0
\(466\) 3.33138e6 0.710655
\(467\) − 5.67105e6i − 1.20329i −0.798763 0.601646i \(-0.794512\pi\)
0.798763 0.601646i \(-0.205488\pi\)
\(468\) 1.44632e6i 0.305245i
\(469\) 9.32116e6 1.95676
\(470\) 0 0
\(471\) 9.36797e6 1.94578
\(472\) − 3.04397e6i − 0.628906i
\(473\) − 4.86231e6i − 0.999286i
\(474\) 690706. 0.141204
\(475\) 0 0
\(476\) −6.26760e6 −1.26790
\(477\) − 2.15983e7i − 4.34633i
\(478\) − 5.39677e6i − 1.08035i
\(479\) 6.16340e6 1.22739 0.613694 0.789544i \(-0.289683\pi\)
0.613694 + 0.789544i \(0.289683\pi\)
\(480\) 0 0
\(481\) −2.21544e6 −0.436614
\(482\) − 6.65133e6i − 1.30404i
\(483\) 2.50220e6i 0.488039i
\(484\) −2.16080e6 −0.419276
\(485\) 0 0
\(486\) 2.91677e6 0.560160
\(487\) 7.32701e6i 1.39992i 0.714180 + 0.699962i \(0.246800\pi\)
−0.714180 + 0.699962i \(0.753200\pi\)
\(488\) 1.93792e6i 0.368371i
\(489\) 5.63056e6 1.06483
\(490\) 0 0
\(491\) 8.89739e6 1.66555 0.832777 0.553608i \(-0.186750\pi\)
0.832777 + 0.553608i \(0.186750\pi\)
\(492\) − 7.63081e6i − 1.42121i
\(493\) 2.44984e6i 0.453963i
\(494\) −544802. −0.100443
\(495\) 0 0
\(496\) −563220. −0.102795
\(497\) − 2.52920e6i − 0.459295i
\(498\) 4.22254e6i 0.762957i
\(499\) −3.02237e6 −0.543371 −0.271686 0.962386i \(-0.587581\pi\)
−0.271686 + 0.962386i \(0.587581\pi\)
\(500\) 0 0
\(501\) 1.24406e7 2.21435
\(502\) − 1.16509e6i − 0.206348i
\(503\) − 7.48799e6i − 1.31961i −0.751437 0.659805i \(-0.770639\pi\)
0.751437 0.659805i \(-0.229361\pi\)
\(504\) −8.23032e6 −1.44325
\(505\) 0 0
\(506\) −812205. −0.141023
\(507\) 796581.i 0.137629i
\(508\) − 2.91644e6i − 0.501411i
\(509\) −4.87997e6 −0.834878 −0.417439 0.908705i \(-0.637072\pi\)
−0.417439 + 0.908705i \(0.637072\pi\)
\(510\) 0 0
\(511\) −380383. −0.0644420
\(512\) 262144.i 0.0441942i
\(513\) 6.56073e6i 1.10067i
\(514\) −2.19281e6 −0.366095
\(515\) 0 0
\(516\) 3.98749e6 0.659288
\(517\) − 8.57024e6i − 1.41015i
\(518\) − 1.26071e7i − 2.06438i
\(519\) 1.60116e6 0.260925
\(520\) 0 0
\(521\) −3.79679e6 −0.612805 −0.306403 0.951902i \(-0.599125\pi\)
−0.306403 + 0.951902i \(0.599125\pi\)
\(522\) 3.21701e6i 0.516745i
\(523\) − 5.66643e6i − 0.905848i −0.891549 0.452924i \(-0.850381\pi\)
0.891549 0.452924i \(-0.149619\pi\)
\(524\) −3.19543e6 −0.508394
\(525\) 0 0
\(526\) −3.27365e6 −0.515902
\(527\) 3.58459e6i 0.562228i
\(528\) − 3.88522e6i − 0.606500i
\(529\) 6.29710e6 0.978366
\(530\) 0 0
\(531\) −2.54400e7 −3.91544
\(532\) − 3.10022e6i − 0.474912i
\(533\) − 2.88989e6i − 0.440619i
\(534\) −5.48338e6 −0.832138
\(535\) 0 0
\(536\) −2.48124e6 −0.373042
