Properties

Label 650.6.b.g.599.4
Level $650$
Weight $6$
Character 650.599
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.4
Root \(-1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.6.b.g.599.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +13.8114i q^{3} -16.0000 q^{4} -55.2456 q^{6} -213.246i q^{7} -64.0000i q^{8} +52.2456 q^{9} +587.285 q^{11} -220.982i q^{12} -169.000i q^{13} +852.982 q^{14} +256.000 q^{16} -162.605i q^{17} +208.982i q^{18} +81.3914 q^{19} +2945.22 q^{21} +2349.14i q^{22} -2948.84i q^{23} +883.929 q^{24} +676.000 q^{26} +4077.75i q^{27} +3411.93i q^{28} -6254.43 q^{29} -4034.62 q^{31} +1024.00i q^{32} +8111.22i q^{33} +650.420 q^{34} -835.929 q^{36} -7617.22i q^{37} +325.566i q^{38} +2334.12 q^{39} +958.121 q^{41} +11780.9i q^{42} +169.655i q^{43} -9396.56 q^{44} +11795.4 q^{46} -21612.6i q^{47} +3535.72i q^{48} -28666.7 q^{49} +2245.80 q^{51} +2704.00i q^{52} +24789.1i q^{53} -16311.0 q^{54} -13647.7 q^{56} +1124.13i q^{57} -25017.7i q^{58} -40109.2 q^{59} -16343.0 q^{61} -16138.5i q^{62} -11141.1i q^{63} -4096.00 q^{64} -32444.9 q^{66} -18362.1i q^{67} +2601.68i q^{68} +40727.6 q^{69} -77846.0 q^{71} -3343.72i q^{72} -62130.2i q^{73} +30468.9 q^{74} -1302.26 q^{76} -125236. i q^{77} +9336.50i q^{78} +60599.1 q^{79} -43623.7 q^{81} +3832.48i q^{82} -2654.46i q^{83} -47123.5 q^{84} -678.619 q^{86} -86382.4i q^{87} -37586.2i q^{88} -8229.77 q^{89} -36038.5 q^{91} +47181.5i q^{92} -55723.7i q^{93} +86450.3 q^{94} -14142.9 q^{96} +53844.0i q^{97} -114667. i q^{98} +30683.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 32 q^{6} - 44 q^{9} + 768 q^{11} + 2400 q^{14} + 1024 q^{16} + 4816 q^{19} + 2800 q^{21} - 512 q^{24} + 2704 q^{26} - 7056 q^{29} + 1760 q^{31} - 1952 q^{34} + 704 q^{36} - 1352 q^{39}+ \cdots + 91552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 13.8114i 0.886001i 0.896521 + 0.443000i \(0.146086\pi\)
−0.896521 + 0.443000i \(0.853914\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −55.2456 −0.626497
\(7\) − 213.246i − 1.64488i −0.568850 0.822441i \(-0.692612\pi\)
0.568850 0.822441i \(-0.307388\pi\)
\(8\) − 64.0000i − 0.353553i
\(9\) 52.2456 0.215002
\(10\) 0 0
\(11\) 587.285 1.46341 0.731707 0.681620i \(-0.238724\pi\)
0.731707 + 0.681620i \(0.238724\pi\)
\(12\) − 220.982i − 0.443000i
\(13\) − 169.000i − 0.277350i
\(14\) 852.982 1.16311
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 162.605i − 0.136462i −0.997670 0.0682310i \(-0.978265\pi\)
0.997670 0.0682310i \(-0.0217355\pi\)
\(18\) 208.982i 0.152030i
\(19\) 81.3914 0.0517243 0.0258622 0.999666i \(-0.491767\pi\)
0.0258622 + 0.999666i \(0.491767\pi\)
\(20\) 0 0
\(21\) 2945.22 1.45737
\(22\) 2349.14i 1.03479i
\(23\) − 2948.84i − 1.16234i −0.813783 0.581169i \(-0.802596\pi\)
0.813783 0.581169i \(-0.197404\pi\)
\(24\) 883.929 0.313249
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) 4077.75i 1.07649i
\(28\) 3411.93i 0.822441i
\(29\) −6254.43 −1.38100 −0.690499 0.723333i \(-0.742609\pi\)
−0.690499 + 0.723333i \(0.742609\pi\)
\(30\) 0 0
\(31\) −4034.62 −0.754048 −0.377024 0.926204i \(-0.623052\pi\)
−0.377024 + 0.926204i \(0.623052\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 8111.22i 1.29659i
\(34\) 650.420 0.0964932
\(35\) 0 0
\(36\) −835.929 −0.107501
\(37\) − 7617.22i − 0.914728i −0.889280 0.457364i \(-0.848794\pi\)
0.889280 0.457364i \(-0.151206\pi\)
\(38\) 325.566i 0.0365746i
\(39\) 2334.12 0.245732
\(40\) 0 0
\(41\) 958.121 0.0890145 0.0445072 0.999009i \(-0.485828\pi\)
0.0445072 + 0.999009i \(0.485828\pi\)
\(42\) 11780.9i 1.03051i
\(43\) 169.655i 0.0139925i 0.999976 + 0.00699624i \(0.00222699\pi\)
−0.999976 + 0.00699624i \(0.997773\pi\)
\(44\) −9396.56 −0.731707
\(45\) 0 0
\(46\) 11795.4 0.821897
\(47\) − 21612.6i − 1.42712i −0.700592 0.713562i \(-0.747081\pi\)
0.700592 0.713562i \(-0.252919\pi\)
\(48\) 3535.72i 0.221500i
\(49\) −28666.7 −1.70564
\(50\) 0 0
\(51\) 2245.80 0.120905
\(52\) 2704.00i 0.138675i
\(53\) 24789.1i 1.21219i 0.795392 + 0.606096i \(0.207265\pi\)
−0.795392 + 0.606096i \(0.792735\pi\)
\(54\) −16311.0 −0.761196
\(55\) 0 0
\(56\) −13647.7 −0.581554
\(57\) 1124.13i 0.0458278i
\(58\) − 25017.7i − 0.976513i
\(59\) −40109.2 −1.50008 −0.750040 0.661392i \(-0.769966\pi\)
−0.750040 + 0.661392i \(0.769966\pi\)
\(60\) 0 0
\(61\) −16343.0 −0.562351 −0.281176 0.959656i \(-0.590724\pi\)
−0.281176 + 0.959656i \(0.590724\pi\)
\(62\) − 16138.5i − 0.533192i
\(63\) − 11141.1i − 0.353653i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) −32444.9 −0.916824
\(67\) − 18362.1i − 0.499731i −0.968281 0.249866i \(-0.919614\pi\)
0.968281 0.249866i \(-0.0803864\pi\)
\(68\) 2601.68i 0.0682310i
\(69\) 40727.6 1.02983
\(70\) 0 0
\(71\) −77846.0 −1.83270 −0.916348 0.400382i \(-0.868877\pi\)
−0.916348 + 0.400382i \(0.868877\pi\)
\(72\) − 3343.72i − 0.0760148i
\(73\) − 62130.2i − 1.36457i −0.731087 0.682285i \(-0.760986\pi\)
0.731087 0.682285i \(-0.239014\pi\)
\(74\) 30468.9 0.646810
\(75\) 0 0
