Properties

Label 650.6.b.j
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 390x^{3} + 32400x^{2} - 135000x + 281250 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_1 q^{2} + (\beta_{2} + 7 \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{4} + 28) q^{6} + ( - \beta_{5} - 7 \beta_{2} - 76 \beta_1) q^{7} + 64 \beta_1 q^{8} + (19 \beta_{4} - 5 \beta_{3} - 47) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 \beta_1 q^{2} + (\beta_{2} + 7 \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{4} + 28) q^{6} + ( - \beta_{5} - 7 \beta_{2} - 76 \beta_1) q^{7} + 64 \beta_1 q^{8} + (19 \beta_{4} - 5 \beta_{3} - 47) q^{9} + ( - 32 \beta_{4} - 7 \beta_{3} + 3) q^{11} + ( - 16 \beta_{2} - 112 \beta_1) q^{12} - 169 \beta_1 q^{13} + (28 \beta_{4} - 4 \beta_{3} - 304) q^{14} + 256 q^{16} + (32 \beta_{5} + 26 \beta_{2} + 504 \beta_1) q^{17} + (20 \beta_{5} + 76 \beta_{2} + 188 \beta_1) q^{18} + (18 \beta_{4} + 57 \beta_{3} + 145) q^{19} + ( - 180 \beta_{4} + 38 \beta_{3} + 2254) q^{21} + (28 \beta_{5} - 128 \beta_{2} - 12 \beta_1) q^{22} + (16 \beta_{5} - 71 \beta_{2} + 819 \beta_1) q^{23} + (64 \beta_{4} - 448) q^{24} - 676 q^{26} + ( - 110 \beta_{5} - 132 \beta_{2} - 3382 \beta_1) q^{27} + (16 \beta_{5} + 112 \beta_{2} + 1216 \beta_1) q^{28} + (5 \beta_{4} - 131 \beta_{3} + 984) q^{29} + (208 \beta_{4} + 209 \beta_{3} - 1657) q^{31} - 1024 \beta_1 q^{32} + (139 \beta_{5} + 247 \beta_{2} + 7488 \beta_1) q^{33} + ( - 104 \beta_{4} + 128 \beta_{3} + 2016) q^{34} + ( - 304 \beta_{4} + 80 \beta_{3} + 752) q^{36} + (45 \beta_{5} - 267 \beta_{2} - 8350 \beta_1) q^{37} + ( - 228 \beta_{5} + 72 \beta_{2} - 580 \beta_1) q^{38} + ( - 169 \beta_{4} + 1183) q^{39} + (26 \beta_{4} - 608 \beta_{3} - 5496) q^{41} + ( - 152 \beta_{5} - 720 \beta_{2} - 9016 \beta_1) q^{42} + ( - 64 \beta_{5} - 145 \beta_{2} + 13129 \beta_1) q^{43} + (512 \beta_{4} + 112 \beta_{3} - 48) q^{44} + (284 \beta_{4} + 64 \beta_{3} + 3276) q^{46} + (97 \beta_{5} + 967 \beta_{2} - 6216 \beta_1) q^{47} + (256 \beta_{2} + 1792 \beta_1) q^{48} + (1580 \beta_{4} - 320 \beta_{3} - 2169) q^{49} + (1456 \beta_{4} - 226 \beta_{3} - 10914) q^{51} + 2704 \beta_1 q^{52} + ( - 806 \beta_{5} - 1088 \beta_{2} - 2988 \beta_1) q^{53} + (528 \beta_{4} - 440 \beta_{3} - 13528) q^{54} + ( - 448 \beta_{4} + 64 \beta_{3} + 4864) q^{56} + (81 \beta_{5} + 1069 \beta_{2} - 1328 \beta_1) q^{57} + (524 \beta_{5} + 20 \beta_{2} - 3936 \beta_1) q^{58} + ( - 686 \beta_{4} + 407 \beta_{3} + 25827) q^{59} + (1733 \beta_{4} - 35 \beta_{3} + 6560) q^{61} + ( - 836 \beta_{5} + 832 \beta_{2} + 6628 \beta_1) q^{62} + (771 \beta_{5} + 3473 \beta_{2} + 42020 \beta_1) q^{63} - 4096 q^{64} + ( - 988 \beta_{4} + 556 \beta_{3} + 29952) q^{66} + (1383 \beta_{5} + 687 \beta_{2} - 742 \beta_1) q^{67} + ( - 512 \beta_{5} - 416 \beta_{2} - 8064 \beta_1) q^{68} + (287 \beta_{4} + 307 \beta_{3} + 10818) q^{69} + (1312 \beta_{4} + 977 \beta_{3} - 885) q^{71} + ( - 320 \beta_{5} - 1216 \beta_{2} - 3008 \beta_1) q^{72} + (1105 \beta_{5} - 371 \beta_{2} - 13934 \beta_1) q^{73} + (1068 \beta_{4} + 180 \beta_{3} - 33400) q^{74} + ( - 288 \beta_{4} - 912 \beta_{3} - 2320) q^{76} + ( - 806 \beta_{5} - 3296 \beta_{2} - 47310 \beta_1) q^{77} + ( - 676 \beta_{2} - 4732 \beta_1) q^{78} + (674 \beta_{4} + 1840 \beta_{3} - 13202) q^{79} + ( - 2549 \beta_{4} - 225 \beta_{3} + 47915) q^{81} + (2432 \beta_{5} + 104 \beta_{2} + 21984 \beta_1) q^{82} + ( - 1385 \beta_{5} + \cdots - 19944 \beta_1) q^{83}+ \cdots + (5456 \beta_{4} - 3353 \beta_{3} - 116079) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4} + 176 q^{6} - 310 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 96 q^{4} + 176 q^{6} - 310 q^{9} + 96 q^{11} - 1872 q^{14} + 1536 q^{16} + 720 q^{19} + 13808 q^{21} - 2816 q^{24} - 4056 q^{26} + 6156 q^{29} - 10776 q^{31} + 12048 q^{34} + 4960 q^{36} + 7436 q^{39} - 31812 q^{41} - 1536 q^{44} + 18960 q^{46} - 15534 q^{49} - 