\(537\) 2.43873e6i 0.364945i
\(538\) 3.75782e6i 0.559732i
\(539\) −2.23088e7 −3.30754
\(540\) 0 0
\(541\) 1.15648e7 1.69881 0.849403 0.527745i \(-0.176962\pi\)
0.849403 + 0.527745i \(0.176962\pi\)
\(542\) − 6.09665e6i − 0.891442i
\(543\) − 595228.i − 0.0866330i
\(544\) 1.66840e6 0.241715
\(545\) 0 0
\(546\) −4.53298e6 −0.650732
\(547\) 1.28104e7i 1.83060i 0.402776 + 0.915299i \(0.368045\pi\)
−0.402776 + 0.915299i \(0.631955\pi\)
\(548\) − 5.52669e6i − 0.786165i
\(549\) 1.61961e7 2.29340
\(550\) 0 0
\(551\) −1.21179e6 −0.170039
\(552\) − 666073.i − 0.0930410i
\(553\) 1.48853e6i 0.206988i
\(554\) −1.75881e6 −0.243470
\(555\) 0 0
\(556\) 2.92941e6 0.401877
\(557\) − 3.51737e6i − 0.480374i −0.970727 0.240187i \(-0.922791\pi\)
0.970727 0.240187i \(-0.0772088\pi\)
\(558\) 4.70711e6i 0.639984i
\(559\) 1.51011e6 0.204400
\(560\) 0 0
\(561\) −2.47273e7 −3.31719
\(562\) − 2.36813e6i − 0.316275i
\(563\) 9.45258e6i 1.25684i 0.777875 + 0.628419i \(0.216298\pi\)
−0.777875 + 0.628419i \(0.783702\pi\)
\(564\) 7.02829e6 0.930362
\(565\) 0 0
\(566\) 3.10891e6 0.407912
\(567\) 2.33385e7i 3.04871i
\(568\) 673259.i 0.0875611i
\(569\) −1.11315e7 −1.44136 −0.720679 0.693269i \(-0.756170\pi\)
−0.720679 + 0.693269i \(0.756170\pi\)
\(570\) 0 0
\(571\) 4.92935e6 0.632702 0.316351 0.948642i \(-0.397542\pi\)
0.316351 + 0.948642i \(0.397542\pi\)
\(572\) − 1.47139e6i − 0.188034i
\(573\) − 8.57680e6i − 1.09129i
\(574\) 1.64450e7 2.08332
\(575\) 0 0
\(576\) 2.19087e6 0.275144
\(577\) − 1.09437e7i − 1.36843i −0.729279 0.684217i \(-0.760144\pi\)
0.729279 0.684217i \(-0.239856\pi\)
\(578\) − 4.93904e6i − 0.614926i
\(579\) 5.08749e6 0.630677
\(580\) 0 0
\(581\) −9.09993e6 −1.11840
\(582\) 1.74642e6i 0.213718i
\(583\) 2.19727e7i 2.67739i
\(584\) 101256. 0.0122854
\(585\) 0 0
\(586\) −2.43610e6 −0.293056
\(587\) − 7.96444e6i − 0.954025i −0.878896 0.477013i \(-0.841720\pi\)
0.878896 0.477013i \(-0.158280\pi\)
\(588\) − 1.82950e7i − 2.18218i
\(589\) −1.77309e6 −0.210592
\(590\) 0 0
\(591\) 4.25352e6 0.500934
\(592\) 3.35593e6i 0.393558i
\(593\) − 1.19793e7i − 1.39892i −0.714671 0.699460i \(-0.753424\pi\)
0.714671 0.699460i \(-0.246576\pi\)
\(594\) −1.77190e7 −2.06051
\(595\) 0 0
\(596\) −2.99330e6 −0.345172
\(597\) − 1.63607e7i − 1.87874i
\(598\) − 252251.i − 0.0288456i
\(599\) −7.45663e6 −0.849132 −0.424566 0.905397i \(-0.639573\pi\)
−0.424566 + 0.905397i \(0.639573\pi\)
\(600\) 0 0
\(601\) −1.04196e7 −1.17670 −0.588351 0.808606i \(-0.700223\pi\)
−0.588351 + 0.808606i \(0.700223\pi\)