\(76\) −1302.26 −0.0258622
\(77\) − 125236.i − 2.40714i
\(78\) 9336.50i 0.173759i
\(79\) 60599.1 1.09244 0.546221 0.837641i \(-0.316066\pi\)
0.546221 + 0.837641i \(0.316066\pi\)
\(80\) 0 0
\(81\) −43623.7 −0.738772
\(82\) 3832.48i 0.0629427i
\(83\) − 2654.46i − 0.0422941i −0.999776 0.0211471i \(-0.993268\pi\)
0.999776 0.0211471i \(-0.00673182\pi\)
\(84\) −47123.5 −0.728684
\(85\) 0 0
\(86\) −678.619 −0.00989418
\(87\) − 86382.4i − 1.22357i
\(88\) − 37586.2i − 0.517395i
\(89\) −8229.77 −0.110132 −0.0550659 0.998483i \(-0.517537\pi\)
−0.0550659 + 0.998483i \(0.517537\pi\)
\(90\) 0 0
\(91\) −36038.5 −0.456208
\(92\) 47181.5i 0.581169i
\(93\) − 55723.7i − 0.668087i
\(94\) 86450.3 1.00913
\(95\) 0 0
\(96\) −14142.9 −0.156624
\(97\) 53844.0i 0.581042i 0.956869 + 0.290521i \(0.0938287\pi\)
−0.956869 + 0.290521i \(0.906171\pi\)
\(98\) − 114667.i − 1.20607i
\(99\) 30683.0 0.314637
\(100\) 0 0
\(101\) −167556. −1.63439 −0.817196 0.576360i \(-0.804473\pi\)
−0.817196 + 0.576360i \(0.804473\pi\)
\(102\) 8983.20i 0.0854930i
\(103\) 30973.8i 0.287675i 0.989601 + 0.143837i \(0.0459442\pi\)
−0.989601 + 0.143837i \(0.954056\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) −99156.4 −0.857149
\(107\) 97343.8i 0.821956i 0.911645 + 0.410978i \(0.134813\pi\)
−0.911645 + 0.410978i \(0.865187\pi\)
\(108\) − 65244.0i − 0.538247i
\(109\) −16696.8 −0.134607 −0.0673035 0.997733i \(-0.521440\pi\)
−0.0673035 + 0.997733i \(0.521440\pi\)
\(110\) 0 0
\(111\) 105204. 0.810450
\(112\) − 54590.9i − 0.411221i
\(113\) 219357.i 1.61605i 0.589145 + 0.808027i \(0.299465\pi\)
−0.589145 + 0.808027i \(0.700535\pi\)
\(114\) −4496.51 −0.0324051
\(115\) 0 0
\(116\) 100071. 0.690499
\(117\) − 8829.50i − 0.0596309i
\(118\) − 160437.i − 1.06072i
\(119\) −34674.8 −0.224464
\(120\) 0 0
\(121\) 183852. 1.14158
\(122\) − 65372.1i − 0.397642i
\(123\) 13233.0i 0.0788669i
\(124\) 64554.0 0.377024
\(125\) 0 0
\(126\) 44564.5 0.250071
\(127\) − 158753.i − 0.873399i −0.899607 0.436700i \(-0.856147\pi\)
0.899607 0.436700i \(-0.143853\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) −2343.17 −0.0123974
\(130\) 0 0
\(131\) 160566. 0.817477 0.408739 0.912651i \(-0.365969\pi\)
0.408739 + 0.912651i \(0.365969\pi\)
\(132\) − 129779.i − 0.648293i
\(133\) − 17356.4i − 0.0850804i
\(134\) 73448.6 0.353363
\(135\) 0 0
\(136\) −10406.7 −0.0482466
\(137\) 295668.i 1.34587i 0.739702 + 0.672934i \(0.234966\pi\)
−0.739702 + 0.672934i \(0.765034\pi\)
\(138\) 162910.i 0.728201i
\(139\) −6197.57 −0.0272072 −0.0136036 0.999907i \(-0.504330\pi\)
−0.0136036 + 0.999907i \(0.504330\pi\)
\(140\) 0 0
\(141\) 298500. 1.26443
\(142\) − 311384.i − 1.29591i
\(143\) − 99251.1i − 0.405878i
\(144\) 13374.9 0.0537506
\(145\) 0 0
\(146\) 248521. 0.964896
\(147\) − 395926.i − 1.51120i
\(148\) 121875.i 0.457364i
\(149\) 371033. 1.36914 0.684569 0.728948i \(-0.259990\pi\)
0.684569 + 0.728948i \(0.259990\pi\)
\(150\) 0 0
\(151\) −508361. −1.81439 −0.907193 0.420714i \(-0.861780\pi\)
−0.907193 + 0.420714i \(0.861780\pi\)
\(152\) − 5209.05i − 0.0182873i
\(153\) − 8495.39i − 0.0293396i
\(154\) 500943. 1.70211
\(155\) 0 0
\(156\) −37346.0 −0.122866
\(157\) − 60014.9i − 0.194317i −0.995269 0.0971583i \(-0.969025\pi\)
0.995269 0.0971583i \(-0.0309753\pi\)
\(158\) 242397.i 0.772474i
\(159\) −342372. −1.07400
\(160\) 0 0
\(161\) −628828. −1.91191
\(162\) − 174495.i − 0.522391i
\(163\) − 365913.i − 1.07872i −0.842075 0.539360i \(-0.818666\pi\)
0.842075 0.539360i \(-0.181334\pi\)
\(164\) −15329.9 −0.0445072
\(165\) 0 0
\(166\) 10617.8 0.0299065
\(167\) − 67392.0i − 0.186990i −0.995620 0.0934948i \(-0.970196\pi\)
0.995620 0.0934948i \(-0.0298038\pi\)
\(168\) − 188494.i − 0.515257i
\(169\) −28561.0 −0.0769231
\(170\) 0 0
\(171\) 4252.34 0.0111208
\(172\) − 2714.48i − 0.00699624i
\(173\) 518921.i 1.31821i 0.752049 + 0.659107i \(0.229066\pi\)
−0.752049 + 0.659107i \(0.770934\pi\)
\(174\) 345530. 0.865191
\(175\) 0 0
\(176\) 150345. 0.365853
\(177\) − 553964.i − 1.32907i
\(178\) − 32919.1i − 0.0778750i
\(179\) 89728.6 0.209314 0.104657 0.994508i \(-0.466626\pi\)
0.104657 + 0.994508i \(0.466626\pi\)
\(180\) 0 0
\(181\) −376272. −0.853700 −0.426850 0.904322i \(-0.640377\pi\)
−0.426850 + 0.904322i \(0.640377\pi\)
\(182\) − 144154.i − 0.322588i
\(183\) − 225720.i − 0.498244i
\(184\) −188726. −0.410948
\(185\) 0 0
\(186\) 222895. 0.472409
\(187\) − 95495.4i − 0.199700i
\(188\) 345801.i 0.713562i
\(189\) 869562. 1.77070
\(190\) 0 0
\(191\) 206748. 0.410070 0.205035 0.978755i \(-0.434269\pi\)
0.205035 + 0.978755i \(0.434269\pi\)
\(192\) − 56571.4i − 0.110750i
\(193\) − 413088.i − 0.798269i −0.916892 0.399135i \(-0.869311\pi\)
0.916892 0.399135i \(-0.130689\pi\)
\(194\) −215376. −0.410859
\(195\) 0 0
\(196\) 458667. 0.852819
\(197\) − 538825.i − 0.989196i −0.869122 0.494598i \(-0.835315\pi\)
0.869122 0.494598i \(-0.164685\pi\)
\(198\) 122732.i 0.222482i
\(199\) 147336. 0.263740 0.131870 0.991267i \(-0.457902\pi\)
0.131870 + 0.991267i \(0.457902\pi\)
