Properties

Label 650.6.b.h
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{849})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 425x^{2} + 44944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_{2} q^{2} + ( - 4 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 20) q^{6} + (82 \beta_{2} + 9 \beta_1) q^{7} - 64 \beta_{2} q^{8} + (9 \beta_{3} + 6) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 \beta_{2} q^{2} + ( - 4 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + ( - 4 \beta_{3} + 20) q^{6} + (82 \beta_{2} + 9 \beta_1) q^{7} - 64 \beta_{2} q^{8} + (9 \beta_{3} + 6) q^{9} + ( - 24 \beta_{3} - 98) q^{11} + (64 \beta_{2} - 16 \beta_1) q^{12} + 169 \beta_{2} q^{13} + ( - 36 \beta_{3} - 292) q^{14} + 256 q^{16} + ( - 30 \beta_{2} + 129 \beta_1) q^{17} + (60 \beta_{2} + 36 \beta_1) q^{18} + (60 \beta_{3} + 1218) q^{19} + ( - 37 \beta_{3} - 1543) q^{21} + ( - 488 \beta_{2} - 96 \beta_1) q^{22} + (1576 \beta_{2} + 108 \beta_1) q^{23} + (64 \beta_{3} - 320) q^{24} - 676 q^{26} + (876 \beta_{2} + 213 \beta_1) q^{27} + ( - 1312 \beta_{2} - 144 \beta_1) q^{28} + (264 \beta_{3} - 1082) q^{29} + ( - 378 \beta_{3} + 1588) q^{31} + 1024 \beta_{2} q^{32} + ( - 4600 \beta_{2} - 2 \beta_1) q^{33} + ( - 516 \beta_{3} + 636) q^{34} + ( - 144 \beta_{3} - 96) q^{36} + (8814 \beta_{2} - 177 \beta_1) q^{37} + (5112 \beta_{2} + 240 \beta_1) q^{38} + ( - 169 \beta_{3} + 845) q^{39} + ( - 462 \beta_{3} + 6048) q^{41} + ( - 6320 \beta_{2} - 148 \beta_1) q^{42} + (2144 \beta_{2} + 219 \beta_1) q^{43} + (384 \beta_{3} + 1568) q^{44} + ( - 432 \beta_{3} - 5872) q^{46} + ( - 12542 \beta_{2} + 405 \beta_1) q^{47} + ( - 1024 \beta_{2} + 256 \beta_1) q^{48} + ( - 1395 \beta_{3} - 5694) q^{49} + (675 \beta_{3} - 28143) q^{51} - 2704 \beta_{2} q^{52} + (2706 \beta_{2} + 798 \beta_1) q^{53} + ( - 852 \beta_{3} - 2652) q^{54} + (576 \beta_{3} + 4672) q^{56} + (7608 \beta_{2} + 978 \beta_1) q^{57} + ( - 3272 \beta_{2} + 1056 \beta_1) q^{58} + (456 \beta_{3} + 11482) q^{59} + ( - 402 \beta_{3} + 48616) q^{61} + (4840 \beta_{2} - 1512 \beta_1) q^{62} + (18402 \beta_{2} + 792 \beta_1) q^{63} - 4096 q^{64} + (8 \beta_{3} + 18392) q^{66} + (36082 \beta_{2} - 276 \beta_1) q^{67} + (480 \beta_{2} - 2064 \beta_1) q^{68} + ( - 1036 \beta_{3} - 15556) q^{69} + (3219 \beta_{3} - 19949) q^{71} + ( - 960 \beta_{2} - 576 \beta_1) q^{72} + ( - 22034 \beta_{2} + 3084 \beta_1) q^{73} + (708 \beta_{3} - 35964) q^{74} + ( - 960 \beta_{3} - 19488) q^{76} + ( - 55796 \beta_{2} - 2850 \beta_1) q^{77} + (2704 \beta_{2} - 676 \beta_1) q^{78} + ( - 1056 \beta_{3} - 25484) q^{79} + (2376 \beta_{3} - 40383) q^{81} + (22344 \beta_{2} - 1848 \beta_1) q^{82} + (19446 \beta_{2} + 1134 \beta_1) q^{83} + (592 \beta_{3} + 24688) q^{84} + ( - 876 \beta_{3} - 7700) q^{86} + (59240 \beta_{2} - 2138 \beta_1) q^{87} + (7808 \beta_{2} + 1536 \beta_1) q^{88} + ( - 2820 \beta_{3} + 53946) q^{89} + ( - 1521 \beta_{3} - 12337) q^{91} + ( - 25216 \beta_{2} - 1728 \beta_1) q^{92} + ( - 84976 \beta_{2} + 3100 \beta_1) q^{93} + ( - 1620 \beta_{3} + 51788) q^{94} + ( - 1024 \beta_{3} + 5120) q^{96} + (55058 \beta_{2} + 5724 \beta_1) q^{97} + ( - 28356 \beta_{2} - 5580 \beta_1) q^{98} + ( - 1242 \beta_{3} - 46380) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 72 q^{6} + 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} + 