\(602\) 8.59337e6i 0.966434i
\(603\) 2.07370e7i 2.32248i
\(604\) 169862. 0.0189454
\(605\) 0 0
\(606\) −1.54075e7 −1.70432
\(607\) − 571939.i − 0.0630054i −0.999504 0.0315027i \(-0.989971\pi\)
0.999504 0.0315027i \(-0.0100293\pi\)
\(608\) 825262.i 0.0905384i
\(609\) −1.00826e7 −1.10162
\(610\) 0 0
\(611\) 2.66171e6 0.288441
\(612\) − 1.39437e7i − 1.50487i
\(613\) − 1.61323e7i − 1.73398i −0.498323 0.866991i \(-0.666051\pi\)
0.498323 0.866991i \(-0.333949\pi\)
\(614\) −1.06704e7 −1.14225
\(615\) 0 0
\(616\) 8.37299e6 0.889055
\(617\) 6.39133e6i 0.675894i 0.941165 + 0.337947i \(0.109732\pi\)
−0.941165 + 0.337947i \(0.890268\pi\)
\(618\) − 5.31505e6i − 0.559804i
\(619\) −1.27062e7 −1.33287 −0.666435 0.745563i \(-0.732181\pi\)
−0.666435 + 0.745563i \(0.732181\pi\)
\(620\) 0 0
\(621\) −3.03771e6 −0.316095
\(622\) − 6.49278e6i − 0.672907i
\(623\) − 1.18172e7i − 1.21981i
\(624\) 1.20665e6 0.124057
\(625\) 0 0
\(626\) −2.36846e6 −0.241563
\(627\) − 1.22312e7i − 1.24251i
\(628\) − 5.37414e6i − 0.543764i
\(629\) 2.13587e7 2.15252
\(630\) 0 0
\(631\) −694354. −0.0694237 −0.0347118 0.999397i \(-0.511051\pi\)
−0.0347118 + 0.999397i \(0.511051\pi\)
\(632\) − 396239.i − 0.0394607i
\(633\) 5.77447e6i 0.572799i
\(634\) −1.04414e7 −1.03166
\(635\) 0 0
\(636\) −1.80193e7 −1.76643
\(637\) − 6.92857e6i − 0.676542i
\(638\) − 3.27278e6i − 0.318321i
\(639\) 5.62676e6 0.545138
\(640\) 0 0
\(641\) −8.71863e6 −0.838114 −0.419057 0.907960i \(-0.637639\pi\)
−0.419057 + 0.907960i \(0.637639\pi\)
\(642\) 2.08093e7i 1.99260i
\(643\) 5.98737e6i 0.571096i 0.958364 + 0.285548i \(0.0921756\pi\)
−0.958364 + 0.285548i \(0.907824\pi\)
\(644\) 1.43544e6 0.136387
\(645\) 0 0
\(646\) 5.25234e6 0.495189
\(647\) 1.09581e7i 1.02914i 0.857448 + 0.514571i \(0.172049\pi\)
−0.857448 + 0.514571i \(0.827951\pi\)
\(648\) − 6.21259e6i − 0.581212i
\(649\) 2.58810e7 2.41195
\(650\) 0 0
\(651\) −1.47528e7 −1.36434
\(652\) − 3.23009e6i − 0.297575i
\(653\) 6.47503e6i 0.594236i 0.954841 + 0.297118i \(0.0960255\pi\)
−0.954841 + 0.297118i \(0.903975\pi\)
\(654\) −1.60728e6 −0.146942
\(655\) 0 0
\(656\) −4.37758e6 −0.397169
\(657\) − 846247.i − 0.0764863i
\(658\) 1.51466e7i 1.36380i
\(659\) −501723. −0.0450039 −0.0225020 0.999747i \(-0.507163\pi\)
−0.0225020 + 0.999747i \(0.507163\pi\)
\(660\) 0 0
\(661\) 4.00659e6 0.356674 0.178337 0.983969i \(-0.442928\pi\)
0.178337 + 0.983969i \(0.442928\pi\)
\(662\) 3.27514e6i 0.290459i
\(663\) − 7.67969e6i − 0.678516i
\(664\) 2.42235e6 0.213215
\(665\) 0 0
\(666\) 2.80472e7 2.45021