\(200\) 0 0
\(201\) 253607. 0.442762
\(202\) − 670223.i − 1.15569i
\(203\) 1.33373e6i 2.27158i
\(204\) −35932.8 −0.0604527
\(205\) 0 0
\(206\) −123895. −0.203417
\(207\) − 154064.i − 0.249905i
\(208\) − 43264.0i − 0.0693375i
\(209\) 47799.9 0.0756940
\(210\) 0 0
\(211\) −1.14921e6 −1.77703 −0.888515 0.458847i \(-0.848262\pi\)
−0.888515 + 0.458847i \(0.848262\pi\)
\(212\) − 396626.i − 0.606096i
\(213\) − 1.07516e6i − 1.62377i
\(214\) −389375. −0.581211
\(215\) 0 0
\(216\) 260976. 0.380598
\(217\) 860365.i 1.24032i
\(218\) − 66787.3i − 0.0951815i
\(219\) 858104. 1.20901
\(220\) 0 0
\(221\) −27480.2 −0.0378477
\(222\) 420817.i 0.573075i
\(223\) − 1.39430e6i − 1.87756i −0.344513 0.938782i \(-0.611956\pi\)
0.344513 0.938782i \(-0.388044\pi\)
\(224\) 218363. 0.290777
\(225\) 0 0
\(226\) −877429. −1.14272
\(227\) − 1.40291e6i − 1.80703i −0.428556 0.903515i \(-0.640977\pi\)
0.428556 0.903515i \(-0.359023\pi\)
\(228\) − 17986.1i − 0.0229139i
\(229\) 796626. 1.00384 0.501922 0.864913i \(-0.332627\pi\)
0.501922 + 0.864913i \(0.332627\pi\)
\(230\) 0 0
\(231\) 1.72968e6 2.13273
\(232\) 400284.i 0.488257i
\(233\) 1.15975e6i 1.39951i 0.714385 + 0.699753i \(0.246707\pi\)
−0.714385 + 0.699753i \(0.753293\pi\)
\(234\) 35318.0 0.0421654
\(235\) 0 0
\(236\) 641748. 0.750040
\(237\) 836958.i 0.967905i
\(238\) − 138699.i − 0.158720i
\(239\) 687529. 0.778568 0.389284 0.921118i \(-0.372722\pi\)
0.389284 + 0.921118i \(0.372722\pi\)
\(240\) 0 0
\(241\) −391345. −0.434028 −0.217014 0.976169i \(-0.569632\pi\)
−0.217014 + 0.976169i \(0.569632\pi\)
\(242\) 735409.i 0.807218i
\(243\) 388389.i 0.421941i
\(244\) 261488. 0.281176
\(245\) 0 0
\(246\) −52931.9 −0.0557673
\(247\) − 13755.2i − 0.0143457i
\(248\) 258216.i 0.266596i
\(249\) 36661.7 0.0374727
\(250\) 0 0
\(251\) 944723. 0.946499 0.473249 0.880928i \(-0.343081\pi\)
0.473249 + 0.880928i \(0.343081\pi\)
\(252\) 178258.i 0.176827i
\(253\) − 1.73181e6i − 1.70098i
\(254\) 635012. 0.617587
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 297219.i − 0.280701i −0.990102 0.140351i \(-0.955177\pi\)
0.990102 0.140351i \(-0.0448230\pi\)
\(258\) − 9372.67i − 0.00876626i
\(259\) −1.62434e6 −1.50462
\(260\) 0 0
\(261\) −326766. −0.296918
\(262\) 642264.i 0.578044i
\(263\) − 1.53097e6i − 1.36483i −0.730966 0.682414i \(-0.760930\pi\)
0.730966 0.682414i \(-0.239070\pi\)
\(264\) 519118. 0.458412
\(265\) 0 0
\(266\) 69425.4 0.0601609
\(267\) − 113665.i − 0.0975769i
\(268\) 293794.i 0.249866i
\(269\) 1.00878e6 0.849994 0.424997 0.905195i \(-0.360275\pi\)
0.424997 + 0.905195i \(0.360275\pi\)
\(270\) 0 0
\(271\) 2.19122e6 1.81244 0.906220 0.422806i \(-0.138955\pi\)
0.906220 + 0.422806i \(0.138955\pi\)
\(272\) − 41626.9i − 0.0341155i
\(273\) − 497742.i − 0.404201i
\(274\) −1.18267e6 −0.951673
\(275\) 0 0
\(276\) −651642. −0.514916
\(277\) 17924.0i 0.0140357i 0.999975 + 0.00701786i \(0.00223387\pi\)
−0.999975 + 0.00701786i \(0.997766\pi\)
\(278\) − 24790.3i − 0.0192384i
\(279\) −210791. −0.162122
\(280\) 0 0
\(281\) −2.40663e6 −1.81821 −0.909106 0.416566i \(-0.863234\pi\)
−0.909106 + 0.416566i \(0.863234\pi\)
\(282\) 1.19400e6i 0.894090i
\(283\) − 1.36921e6i − 1.01626i −0.861281 0.508128i \(-0.830338\pi\)
0.861281 0.508128i \(-0.169662\pi\)
\(284\) 1.24554e6 0.916348
\(285\) 0 0
\(286\) 397004. 0.286999
\(287\) − 204315.i − 0.146418i
\(288\) 53499.4i 0.0380074i
\(289\) 1.39342e6 0.981378
\(290\) 0 0
\(291\) −743660. −0.514804
\(292\) 994083.i 0.682285i
\(293\) − 390649.i − 0.265838i −0.991127 0.132919i \(-0.957565\pi\)
0.991127 0.132919i \(-0.0424351\pi\)
\(294\) 1.58371e6 1.06858
\(295\) 0 0
\(296\) −487502. −0.323405
\(297\) 2.39480e6i 1.57535i
\(298\) 1.48413e6i 0.968127i
\(299\) −498355. −0.322374
\(300\) 0 0
\(301\) 36178.1 0.0230160
\(302\) − 2.03344e6i − 1.28297i
\(303\) − 2.31418e6i − 1.44807i
\(304\) 20836.2 0.0129311
\(305\) 0 0
\(306\) 33981.6 0.0207463
\(307\) − 566546.i − 0.343075i −0.985178 0.171537i \(-0.945127\pi\)
0.985178 0.171537i \(-0.0548735\pi\)
\(308\) 2.00377e6i 1.20357i
\(309\) −427791. −0.254880
\(310\) 0 0
\(311\) 881239. 0.516646 0.258323 0.966059i \(-0.416830\pi\)
0.258323 + 0.966059i \(0.416830\pi\)
\(312\) − 149384.i − 0.0868795i
\(313\) − 916421.i − 0.528731i −0.964423 0.264365i \(-0.914838\pi\)
0.964423 0.264365i \(-0.0851624\pi\)
\(314\) 240060. 0.137403
\(315\) 0 0
\(316\) −969586. −0.546221
\(317\) − 2.01084e6i − 1.12390i −0.827170 0.561951i \(-0.810051\pi\)
0.827170 0.561951i \(-0.189949\pi\)
\(318\) − 1.36949e6i − 0.759435i
\(319\) −3.67313e6 −2.02097
\(320\) 0 0
\(321\) −1.34445e6 −0.728254
\(322\) − 2.51531e6i − 1.35192i
\(323\) − 13234.7i − 0.00705840i
\(324\) 697980. 0.369386
\(325\) 0 0
\(326\) 1.46365e6 0.762770
\(327\) − 230606.i − 0.119262i
\(328\) − 61319.7i − 0.0314714i
\(329\) −4.60879e6 −2.34745
\(330\) 0 0
\(331\) 2.47715e6 1.24275 0.621373 0.783515i \(-0.286575\pi\)
0.621373 + 0.783515i \(0.286575\pi\)
\(332\) 42471.3i 0.0211471i
\(333\) − 397966.i − 0.196669i
