Properties

Label 650.6.b.h
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,6,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-64,0,72,0,0,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{849})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 425x^{2} + 44944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_{2} q^{2} + ( - 4 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 20) q^{6} + (82 \beta_{2} + 9 \beta_1) q^{7} - 64 \beta_{2} q^{8} + (9 \beta_{3} + 6) q^{9} + ( - 24 \beta_{3} - 98) q^{11}+ \cdots + ( - 1242 \beta_{3} - 46380) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 72 q^{6} + 42 q^{9} - 440 q^{11} - 1240 q^{14} + 1024 q^{16} + 4992 q^{19} - 6246 q^{21} - 1152 q^{24} - 2704 q^{26} - 3800 q^{29} + 5596 q^{31} + 1512 q^{34} - 672 q^{36} + 3042 q^{39}+ \cdots - 188004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 425x^{2} + 44944 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 213\nu ) / 212 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 213 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 213 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 212\beta_{2} - 213\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
14.0688i
15.0688i
15.0688i
14.0688i
4.00000i 10.0688i −16.0000 0 −40.2752 208.619i 64.0000i 141.619 0
599.2 4.00000i 19.0688i −16.0000 0 76.2752 53.6192i 64.0000i −120.619 0
599.3 4.00000i 19.0688i −16.0000 0 76.2752 53.6192i 64.0000i −120.619 0
599.4 4.00000i 10.0688i −16.0000 0 −40.2752 208.619i 64.0000i 141.619 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.h 4
5.b even 2 1 inner 650.6.b.h 4
5.c odd 4 1 26.6.a.c 2
5.c odd 4 1 650.6.a.b 2
15.e even 4 1 234.6.a.h 2
20.e even 4 1 208.6.a.g 2
40.i odd 4 1 832.6.a.k 2
40.k even 4 1 832.6.a.m 2
65.f even 4 1 338.6.b.b 4
65.h odd 4 1 338.6.a.f 2
65.k even 4 1 338.6.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.c 2 5.c odd 4 1
208.6.a.g 2 20.e even 4 1
234.6.a.h 2 15.e even 4 1
338.6.a.f 2 65.h odd 4 1
338.6.b.b 4 65.f even 4 1
338.6.b.b 4 65.k even 4 1
650.6.a.b 2 5.c odd 4 1
650.6.b.h 4 1.a even 1 1 trivial
650.6.b.h 4 5.b even 2 1 inner
832.6.a.k 2 40.i odd 4 1
832.6.a.m 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 465T_{3}^{2} + 36864 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 465 T^{2} + 36864 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 46397 T^{2} + 125126596 \) Copy content Toggle raw display
$11$ \( (T^{2} + 220 T - 110156)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 12412388626884 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2496 T + 793404)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 25344640000 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1900 T - 13890476)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2798 T - 28369928)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 52\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( (T^{2} - 11634 T - 11466000)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 36488026843024 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{2} - 23420 T + 92989684)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 96830 T + 2309711776)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T^{2} + 36679 T - 1862988962)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + 52024 T + 439936528)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 69\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} - 105072 T + 1072134396)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
show more
show less