\(667\) − 561077.i − 0.0488324i
\(668\) − 7.13681e6i − 0.618818i
\(669\) −2.92540e7 −2.52708
\(670\) 0 0
\(671\) −1.64769e7 −1.41276
\(672\) 6.86652e6i 0.586562i
\(673\) 8.17473e6i 0.695722i 0.937546 + 0.347861i \(0.113092\pi\)
−0.937546 + 0.347861i \(0.886908\pi\)
\(674\) 1.31564e7 1.11554
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) − 1.00935e6i − 0.0846392i −0.999104 0.0423196i \(-0.986525\pi\)
0.999104 0.0423196i \(-0.0134748\pi\)
\(678\) − 5.66757e6i − 0.473503i
\(679\) −3.76368e6 −0.313284
\(680\) 0 0
\(681\) 2.80882e6 0.232090
\(682\) − 4.78870e6i − 0.394237i
\(683\) 1.99189e7i 1.63386i 0.576739 + 0.816928i \(0.304325\pi\)
−0.576739 + 0.816928i \(0.695675\pi\)
\(684\) 6.89712e6 0.563674
\(685\) 0 0
\(686\) 2.32640e7 1.88745
\(687\) 1.35875e7i 1.09837i
\(688\) − 2.28751e6i − 0.184243i
\(689\) −6.82417e6 −0.547648
\(690\) 0 0
\(691\) −677407. −0.0539703 −0.0269851 0.999636i \(-0.508591\pi\)
−0.0269851 + 0.999636i \(0.508591\pi\)
\(692\) − 918541.i − 0.0729177i
\(693\) − 6.99772e7i − 5.53508i
\(694\) 556432. 0.0438544
\(695\) 0 0
\(696\) 2.68394e6 0.210015
\(697\) 2.78609e7i 2.17227i
\(698\) − 5.67126e6i − 0.440596i
\(699\) −2.32284e7 −1.79815
\(700\) 0 0
\(701\) 1.04542e7 0.803518 0.401759 0.915745i \(-0.368399\pi\)
0.401759 + 0.915745i \(0.368399\pi\)
\(702\) − 5.50310e6i − 0.421468i
\(703\) 1.05649e7i 0.806263i
\(704\) −2.22884e6 −0.169492
\(705\) 0 0
\(706\) −9.82700e6 −0.742009
\(707\) − 3.32046e7i − 2.49833i
\(708\) 2.12245e7i 1.59131i
\(709\) 2.25125e7 1.68193 0.840964 0.541091i \(-0.181989\pi\)
0.840964 + 0.541091i \(0.181989\pi\)
\(710\) 0 0
\(711\) −3.31157e6 −0.245674
\(712\) 3.14566e6i 0.232548i
\(713\) − 820964.i − 0.0604784i
\(714\) 4.37017e7 3.20813
\(715\) 0 0
\(716\) 1.39903e6 0.101987
\(717\) 3.76297e7i 2.73358i
\(718\) 1.15440e7i 0.835693i
\(719\) 2.77678e6 0.200317 0.100159 0.994971i \(-0.468065\pi\)
0.100159 + 0.994971i \(0.468065\pi\)
\(720\) 0 0
\(721\) 1.14544e7 0.820603
\(722\) − 7.30637e6i − 0.521625i
\(723\) 4.63772e7i 3.29958i
\(724\) −341466. −0.0242103
\(725\) 0 0
\(726\) 1.50664e7 1.06089
\(727\) − 2.76872e6i − 0.194287i −0.995270 0.0971434i \(-0.969029\pi\)
0.995270 0.0971434i \(-0.0309705\pi\)
\(728\) 2.60044e6i 0.181852i
\(729\) 3.25086e6 0.226558
\(730\) 0 0
\(731\) −1.45587e7 −1.00770
\(732\) − 1.35124e7i − 0.932081i
\(733\) − 1.80998e7i − 1.24427i −0.782911 0.622133i \(-0.786266\pi\)
0.782911 0.622133i \(-0.213734\pi\)
\(734\) −1.13435e7 −0.777152
\(735\) 0 0
\(736\) −382108. −0.0260011