\(334\) 269568. 0.132222
\(335\) 0 0
\(336\) 753976. 0.364342
\(337\) − 2.55550e6i − 1.22575i −0.790181 0.612873i \(-0.790014\pi\)
0.790181 0.612873i \(-0.209986\pi\)
\(338\) − 114244.i − 0.0543928i
\(339\) −3.02963e6 −1.43183
\(340\) 0 0
\(341\) −2.36947e6 −1.10348
\(342\) 17009.4i 0.00786362i
\(343\) 2.52902e6i 1.16069i
\(344\) 10857.9 0.00494709
\(345\) 0 0
\(346\) −2.07568e6 −0.932118
\(347\) 475000.i 0.211773i 0.994378 + 0.105886i \(0.0337680\pi\)
−0.994378 + 0.105886i \(0.966232\pi\)
\(348\) 1.38212e6i 0.611783i
\(349\) −615277. −0.270400 −0.135200 0.990818i \(-0.543168\pi\)
−0.135200 + 0.990818i \(0.543168\pi\)
\(350\) 0 0
\(351\) 689140. 0.298565
\(352\) 601380.i 0.258697i
\(353\) − 4.37400e6i − 1.86828i −0.356908 0.934140i \(-0.616169\pi\)
0.356908 0.934140i \(-0.383831\pi\)
\(354\) 2.21586e6 0.939796
\(355\) 0 0
\(356\) 131676. 0.0550659
\(357\) − 478907.i − 0.198875i
\(358\) 358914.i 0.148007i
\(359\) −4.59562e6 −1.88195 −0.940975 0.338476i \(-0.890089\pi\)
−0.940975 + 0.338476i \(0.890089\pi\)
\(360\) 0 0
\(361\) −2.46947e6 −0.997325
\(362\) − 1.50509e6i − 0.603657i
\(363\) 2.53926e6i 1.01144i
\(364\) 576616. 0.228104
\(365\) 0 0
\(366\) 902879. 0.352312
\(367\) 4.59362e6i 1.78029i 0.455681 + 0.890143i \(0.349396\pi\)
−0.455681 + 0.890143i \(0.650604\pi\)
\(368\) − 754904.i − 0.290584i
\(369\) 50057.6 0.0191383
\(370\) 0 0
\(371\) 5.28617e6 1.99391
\(372\) 891580.i 0.334043i
\(373\) 1.74314e6i 0.648724i 0.945933 + 0.324362i \(0.105150\pi\)
−0.945933 + 0.324362i \(0.894850\pi\)
\(374\) 381982. 0.141209
\(375\) 0 0
\(376\) −1.38320e6 −0.504565
\(377\) 1.05700e6i 0.383020i
\(378\) 3.47825e6i 1.25208i
\(379\) 4.42529e6 1.58250 0.791250 0.611493i \(-0.209431\pi\)
0.791250 + 0.611493i \(0.209431\pi\)
\(380\) 0 0
\(381\) 2.19260e6 0.773833
\(382\) 826992.i 0.289963i
\(383\) 1.39773e6i 0.486884i 0.969915 + 0.243442i \(0.0782766\pi\)
−0.969915 + 0.243442i \(0.921723\pi\)
\(384\) 226286. 0.0783122
\(385\) 0 0
\(386\) 1.65235e6 0.564462
\(387\) 8863.71i 0.00300842i
\(388\) − 861504.i − 0.290521i
\(389\) −1.63535e6 −0.547946 −0.273973 0.961737i \(-0.588338\pi\)
−0.273973 + 0.961737i \(0.588338\pi\)
\(390\) 0 0
\(391\) −479497. −0.158615
\(392\) 1.83467e6i 0.603034i
\(393\) 2.21764e6i 0.724286i
\(394\) 2.15530e6 0.699468
\(395\) 0 0
\(396\) −490928. −0.157319
\(397\) − 4.90653e6i − 1.56242i −0.624268 0.781210i \(-0.714603\pi\)
0.624268 0.781210i \(-0.285397\pi\)
\(398\) 589344.i 0.186493i
\(399\) 239715. 0.0753813
\(400\) 0 0
\(401\) −951184. −0.295395 −0.147698 0.989033i \(-0.547186\pi\)
−0.147698 + 0.989033i \(0.547186\pi\)
\(402\) 1.01443e6i 0.313080i
\(403\) 681851.i 0.209135i
\(404\) 2.68089e6 0.817196
\(405\) 0 0
\(406\) −5.33492e6 −1.60625
\(407\) − 4.47348e6i − 1.33863i
\(408\) − 143731.i − 0.0427465i
\(409\) −4.49464e6 −1.32858 −0.664289 0.747476i \(-0.731265\pi\)
−0.664289 + 0.747476i \(0.731265\pi\)
\(410\) 0 0
\(411\) −4.08358e6 −1.19244
\(412\) − 495581.i − 0.143837i
\(413\) 8.55312e6i 2.46746i
\(414\) 616256. 0.176710
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) − 85597.0i − 0.0241056i
\(418\) 191200.i 0.0535238i
\(419\) 828906. 0.230659 0.115329 0.993327i \(-0.463208\pi\)
0.115329 + 0.993327i \(0.463208\pi\)
\(420\) 0 0
\(421\) 744813. 0.204806 0.102403 0.994743i \(-0.467347\pi\)
0.102403 + 0.994743i \(0.467347\pi\)
\(422\) − 4.59686e6i − 1.25655i
\(423\) − 1.12916e6i − 0.306835i
\(424\) 1.58650e6 0.428574
\(425\) 0 0
\(426\) 4.30065e6 1.14818
\(427\) 3.48508e6i 0.925002i
\(428\) − 1.55750e6i − 0.410978i
\(429\) 1.37080e6 0.359608
\(430\) 0 0
\(431\) −3.89529e6 −1.01006 −0.505030 0.863102i \(-0.668519\pi\)
−0.505030 + 0.863102i \(0.668519\pi\)
\(432\) 1.04390e6i 0.269123i
\(433\) − 5.88297e6i − 1.50792i −0.656923 0.753958i \(-0.728142\pi\)
0.656923 0.753958i \(-0.271858\pi\)
\(434\) −3.44146e6 −0.877038
\(435\) 0 0
\(436\) 267149. 0.0673035
\(437\) − 240011.i − 0.0601211i
\(438\) 3.43242e6i 0.854899i
\(439\) −1.73024e6 −0.428495 −0.214248 0.976779i \(-0.568730\pi\)
−0.214248 + 0.976779i \(0.568730\pi\)
\(440\) 0 0
\(441\) −1.49771e6 −0.366716
\(442\) − 109921.i − 0.0267624i
\(443\) − 106432.i − 0.0257670i −0.999917 0.0128835i \(-0.995899\pi\)
0.999917 0.0128835i \(-0.00410105\pi\)
\(444\) −1.68327e6 −0.405225
\(445\) 0 0
\(446\) 5.57721e6 1.32764
\(447\) 5.12449e6i 1.21306i
\(448\) 873454.i 0.205610i
\(449\) 4.89220e6 1.14522 0.572609 0.819828i \(-0.305931\pi\)
0.572609 + 0.819828i \(0.305931\pi\)
\(450\) 0 0
\(451\) 562690. 0.130265
\(452\) − 3.50972e6i − 0.808027i
\(453\) − 7.02117e6i − 1.60755i
\(454\) 5.61165e6 1.27776
\(455\) 0 0
\(456\) 71944.2 0.0162026
\(457\) − 177252.i − 0.0397008i −0.999803 0.0198504i \(-0.993681\pi\)
0.999803 0.0198504i \(-0.00631900\pi\)
\(458\) 3.18651e6i 0.709824i
\(459\) 663063. 0.146900
\(460\) 0 0
\(461\) 7.15676e6 1.56843 0.784213 0.620491i \(-0.213067\pi\)
0.784213 + 0.620491i \(0.213067\pi\)
\(462\) 6.91872e6i 1.50807i
\(463\) 3.44228e6i 0.746267i 0.927778 + 0.373133i \(0.121717\pi\)