67944 q^{51} - 81344 q^{54} + 29952 q^{56} + 155520 q^{59} + 35964 q^{61} - 24576 q^{64} + 180576 q^{66} + 63720 q^{69} - 9888 q^{71} - 202896 q^{74} - 11520 q^{76} - 84240 q^{79} + 293038 q^{81} - 220928 q^{84} + 314448 q^{86} - 39228 q^{89} - 79092 q^{91} - 142224 q^{94} + 45056 q^{96} - 700680 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} - 390x^{3} + 32400x^{2} - 135000x + 281250 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -169\nu^{5} - 12\nu^{4} - 13\nu^{3} + 2210\nu^{2} - 5407350\nu + 11548125 ) / 11529375 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 181\nu^{5} - 337\nu^{4} + 63687\nu^{3} - 66040\nu^{2} + 17388900\nu - 35983125 ) / 11529375 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -24\nu^{5} - 1667\nu^{4} - 4368\nu^{3} + 4680\nu^{2} + 18000\nu - 33136375 ) / 768625 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -14\nu^{5} + 13\nu^{4} - 2548\nu^{3} + 2730\nu^{2} + 10500\nu + 1440075 ) / 461175 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 8071\nu^{5} + 783\nu^{4} - 37583\nu^{3} - 4679090\nu^{2} + 251282400\nu - 537339375 ) / 11529375 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{2} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5\beta_{5} - 3\beta_{2} - 242\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{5} - 177\beta_{4} - 5\beta_{3} + 177\beta_{2} + 328\beta _1 + 328 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 468\beta_{4} - 455\beta_{3} - 21077 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -65\beta_{5} - 32049\beta_{4} + 65\beta_{3} - 32049\beta_{2} - 107636\beta _1 + 107636 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
8.80375 8.80375i
2.14150 2.14150i
−9.94525 + 9.94525i
−9.94525 9.94525i
2.14150 + 2.14150i
8.80375 + 8.80375i
4.00000i 9.60750i −16.0000 0 −38.4300 16.6832i 64.0000i 150.696 0
599.2 4.00000i 3.71700i −16.0000 0 14.8680 10.2576i 64.0000i 229.184 0
599.3 4.00000i 27.8905i −16.0000 0 111.562 240.426i 64.0000i −534.880 0
599.4 4.00000i 27.8905i −16.0000 0 111.562 240.426i 64.0000i −534.880 0
599.5 4.00000i 3.71700i −16.0000 0 14.8680 10.2576i 64.0000i 229.184 0
599.6 4.00000i 9.60750i −16.0000 0 −38.4300 16.6832i 64.0000i 150.696 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 599.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.j 6
5.b even 2 1 inner 650.6.b.j 6
5.c odd 4 1 130.6.a.f 3
5.c odd 4 1 650.6.a.j 3
20.e even 4 1 1040.6.a.l 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.6.a.f 3 5.c odd 4 1
650.6.a.j 3 5.c odd 4 1
650.6.b.j 6 1.a even 1 1 trivial
650.6.b.j 6 5.b even 2 1 inner
1040.6.a.l 3 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 884T_{3}^{4} + 83824T_{3}^{2} + 992016 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} + 884 T^{4} + \cdots + 992016 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 1692828736 \) Copy content Toggle raw display
$11$ \( (T^{3} - 48 T^{2} + \cdots + 74436948)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{3} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T^{3} - 360 T^{2} + \cdots + 3217051244)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} - 3078 T^{2} + \cdots - 20058120792)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 5388 T^{2} + \cdots - 146606313068)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 6827939505000)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 18\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots - 7052020839900)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots + 14366569778248)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 24\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 17725732954380)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots + 22961229800288)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 71\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots - 187529271320664)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
show more
show less