\(737\) − 2.10964e7i − 1.43067i
\(738\) 3.65857e7i 2.47269i
\(739\) 3.57016e6 0.240479 0.120239 0.992745i \(-0.461634\pi\)
0.120239 + 0.992745i \(0.461634\pi\)
\(740\) 0 0
\(741\) 3.79870e6 0.254149
\(742\) − 3.88332e7i − 2.58937i
\(743\) − 1.73285e7i − 1.15157i −0.817603 0.575783i \(-0.804697\pi\)
0.817603 0.575783i \(-0.195303\pi\)
\(744\) 3.92712e6 0.260101
\(745\) 0 0
\(746\) −2.01076e7 −1.32286
\(747\) − 2.02448e7i − 1.32743i
\(748\) 1.41854e7i 0.927015i
\(749\) −4.48457e7 −2.92090
\(750\) 0 0
\(751\) 3.04634e6 0.197096 0.0985480 0.995132i \(-0.468580\pi\)
0.0985480 + 0.995132i \(0.468580\pi\)
\(752\) − 4.03193e6i − 0.259997i
\(753\) 8.12374e6i 0.522118i
\(754\) 1.01644e6 0.0651111
\(755\) 0 0
\(756\) 3.13156e7 1.99277
\(757\) 8.98398e6i 0.569808i 0.958556 + 0.284904i \(0.0919618\pi\)
−0.958556 + 0.284904i \(0.908038\pi\)
\(758\) − 8.59568e6i − 0.543384i
\(759\) 5.66320e6 0.356827
\(760\) 0 0
\(761\) 1.31757e7 0.824731 0.412366 0.911018i \(-0.364703\pi\)
0.412366 + 0.911018i \(0.364703\pi\)
\(762\) 2.03352e7i 1.26871i
\(763\) − 3.46382e6i − 0.215399i
\(764\) −4.92027e6 −0.304969
\(765\) 0 0
\(766\) −3.33188e6 −0.205172
\(767\) 8.03799e6i 0.493354i
\(768\) − 1.82783e6i − 0.111824i
\(769\) −3.53661e6 −0.215661 −0.107830 0.994169i \(-0.534390\pi\)
−0.107830 + 0.994169i \(0.534390\pi\)
\(770\) 0 0
\(771\) 1.52897e7 0.926322
\(772\) − 2.91855e6i − 0.176248i
\(773\) − 3.14397e7i − 1.89247i −0.323479 0.946235i \(-0.604853\pi\)
0.323479 0.946235i \(-0.395147\pi\)
\(774\) −1.91179e7 −1.14706
\(775\) 0 0
\(776\) 1.00187e6 0.0597251
\(777\) 8.79044e7i 5.22346i
\(778\) 2.90097e6i 0.171828i
\(779\) −1.37812e7 −0.813659
\(780\) 0 0
\(781\) −5.72429e6 −0.335810
\(782\) 2.43191e6i 0.142210i
\(783\) − 1.22404e7i − 0.713498i
\(784\) −1.04953e7 −0.609827
\(785\) 0 0
\(786\) 2.22805e7 1.28638
\(787\) − 1.27213e7i − 0.732139i −0.930588 0.366069i \(-0.880703\pi\)
0.930588 0.366069i \(-0.119297\pi\)
\(788\) − 2.44013e6i − 0.139990i
\(789\) 2.28259e7 1.30538
\(790\) 0 0
\(791\) 1.22141e7 0.694097
\(792\) 1.86276e7i 1.05522i
\(793\) − 5.11731e6i − 0.288974i
\(794\) 9.70617e6 0.546382
\(795\) 0 0
\(796\) −9.38569e6 −0.525029
\(797\) − 1.84237e7i − 1.02738i −0.857977 0.513689i \(-0.828279\pi\)
0.857977 0.513689i \(-0.171721\pi\)
\(798\) 2.16167e7i 1.20166i
\(799\) −2.56610e7 −1.42203
\(800\) 0 0
\(801\) 2.62899e7 1.44780
\(802\) − 8.57506e6i − 0.470762i
\(803\) 860915.i 0.0471164i
\(804\) 1.73008e7 0.943899
\(805\) 0 0
\(806\) 1.48725e6 0.0806394
\(807\) − 2.62019e7i − 1.41628i