−0.927778 + 0.373133i \(0.878283\pi\)
\(464\) −1.60114e6 −0.345249
\(465\) 0 0
\(466\) −4.63900e6 −0.989600
\(467\) 9.22486e6i 1.95735i 0.205423 + 0.978673i \(0.434143\pi\)
−0.205423 + 0.978673i \(0.565857\pi\)
\(468\) 141272.i 0.0298155i
\(469\) −3.91565e6 −0.821999
\(470\) 0 0
\(471\) 828889. 0.172165
\(472\) 2.56699e6i 0.530358i
\(473\) 99635.7i 0.0204768i
\(474\) −3.34783e6 −0.684412
\(475\) 0 0
\(476\) 554797. 0.112232
\(477\) 1.29512e6i 0.260624i
\(478\) 2.75012e6i 0.550531i
\(479\) −1.23331e6 −0.245602 −0.122801 0.992431i \(-0.539188\pi\)
−0.122801 + 0.992431i \(0.539188\pi\)
\(480\) 0 0
\(481\) −1.28731e6 −0.253700
\(482\) − 1.56538e6i − 0.306904i
\(483\) − 8.68498e6i − 1.69395i
\(484\) −2.94164e6 −0.570789
\(485\) 0 0
\(486\) −1.55356e6 −0.298357
\(487\) 6.21276e6i 1.18703i 0.804823 + 0.593516i \(0.202260\pi\)
−0.804823 + 0.593516i \(0.797740\pi\)
\(488\) 1.04595e6i 0.198821i
\(489\) 5.05376e6 0.955747
\(490\) 0 0
\(491\) −7.05221e6 −1.32014 −0.660072 0.751202i \(-0.729474\pi\)
−0.660072 + 0.751202i \(0.729474\pi\)
\(492\) − 211728.i − 0.0394335i
\(493\) 1.01700e6i 0.188454i
\(494\) 55020.6 0.0101440
\(495\) 0 0
\(496\) −1.03286e6 −0.188512
\(497\) 1.66003e7i 3.01457i
\(498\) 146647.i 0.0264972i
\(499\) −5.63009e6 −1.01220 −0.506098 0.862476i \(-0.668912\pi\)
−0.506098 + 0.862476i \(0.668912\pi\)
\(500\) 0 0
\(501\) 930778. 0.165673
\(502\) 3.77889e6i 0.669276i
\(503\) 9.65803e6i 1.70204i 0.525137 + 0.851018i \(0.324014\pi\)
−0.525137 + 0.851018i \(0.675986\pi\)
\(504\) −713032. −0.125035
\(505\) 0 0
\(506\) 6.92724e6 1.20277
\(507\) − 394467.i − 0.0681539i
\(508\) 2.54005e6i 0.436700i
\(509\) 4.39209e6 0.751409 0.375705 0.926739i \(-0.377401\pi\)
0.375705 + 0.926739i \(0.377401\pi\)
\(510\) 0 0
\(511\) −1.32490e7 −2.24456
\(512\) 262144.i 0.0441942i
\(513\) 331894.i 0.0556809i
\(514\) 1.18888e6 0.198486
\(515\) 0 0
\(516\) 37490.7 0.00619868
\(517\) − 1.26927e7i − 2.08847i
\(518\) − 6.49735e6i − 1.06393i
\(519\) −7.16702e6 −1.16794
\(520\) 0 0
\(521\) −8.38443e6 −1.35325 −0.676627 0.736326i \(-0.736559\pi\)
−0.676627 + 0.736326i \(0.736559\pi\)
\(522\) − 1.30707e6i − 0.209953i
\(523\) 2.54489e6i 0.406831i 0.979092 + 0.203416i \(0.0652042\pi\)
−0.979092 + 0.203416i \(0.934796\pi\)
\(524\) −2.56906e6 −0.408739
\(525\) 0 0
\(526\) 6.12389e6 0.965080
\(527\) 656050.i 0.102899i
\(528\) 2.07647e6i 0.324146i
\(529\) −2.25933e6 −0.351028
\(530\) 0 0
\(531\) −2.09553e6 −0.322521
\(532\) 277702.i 0.0425402i
\(533\) − 161922.i − 0.0246882i
\(534\) 454658. 0.0689973
\(535\) 0 0
\(536\) −1.17518e6 −0.176682
\(537\) 1.23928e6i 0.185452i
\(538\) 4.03512e6i 0.601036i
\(539\) −1.68355e7 −2.49605
\(540\) 0 0
\(541\) −3.83465e6 −0.563290 −0.281645 0.959519i \(-0.590880\pi\)
−0.281645 + 0.959519i \(0.590880\pi\)
\(542\) 8.76490e6i 1.28159i
\(543\) − 5.19684e6i − 0.756379i
\(544\) 166508. 0.0241233
\(545\) 0 0
\(546\) 1.99097e6 0.285813
\(547\) 2.61787e6i 0.374093i 0.982351 + 0.187047i \(0.0598916\pi\)
−0.982351 + 0.187047i \(0.940108\pi\)
\(548\) − 4.73068e6i − 0.672934i
\(549\) −853850. −0.120907
\(550\) 0 0
\(551\) −509057. −0.0714312
\(552\) − 2.60657e6i − 0.364101i
\(553\) − 1.29225e7i − 1.79694i
\(554\) −71695.9 −0.00992476
\(555\) 0 0
\(556\) 99161.1 0.0136036
\(557\) − 5.40419e6i − 0.738061i −0.929417 0.369031i \(-0.879690\pi\)
0.929417 0.369031i \(-0.120310\pi\)
\(558\) − 843164.i − 0.114638i
\(559\) 28671.7 0.00388082
\(560\) 0 0
\(561\) 1.31892e6 0.176935
\(562\) − 9.62654e6i − 1.28567i
\(563\) 904604.i 0.120278i 0.998190 + 0.0601392i \(0.0191545\pi\)
−0.998190 + 0.0601392i \(0.980846\pi\)
\(564\) −4.77599e6 −0.632217
\(565\) 0 0
\(566\) 5.47683e6 0.718602
\(567\) 9.30257e6i 1.21519i
\(568\) 4.98215e6i 0.647956i
\(569\) 6.69355e6 0.866714 0.433357 0.901222i \(-0.357329\pi\)
0.433357 + 0.901222i \(0.357329\pi\)
\(570\) 0 0
\(571\) 8.22981e6 1.05633 0.528165 0.849142i \(-0.322880\pi\)
0.528165 + 0.849142i \(0.322880\pi\)
\(572\) 1.58802e6i 0.202939i
\(573\) 2.85548e6i 0.363322i
\(574\) 817260. 0.103533
\(575\) 0 0
\(576\) −213998. −0.0268753
\(577\) − 3.07720e6i − 0.384783i −0.981318 0.192391i \(-0.938376\pi\)
0.981318 0.192391i \(-0.0616243\pi\)
\(578\) 5.57367e6i 0.693939i
\(579\) 5.70532e6 0.707267
\(580\) 0 0
\(581\) −566051. −0.0695689
\(582\) − 2.97464e6i − 0.364021i
\(583\) 1.45583e7i 1.77394i
\(584\) −3.97633e6 −0.482448
\(585\) 0 0
\(586\) 1.56260e6 0.187976
\(587\) − 2.64175e6i − 0.316443i −0.987404 0.158222i \(-0.949424\pi\)
0.987404 0.158222i \(-0.0505761\pi\)
\(588\) 6.33482e6i 0.755599i
\(589\) −328384. −0.0390026
\(590\) 0 0
\(591\) 7.44193e6 0.876429
\(592\) − 1.95001e6i − 0.228682i
\(593\) − 5.06641e6i − 0.591649i −0.955242 0.295824i \(-0.904406\pi\)
0.955242 0.295824i \(-0.0955943\pi\)
\(594\) −9.57920e6 −1.11394
\(595\) 0 0
\(596\) −5.93654e6 −0.684569
\(597\) 2.03492e6i 0.233674i
\(598\) − 1.99342e6i − 0.227953i
\(599\) −1.31136e7 −1.49332 −0.746662 0.665204i \(-0.768345\pi\)
−0.746662 + 0.665204i \(0.768345\pi\)