72 q^{6} + 42 q^{9} - 440 q^{11} - 1240 q^{14} + 1024 q^{16} + 4992 q^{19} - 6246 q^{21} - 1152 q^{24} - 2704 q^{26} - 3800 q^{29} + 5596 q^{31} + 1512 q^{34} - 672 q^{36} + 3042 q^{39} + 23268 q^{41} + 7040 q^{44} - 24352 q^{46} - 25566 q^{49} - 111222 q^{51} - 12312 q^{54} + 19840 q^{56} + 46840 q^{59} + 193660 q^{61} - 16384 q^{64} + 73584 q^{66} - 64296 q^{69} - 73358 q^{71} - 142440 q^{74} - 79872 q^{76} - 104048 q^{79} - 156780 q^{81} + 99936 q^{84} - 32552 q^{86} + 210144 q^{89} - 52390 q^{91} + 203912 q^{94} + 18432 q^{96} - 188004 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 425x^{2} + 44944 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 213\nu ) / 212 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 213 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 213 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 212\beta_{2} - 213\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
14.0688i
15.0688i
15.0688i
14.0688i
4.00000i 10.0688i −16.0000 0 −40.2752 208.619i 64.0000i 141.619 0
599.2 4.00000i 19.0688i −16.0000 0 76.2752 53.6192i 64.0000i −120.619 0
599.3 4.00000i 19.0688i −16.0000 0 76.2752 53.6192i 64.0000i −120.619 0
599.4 4.00000i 10.0688i −16.0000 0 −40.2752 208.619i 64.0000i 141.619 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.h 4
5.b even 2 1 inner 650.6.b.h 4
5.c odd 4 1 26.6.a.c 2
5.c odd 4 1 650.6.a.b 2
15.e even 4 1 234.6.a.h 2
20.e even 4 1 208.6.a.g 2
40.i odd 4 1 832.6.a.k 2
40.k even 4 1 832.6.a.m 2
65.f even 4 1 338.6.b.b 4
65.h odd 4 1 338.6.a.f 2
65.k even 4 1 338.6.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.c 2 5.c odd 4 1
208.6.a.g 2 20.e even 4 1
234.6.a.h 2 15.e even 4 1
338.6.a.f 2 65.h odd 4 1
338.6.b.b 4 65.f even 4 1
338.6.b.b 4 65.k even 4 1
650.6.a.b 2 5.c odd 4 1
650.6.b.h 4 1.a even 1 1 trivial
650.6.b.h 4 5.b even 2 1 inner
832.6.a.k 2 40.i odd 4 1
832.6.a.m 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 465T_{3}^{2} + 36864 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 465 T^{2} + 36864 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 46397 T^{2} + 125126596 \) Copy content Toggle raw display
$11$ \( (T^{2} + 220 T - 110156)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 12412388626884 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2496 T + 793404)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 25344640000 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1900 T - 13890476)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2798 T - 28369928)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 52\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( (T^{2} - 11634 T - 11466000)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 36488026843024 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{2} - 23420 T + 92989684)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 96830 T + 2309711776)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 16\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T^{2} + 36679 T - 1862988962)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + 52024 T + 439936528)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 69\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} - 105072 T + 1072134396)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
show more
show less