\(808\) 8.83888e6i 0.476287i
\(809\) −2.10360e7 −1.13004 −0.565018 0.825079i \(-0.691131\pi\)
−0.565018 + 0.825079i \(0.691131\pi\)
\(810\) 0 0
\(811\) 3.53571e7 1.88767 0.943833 0.330424i \(-0.107192\pi\)
0.943833 + 0.330424i \(0.107192\pi\)
\(812\) 5.78412e6i 0.307856i
\(813\) 4.25097e7i 2.25560i
\(814\) −2.85334e7 −1.50936
\(815\) 0 0
\(816\) −1.16331e7 −0.611606
\(817\) − 7.20136e6i − 0.377450i
\(818\) 1.46458e7i 0.765295i
\(819\) 2.17332e7 1.13218
\(820\) 0 0
\(821\) 1.72038e7 0.890770 0.445385 0.895339i \(-0.353067\pi\)
0.445385 + 0.895339i \(0.353067\pi\)
\(822\) 3.85355e7i 1.98921i
\(823\) − 947098.i − 0.0487411i −0.999703 0.0243705i \(-0.992242\pi\)
0.999703 0.0243705i \(-0.00775815\pi\)
\(824\) −3.04909e6 −0.156442
\(825\) 0 0
\(826\) −4.57405e7 −2.33266
\(827\) 3.05385e7i 1.55269i 0.630308 + 0.776345i \(0.282928\pi\)
−0.630308 + 0.776345i \(0.717072\pi\)
\(828\) 3.19346e6i 0.161877i
\(829\) 1.57415e7 0.795538 0.397769 0.917486i \(-0.369785\pi\)
0.397769 + 0.917486i \(0.369785\pi\)
\(830\) 0 0
\(831\) 1.22636e7 0.616047
\(832\) − 692224.i − 0.0346688i
\(833\) 6.67971e7i 3.33538i
\(834\) −2.04257e7 −1.01686
\(835\) 0 0
\(836\) −7.01668e6 −0.347229
\(837\) − 1.79101e7i − 0.883659i
\(838\) − 1.21514e7i − 0.597746i
\(839\) −2.07700e7 −1.01867 −0.509333 0.860570i \(-0.670108\pi\)
−0.509333 + 0.860570i \(0.670108\pi\)
\(840\) 0 0
\(841\) −1.82503e7 −0.889774
\(842\) − 7.54651e6i − 0.366831i
\(843\) 1.65121e7i 0.800263i
\(844\) 3.31265e6 0.160073
\(845\) 0 0
\(846\) −3.36969e7 −1.61869
\(847\) 3.24694e7i 1.55513i
\(848\) 1.03372e7i 0.493643i
\(849\) −2.16772e7 −1.03213
\(850\) 0 0
\(851\) −4.89169e6 −0.231545
\(852\) − 4.69438e6i − 0.221554i
\(853\) − 1.91838e7i − 0.902740i −0.892337 0.451370i \(-0.850936\pi\)
0.892337 0.451370i \(-0.149064\pi\)
\(854\) 2.91203e7 1.36632
\(855\) 0 0
\(856\) 1.19377e7 0.556847
\(857\) − 2.64211e7i − 1.22885i −0.788975 0.614425i \(-0.789388\pi\)
0.788975 0.614425i \(-0.210612\pi\)
\(858\) 1.02594e7i 0.475778i
\(859\) 3.30576e7 1.52858 0.764289 0.644873i \(-0.223090\pi\)
0.764289 + 0.644873i \(0.223090\pi\)
\(860\) 0 0
\(861\) −1.14665e8 −5.27137
\(862\) 2.86877e6i 0.131501i
\(863\) 1.19324e7i 0.545380i 0.962102 + 0.272690i \(0.0879133\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(864\) −8.33605e6 −0.379906
\(865\) 0 0
\(866\) −1.05828e7 −0.479518
\(867\) 3.44381e7i 1.55593i
\(868\) 8.46328e6i 0.381276i
\(869\) 3.36897e6 0.151338
\(870\) 0 0
\(871\) 6.55203e6 0.292638
\(872\) 922051.i 0.0410643i
\(873\) − 8.37313e6i − 0.371837i