\(600\) 0 0
\(601\) 7.53425e6 0.850852 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(602\) 144713.i 0.0162748i
\(603\) − 959341.i − 0.107443i
\(604\) 8.13378e6 0.907193
\(605\) 0 0
\(606\) 9.25672e6 1.02394
\(607\) − 8.76101e6i − 0.965123i −0.875862 0.482561i \(-0.839707\pi\)
0.875862 0.482561i \(-0.160293\pi\)
\(608\) 83344.8i 0.00914365i
\(609\) −1.84207e7 −2.01262
\(610\) 0 0
\(611\) −3.65253e6 −0.395813
\(612\) 135926.i 0.0146698i
\(613\) − 469316.i − 0.0504445i −0.999682 0.0252223i \(-0.991971\pi\)
0.999682 0.0252223i \(-0.00802935\pi\)
\(614\) 2.26618e6 0.242591
\(615\) 0 0
\(616\) −8.01509e6 −0.851054
\(617\) 4.14114e6i 0.437933i 0.975732 + 0.218966i \(0.0702685\pi\)
−0.975732 + 0.218966i \(0.929732\pi\)
\(618\) − 1.71116e6i − 0.180227i
\(619\) 1.31422e7 1.37861 0.689304 0.724472i \(-0.257916\pi\)
0.689304 + 0.724472i \(0.257916\pi\)
\(620\) 0 0
\(621\) 1.20246e7 1.25125
\(622\) 3.52496e6i 0.365324i
\(623\) 1.75496e6i 0.181154i
\(624\) 597536. 0.0614331
\(625\) 0 0
\(626\) 3.66569e6 0.373869
\(627\) 660184.i 0.0670650i
\(628\) 960239.i 0.0971583i
\(629\) −1.23860e6 −0.124826
\(630\) 0 0
\(631\) 9.79229e6 0.979063 0.489532 0.871986i \(-0.337168\pi\)
0.489532 + 0.871986i \(0.337168\pi\)
\(632\) − 3.87834e6i − 0.386237i
\(633\) − 1.58722e7i − 1.57445i
\(634\) 8.04335e6 0.794719
\(635\) 0 0
\(636\) 5.47795e6 0.537001
\(637\) 4.84467e6i 0.473059i
\(638\) − 1.46925e7i − 1.42904i
\(639\) −4.06711e6 −0.394034
\(640\) 0 0
\(641\) 3.38154e6 0.325064 0.162532 0.986703i \(-0.448034\pi\)
0.162532 + 0.986703i \(0.448034\pi\)
\(642\) − 5.37781e6i − 0.514953i
\(643\) − 3.04366e6i − 0.290314i −0.989409 0.145157i \(-0.953631\pi\)
0.989409 0.145157i \(-0.0463687\pi\)
\(644\) 1.00612e7 0.955954
\(645\) 0 0
\(646\) 52938.6 0.00499104
\(647\) − 8.51735e6i − 0.799915i −0.916534 0.399957i \(-0.869025\pi\)
0.916534 0.399957i \(-0.130975\pi\)
\(648\) 2.79192e6i 0.261195i
\(649\) −2.35555e7 −2.19524
\(650\) 0 0
\(651\) −1.18828e7 −1.09892
\(652\) 5.85461e6i 0.539360i
\(653\) − 8.83998e6i − 0.811275i −0.914034 0.405638i \(-0.867050\pi\)
0.914034 0.405638i \(-0.132950\pi\)
\(654\) 922425. 0.0843309
\(655\) 0 0
\(656\) 245279. 0.0222536
\(657\) − 3.24603e6i − 0.293386i
\(658\) − 1.84351e7i − 1.65990i
\(659\) 2.97807e6 0.267129 0.133564 0.991040i \(-0.457358\pi\)
0.133564 + 0.991040i \(0.457358\pi\)
\(660\) 0 0
\(661\) −7.90309e6 −0.703548 −0.351774 0.936085i \(-0.614421\pi\)
−0.351774 + 0.936085i \(0.614421\pi\)
\(662\) 9.90860e6i 0.878754i
\(663\) − 379540.i − 0.0335331i
\(664\) −169885. −0.0149532
\(665\) 0 0
\(666\) 1.59186e6 0.139066
\(667\) 1.84433e7i 1.60519i
\(668\) 1.07827e6i 0.0934948i
\(669\) 1.92572e7 1.66352
\(670\) 0 0
\(671\) −9.59800e6 −0.822952
\(672\) 3.01590e6i 0.257629i
\(673\) 1.82522e7i 1.55338i 0.629885 + 0.776688i \(0.283102\pi\)
−0.629885 + 0.776688i \(0.716898\pi\)
\(674\) 1.02220e7 0.866734
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) − 5.39380e6i − 0.452296i −0.974093 0.226148i \(-0.927387\pi\)
0.974093 0.226148i \(-0.0726134\pi\)
\(678\) − 1.21185e7i − 1.01245i
\(679\) 1.14820e7 0.955746
\(680\) 0 0
\(681\) 1.93762e7 1.60103
\(682\) − 9.47789e6i − 0.780280i
\(683\) 2.30171e7i 1.88799i 0.329963 + 0.943994i \(0.392964\pi\)
−0.329963 + 0.943994i \(0.607036\pi\)
\(684\) −68037.4 −0.00556042
\(685\) 0 0
\(686\) −1.01161e7 −0.820733
\(687\) 1.10025e7i 0.889406i
\(688\) 43431.6i 0.00349812i
\(689\) 4.18936e6 0.336201
\(690\) 0 0
\(691\) 4.87910e6 0.388727 0.194364 0.980930i \(-0.437736\pi\)
0.194364 + 0.980930i \(0.437736\pi\)
\(692\) − 8.30274e6i − 0.659107i
\(693\) − 6.54302e6i − 0.517541i
\(694\) −1.90000e6 −0.149746
\(695\) 0 0
\(696\) −5.52847e6 −0.432596
\(697\) − 155795.i − 0.0121471i
\(698\) − 2.46111e6i − 0.191202i
\(699\) −1.60178e7 −1.23996
\(700\) 0 0
\(701\) 1.47820e7 1.13615 0.568077 0.822976i \(-0.307688\pi\)
0.568077 + 0.822976i \(0.307688\pi\)
\(702\) 2.75656e6i 0.211118i
\(703\) − 619976.i − 0.0473137i
\(704\) −2.40552e6 −0.182927
\(705\) 0 0
\(706\) 1.74960e7 1.32107
\(707\) 3.57305e7i 2.68838i
\(708\) 8.86343e6i 0.664536i
\(709\) 2.75364e6 0.205727 0.102863 0.994695i \(-0.467200\pi\)
0.102863 + 0.994695i \(0.467200\pi\)
\(710\) 0 0
\(711\) 3.16603e6 0.234878
\(712\) 526705.i 0.0389375i
\(713\) 1.18975e7i 0.876457i
\(714\) 1.91563e6 0.140626
\(715\) 0 0
\(716\) −1.43566e6 −0.104657
\(717\) 9.49574e6i 0.689812i
\(718\) − 1.83825e7i − 1.33074i
\(719\) 2.10250e7 1.51675 0.758373 0.651820i \(-0.225994\pi\)
0.758373 + 0.651820i \(0.225994\pi\)
\(720\) 0 0
\(721\) 6.60502e6 0.473191
\(722\) − 9.87790e6i − 0.705215i
\(723\) − 5.40502e6i − 0.384549i
\(724\) 6.02035e6 0.426850
\(725\) 0 0
\(726\) −1.01570e7 −0.715196
\(727\) − 2.21381e7i − 1.55347i −0.629825 0.776737i \(-0.716873\pi\)
0.629825 0.776737i \(-0.283127\pi\)
\(728\) 2.30646e6i 0.161294i
\(729\) −1.59648e7 −1.11261
\(730\) 0 0
\(731\) 27586.7 0.00190944
\(732\) 3.61152e6i 0.249122i
\(733\) 1.23177e7i 0.846775i 0.905949 + 0.423388i \(0.139159\pi\)