\(874\) −1.20292e6 −0.0532671
\(875\) 0 0
\(876\) −706020. −0.0310854
\(877\) − 3.88434e6i − 0.170537i −0.996358 0.0852684i \(-0.972825\pi\)
0.996358 0.0852684i \(-0.0271748\pi\)
\(878\) − 1.79189e7i − 0.784469i
\(879\) 1.69860e7 0.741513
\(880\) 0 0
\(881\) −8.93397e6 −0.387797 −0.193899 0.981022i \(-0.562113\pi\)
−0.193899 + 0.981022i \(0.562113\pi\)
\(882\) 8.77148e7i 3.79666i
\(883\) − 4.32552e6i − 0.186697i −0.995634 0.0933484i \(-0.970243\pi\)
0.995634 0.0933484i \(-0.0297570\pi\)
\(884\) −4.40563e6 −0.189617
\(885\) 0 0
\(886\) −1.72292e7 −0.737364
\(887\) − 3.55552e7i − 1.51738i −0.651453 0.758689i \(-0.725840\pi\)
0.651453 0.758689i \(-0.274160\pi\)
\(888\) − 2.33997e7i − 0.995812i
\(889\) −4.38242e7 −1.85977
\(890\) 0 0
\(891\) 5.28217e7 2.22904
\(892\) 1.67822e7i 0.706214i
\(893\) − 1.26930e7i − 0.532643i
\(894\) 2.08712e7 0.873380
\(895\) 0 0
\(896\) 3.93913e6 0.163919
\(897\) 1.75885e6i 0.0729874i
\(898\) 101092.i 0.00418335i
\(899\) 3.30807e6 0.136514
\(900\) 0 0
\(901\) 6.57906e7 2.69993
\(902\) − 3.72198e7i − 1.52320i
\(903\) − 5.99184e7i − 2.44535i
\(904\) −3.25133e6 −0.132324
\(905\) 0 0
\(906\) −1.18438e6 −0.0479370
\(907\) − 2.44157e7i − 0.985486i −0.870175 0.492743i \(-0.835994\pi\)
0.870175 0.492743i \(-0.164006\pi\)
\(908\) − 1.61134e6i − 0.0648593i
\(909\) 7.38709e7 2.96527
\(910\) 0 0
\(911\) 3.00267e7 1.19870 0.599352 0.800486i \(-0.295425\pi\)
0.599352 + 0.800486i \(0.295425\pi\)
\(912\) − 5.75424e6i − 0.229087i
\(913\) 2.05957e7i 0.817711i
\(914\) 4.57439e6 0.181120
\(915\) 0 0
\(916\) 7.79478e6 0.306948
\(917\) 4.80164e7i 1.88567i
\(918\) 5.30544e7i 2.07785i
\(919\) 1.30118e7 0.508216 0.254108 0.967176i \(-0.418218\pi\)
0.254108 + 0.967176i \(0.418218\pi\)
\(920\) 0 0
\(921\) 7.44009e7 2.89021
\(922\) − 3.33964e7i − 1.29382i
\(923\) − 1.77782e6i − 0.0686886i
\(924\) −5.83817e7 −2.24956
\(925\) 0 0
\(926\) 1.36639e7 0.523656
\(927\) 2.54828e7i 0.973975i
\(928\) − 1.53970e6i − 0.0586904i
\(929\) 5.16678e7 1.96418 0.982089 0.188419i \(-0.0603362\pi\)
0.982089 + 0.188419i \(0.0603362\pi\)
\(930\) 0 0
\(931\) −3.30407e7 −1.24932
\(932\) 1.33255e7i 0.502509i
\(933\) 4.52717e7i 1.70264i
\(934\) 2.26842e7 0.850857
\(935\) 0 0
\(936\) −5.78526e6 −0.215841
\(937\) 4.04703e6i 0.150587i 0.997161 + 0.0752936i \(0.0239894\pi\)
−0.997161 + 0.0752936i \(0.976011\pi\)
\(938\) 3.72846e7i 1.38364i
\(939\) 1.65144e7 0.611221
\(940\) 0 0
\(941\) −4.43008e7 −1.63094 −0.815470 0.578799i \(-0.803521\pi\)
−0.815470 + 0.578799i \(0.803521\pi\)