−0.905949 + 0.423388i \(0.860841\pi\)
\(734\) −1.83745e7 −1.25885
\(735\) 0 0
\(736\) 3.01962e6 0.205474
\(737\) − 1.07838e7i − 0.731313i
\(738\) 200230.i 0.0135328i
\(739\) 1.79039e7 1.20597 0.602986 0.797752i \(-0.293977\pi\)
0.602986 + 0.797752i \(0.293977\pi\)
\(740\) 0 0
\(741\) 189978. 0.0127103
\(742\) 2.11447e7i 1.40991i
\(743\) − 9.82085e6i − 0.652645i −0.945258 0.326323i \(-0.894190\pi\)
0.945258 0.326323i \(-0.105810\pi\)
\(744\) −3.56632e6 −0.236204
\(745\) 0 0
\(746\) −6.97256e6 −0.458717
\(747\) − 138684.i − 0.00909334i
\(748\) 1.52793e6i 0.0998501i
\(749\) 2.07581e7 1.35202
\(750\) 0 0
\(751\) 1.04747e7 0.677705 0.338852 0.940840i \(-0.389961\pi\)
0.338852 + 0.940840i \(0.389961\pi\)
\(752\) − 5.53282e6i − 0.356781i
\(753\) 1.30479e7i 0.838599i
\(754\) −4.22800e6 −0.270836
\(755\) 0 0
\(756\) −1.39130e7 −0.885352
\(757\) − 2.20487e7i − 1.39844i −0.714908 0.699219i \(-0.753531\pi\)
0.714908 0.699219i \(-0.246469\pi\)
\(758\) 1.77012e7i 1.11900i
\(759\) 2.39187e7 1.50707
\(760\) 0 0
\(761\) −2.75293e7 −1.72319 −0.861596 0.507594i \(-0.830535\pi\)
−0.861596 + 0.507594i \(0.830535\pi\)
\(762\) 8.77040e6i 0.547182i
\(763\) 3.56052e6i 0.221413i
\(764\) −3.30797e6 −0.205035
\(765\) 0 0
\(766\) −5.59091e6 −0.344279
\(767\) 6.77846e6i 0.416047i
\(768\) 905143.i 0.0553751i
\(769\) −1.50464e7 −0.917525 −0.458763 0.888559i \(-0.651707\pi\)
−0.458763 + 0.888559i \(0.651707\pi\)
\(770\) 0 0
\(771\) 4.10501e6 0.248701
\(772\) 6.60941e6i 0.399135i
\(773\) 2.28606e6i 0.137606i 0.997630 + 0.0688031i \(0.0219180\pi\)
−0.997630 + 0.0688031i \(0.978082\pi\)
\(774\) −35454.8 −0.00212727
\(775\) 0 0
\(776\) 3.44601e6 0.205430
\(777\) − 2.24344e7i − 1.33310i
\(778\) − 6.54142e6i − 0.387456i
\(779\) 77982.8 0.00460421
\(780\) 0 0
\(781\) −4.57178e7 −2.68199
\(782\) − 1.91799e6i − 0.112158i
\(783\) − 2.55040e7i − 1.48663i
\(784\) −7.33867e6 −0.426410
\(785\) 0 0
\(786\) −8.87056e6 −0.512147
\(787\) − 9.89052e6i − 0.569223i −0.958643 0.284611i \(-0.908135\pi\)
0.958643 0.284611i \(-0.0918646\pi\)
\(788\) 8.62121e6i 0.494598i
\(789\) 2.11449e7 1.20924
\(790\) 0 0
\(791\) 4.67770e7 2.65822
\(792\) − 1.96371e6i − 0.111241i
\(793\) 2.76197e6i 0.155968i
\(794\) 1.96261e7 1.10480
\(795\) 0 0
\(796\) −2.35738e6 −0.131870
\(797\) − 2.93049e7i − 1.63416i −0.576525 0.817080i \(-0.695592\pi\)
0.576525 0.817080i \(-0.304408\pi\)
\(798\) 958862.i 0.0533026i
\(799\) −3.51431e6 −0.194748
\(800\) 0 0
\(801\) −429969. −0.0236786
\(802\) − 3.80474e6i − 0.208876i
\(803\) − 3.64881e7i − 1.99693i
\(804\) −4.05771e6 −0.221381
\(805\) 0 0
\(806\) −2.72741e6 −0.147881
\(807\) 1.39327e7i 0.753095i
\(808\) 1.07236e7i 0.577845i
\(809\) −1.02027e7 −0.548078 −0.274039 0.961719i \(-0.588360\pi\)
−0.274039 + 0.961719i \(0.588360\pi\)
\(810\) 0 0
\(811\) −1.26432e7 −0.675001 −0.337501 0.941325i \(-0.609582\pi\)
−0.337501 + 0.941325i \(0.609582\pi\)
\(812\) − 2.13397e7i − 1.13579i
\(813\) 3.02639e7i 1.60582i
\(814\) 1.78939e7 0.946551
\(815\) 0 0
\(816\) 574925. 0.0302264
\(817\) 13808.4i 0 0.000723752i
\(818\) − 1.79786e7i − 0.939446i
\(819\) −1.88285e6 −0.0980858
\(820\) 0 0
\(821\) −1.56881e7 −0.812294 −0.406147 0.913808i \(-0.633128\pi\)
−0.406147 + 0.913808i \(0.633128\pi\)
\(822\) − 1.63343e7i − 0.843183i
\(823\) 2.45799e7i 1.26497i 0.774571 + 0.632487i \(0.217966\pi\)
−0.774571 + 0.632487i \(0.782034\pi\)
\(824\) 1.98232e6 0.101708
\(825\) 0 0
\(826\) −3.42125e7 −1.74475
\(827\) − 3.62365e7i − 1.84239i −0.389098 0.921197i \(-0.627213\pi\)
0.389098 0.921197i \(-0.372787\pi\)
\(828\) 2.46502e6i 0.124953i
\(829\) 2.81815e7 1.42422 0.712110 0.702068i \(-0.247740\pi\)
0.712110 + 0.702068i \(0.247740\pi\)
\(830\) 0 0
\(831\) −247555. −0.0124357
\(832\) 692224.i 0.0346688i
\(833\) 4.66134e6i 0.232755i
\(834\) 342388. 0.0170453
\(835\) 0 0
\(836\) −764799. −0.0378470
\(837\) − 1.64522e7i − 0.811727i
\(838\) 3.31562e6i 0.163100i
\(839\) 8.42806e6 0.413354 0.206677 0.978409i \(-0.433735\pi\)
0.206677 + 0.978409i \(0.433735\pi\)
\(840\) 0 0
\(841\) 1.86068e7 0.907155
\(842\) 2.97925e6i 0.144820i
\(843\) − 3.32390e7i − 1.61094i
\(844\) 1.83874e7 0.888515
\(845\) 0 0
\(846\) 4.51664e6 0.216965
\(847\) − 3.92057e7i − 1.87776i
\(848\) 6.34601e6i 0.303048i
\(849\) 1.89107e7 0.900404
\(850\) 0 0
\(851\) −2.24620e7 −1.06322
\(852\) 1.72026e7i 0.811886i
\(853\) − 3.10763e7i − 1.46237i −0.682180 0.731184i \(-0.738968\pi\)
0.682180 0.731184i \(-0.261032\pi\)
\(854\) −1.39403e7 −0.654075
\(855\) 0 0
\(856\) 6.23000e6 0.290605
\(857\) 5.72064e6i 0.266068i 0.991111 + 0.133034i \(0.0424720\pi\)
−0.991111 + 0.133034i \(0.957528\pi\)
\(858\) 5.48318e6i 0.254281i
\(859\) 6.04140e6 0.279354 0.139677 0.990197i \(-0.455394\pi\)
0.139677 + 0.990197i \(0.455394\pi\)
\(860\) 0 0
\(861\) 2.82187e6 0.129727
\(862\) − 1.55812e7i − 0.714220i
\(863\) 2.09227e7i 0.956292i 0.878280 + 0.478146i \(0.158691\pi\)
−0.878280 + 0.478146i \(0.841309\pi\)
\(864\) −4.17562e6 −0.190299
\(865\) 0 0