\(942\) 3.74719e7i 1.37587i
\(943\) − 6.38088e6i − 0.233669i
\(944\) 1.21759e7 0.444704
\(945\) 0 0
\(946\) 1.94492e7 0.706602
\(947\) 3.60463e7i 1.30613i 0.757303 + 0.653064i \(0.226517\pi\)
−0.757303 + 0.653064i \(0.773483\pi\)
\(948\) 2.76283e6i 0.0998464i
\(949\) −267379. −0.00963745
\(950\) 0 0
\(951\) 7.28042e7 2.61039
\(952\) − 2.50704e7i − 0.896539i
\(953\) − 1.31248e7i − 0.468123i −0.972222 0.234061i \(-0.924798\pi\)
0.972222 0.234061i \(-0.0752017\pi\)
\(954\) 8.63931e7 3.07332
\(955\) 0 0
\(956\) 2.15871e7 0.763923
\(957\) 2.28198e7i 0.805439i
\(958\) 2.46536e7i 0.867894i
\(959\) −8.30473e7 −2.91594
\(960\) 0 0
\(961\) −2.37888e7 −0.830929
\(962\) − 8.86176e6i − 0.308733i
\(963\) − 9.97693e7i − 3.46682i
\(964\) 2.66053e7 0.922096
\(965\) 0 0
\(966\) −1.00088e7 −0.345096
\(967\) − 2.48150e7i − 0.853390i −0.904396 0.426695i \(-0.859678\pi\)
0.904396 0.426695i \(-0.140322\pi\)
\(968\) − 8.64318e6i − 0.296473i
\(969\) −3.66226e7 −1.25297
\(970\) 0 0
\(971\) −3.54227e6 −0.120569 −0.0602843 0.998181i \(-0.519201\pi\)
−0.0602843 + 0.998181i \(0.519201\pi\)
\(972\) 1.16671e7i 0.396093i
\(973\) − 4.40191e7i − 1.49059i
\(974\) −2.93080e7 −0.989896
\(975\) 0 0
\(976\) −7.75167e6 −0.260478
\(977\) − 9.16916e6i − 0.307322i −0.988124 0.153661i \(-0.950894\pi\)
0.988124 0.153661i \(-0.0491063\pi\)
\(978\) 2.25222e7i 0.752947i
\(979\) −2.67456e7 −0.891857
\(980\) 0 0
\(981\) 7.70604e6 0.255658
\(982\) 3.55895e7i 1.17772i
\(983\) − 3.05912e7i − 1.00975i −0.863193 0.504874i \(-0.831539\pi\)
0.863193 0.504874i \(-0.168461\pi\)
\(984\) 3.05233e7 1.00495
\(985\) 0 0
\(986\) −9.79936e6 −0.321000
\(987\) − 1.05611e8i − 3.45078i
\(988\) − 2.17921e6i − 0.0710242i
\(989\) 3.33433e6 0.108397
\(990\) 0 0
\(991\) 3.47852e7 1.12515 0.562575 0.826746i \(-0.309811\pi\)
0.562575 + 0.826746i \(0.309811\pi\)
\(992\) − 2.25288e6i − 0.0726874i
\(993\) − 2.28363e7i − 0.734942i
\(994\) 1.01168e7 0.324771
\(995\) 0 0
\(996\) −1.68902e7 −0.539492
\(997\) 4.21812e7i 1.34394i 0.740577 + 0.671972i \(0.234552\pi\)
−0.740577 + 0.671972i \(0.765448\pi\)
\(998\) − 1.20895e7i − 0.384222i
\(999\) −1.06717e8 −3.38314
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.j.599.4 6
5.2 odd 4 130.6.a.f.1.1 3
5.3 odd 4 650.6.a.j.1.3 3
5.4 even 2 inner 650.6.b.j.599.3 6
20.7 even 4 1040.6.a.l.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.f.1.1 3 5.2 odd 4
650.6.a.j.1.3 3 5.3 odd 4
650.6.b.j.599.3 6 5.4 even 2 inner
650.6.b.j.599.4 6 1.1 even 1 trivial
1040.6.a.l.1.3 3 20.7 even 4