\(866\) 2.35319e7 1.06626
\(867\) 1.92450e7i 0.869502i
\(868\) − 1.37658e7i − 0.620160i
\(869\) 3.55889e7 1.59869
\(870\) 0 0
\(871\) −3.10320e6 −0.138601
\(872\) 1.06860e6i 0.0475908i
\(873\) 2.81311e6i 0.124925i
\(874\) 960042. 0.0425120
\(875\) 0 0
\(876\) −1.37297e7 −0.604505
\(877\) 5.01539e6i 0.220194i 0.993921 + 0.110097i \(0.0351162\pi\)
−0.993921 + 0.110097i \(0.964884\pi\)
\(878\) − 6.92097e6i − 0.302992i
\(879\) 5.39541e6 0.235533
\(880\) 0 0
\(881\) −2.14791e7 −0.932346 −0.466173 0.884694i \(-0.654368\pi\)
−0.466173 + 0.884694i \(0.654368\pi\)
\(882\) − 5.99082e6i − 0.259307i
\(883\) 996549.i 0.0430127i 0.999769 + 0.0215064i \(0.00684621\pi\)
−0.999769 + 0.0215064i \(0.993154\pi\)
\(884\) 439684. 0.0189239
\(885\) 0 0
\(886\) 425728. 0.0182200
\(887\) − 4.67336e6i − 0.199444i −0.995015 0.0997219i \(-0.968205\pi\)
0.995015 0.0997219i \(-0.0317953\pi\)
\(888\) − 6.73308e6i − 0.286537i
\(889\) −3.38534e7 −1.43664
\(890\) 0 0
\(891\) −2.56196e7 −1.08113
\(892\) 2.23088e7i 0.938782i
\(893\) − 1.75908e6i − 0.0738170i
\(894\) −2.04980e7 −0.857762
\(895\) 0 0
\(896\) −3.49382e6 −0.145388
\(897\) − 6.88297e6i − 0.285624i
\(898\) 1.95688e7i 0.809792i
\(899\) 2.52343e7 1.04134
\(900\) 0 0
\(901\) 4.03083e6 0.165418
\(902\) 2.25076e6i 0.0921112i
\(903\) 499670.i 0.0203922i
\(904\) 1.40389e7 0.571362
\(905\) 0 0
\(906\) 2.80847e7 1.13671
\(907\) − 1.18130e7i − 0.476807i −0.971166 0.238403i \(-0.923376\pi\)
0.971166 0.238403i \(-0.0766240\pi\)
\(908\) 2.24466e7i 0.903515i
\(909\) −8.75405e6 −0.351398
\(910\) 0 0
\(911\) 3.55560e7 1.41944 0.709721 0.704483i \(-0.248821\pi\)
0.709721 + 0.704483i \(0.248821\pi\)
\(912\) 287777.i 0.0114569i
\(913\) − 1.55892e6i − 0.0618938i
\(914\) 709006. 0.0280727
\(915\) 0 0
\(916\) −1.27460e7 −0.501922
\(917\) − 3.42400e7i − 1.34465i
\(918\) 2.65225e6i 0.103874i
\(919\) −2.66902e7 −1.04247 −0.521235 0.853413i \(-0.674528\pi\)
−0.521235 + 0.853413i \(0.674528\pi\)
\(920\) 0 0
\(921\) 7.82478e6 0.303965
\(922\) 2.86270e7i 1.10905i
\(923\) 1.31560e7i 0.508299i
\(924\) −2.76749e7 −1.06637
\(925\) 0 0
\(926\) −1.37691e7 −0.527690
\(927\) 1.61824e6i 0.0618507i
\(928\) − 6.40454e6i − 0.244128i
\(929\) 3.08229e7 1.17175 0.585874 0.810402i \(-0.300751\pi\)
0.585874 + 0.810402i \(0.300751\pi\)
\(930\) 0 0
\(931\) −2.33322e6 −0.0882230
\(932\) − 1.85560e7i − 0.699753i
\(933\) 1.21711e7i 0.457749i
\(934\) −3.68994e7 −1.38405
\(935\) 0 0
\(936\) −565088. −0.0210827
\(937\) − 2.78462e7i − 1.03613i −0.855340 0.518067i \(-0.826652\pi\)
0.855340 0.518067i \(-0.173348\pi\)
\(938\) − 1.56626e7i − 0.581241i
\(939\) 1.26571e7 0.468456
\(940\) 0 0
\(941\) 2.80836e7 1.03390 0.516950 0.856016i \(-0.327067\pi\)
0.516950 + 0.856016i \(0.327067\pi\)
\(942\) 3.31556e6i 0.121739i
\(943\) − 2.82535e6i − 0.103465i
\(944\) −1.02680e7 −0.375020
\(945\) 0 0
\(946\) −398543. −0.0144793
\(947\) 4.49006e7i 1.62696i 0.581592 + 0.813481i \(0.302430\pi\)
−0.581592 + 0.813481i \(0.697570\pi\)
\(948\) − 1.33913e7i − 0.483953i
\(949\) −1.05000e7 −0.378463
\(950\) 0 0
\(951\) 2.77724e7 0.995779
\(952\) 2.21919e6i 0.0793600i
\(953\) − 1.13992e7i − 0.406577i −0.979119 0.203289i \(-0.934837\pi\)
0.979119 0.203289i \(-0.0651630\pi\)
\(954\) −5.18048e6 −0.184289
\(955\) 0 0
\(956\) −1.10005e7 −0.389284
\(957\) − 5.07311e7i − 1.79058i
\(958\) − 4.93322e6i − 0.173667i
\(959\) 6.30498e7 2.21380
\(960\) 0 0
\(961\) −1.23510e7 −0.431412
\(962\) − 5.14924e6i − 0.179393i
\(963\) 5.08578e6i 0.176722i
\(964\) 6.26152e6 0.217014
\(965\) 0 0
\(966\) 3.47399e7 1.19781
\(967\) 5.54751e7i 1.90780i 0.300130 + 0.953898i \(0.402970\pi\)
−0.300130 + 0.953898i \(0.597030\pi\)
\(968\) − 1.17665e7i − 0.403609i
\(969\) 182789. 0.00625375
\(970\) 0 0
\(971\) −2.45562e6 −0.0835819 −0.0417910 0.999126i \(-0.513306\pi\)
−0.0417910 + 0.999126i \(0.513306\pi\)
\(972\) − 6.21423e6i − 0.210970i
\(973\) 1.32160e6i 0.0447527i
\(974\) −2.48510e7 −0.839358
\(975\) 0 0
\(976\) −4.18381e6 −0.140588
\(977\) − 3.31344e7i − 1.11056i −0.831663 0.555280i \(-0.812611\pi\)
0.831663 0.555280i \(-0.187389\pi\)
\(978\) 2.02151e7i 0.675815i
\(979\) −4.83322e6 −0.161168
\(980\) 0 0
\(981\) −872335. −0.0289408
\(982\) − 2.82088e7i − 0.933483i
\(983\) − 4.46461e7i − 1.47367i −0.676073 0.736834i \(-0.736320\pi\)
0.676073 0.736834i \(-0.263680\pi\)
\(984\) 846911. 0.0278837
\(985\) 0 0
\(986\) −4.06801e6 −0.133257
\(987\) − 6.36537e7i − 2.07985i
\(988\) 220082.i 0.00717287i
\(989\) 500285. 0.0162640
\(990\) 0 0
\(991\) 4.99797e7 1.61662 0.808312 0.588754i \(-0.200381\pi\)
0.808312 + 0.588754i \(0.200381\pi\)
\(992\) − 4.13145e6i − 0.133298i
\(993\) 3.42129e7i 1.10107i
\(994\) −6.64013e7 −2.13162
\(995\) 0 0
\(996\) −586588. −0.0187363
\(997\) 1.25647e7i 0.400326i 0.979763 + 0.200163i \(0.0641472\pi\)
−0.979763 + 0.200163i \(0.935853\pi\)
\(998\) − 2.25204e7i − 0.715730i
\(999\) 3.10611e7 0.984699
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.b.g.599.4 4
5.2 odd 4 130.6.a.a.1.2 2
5.3 odd 4 650.6.a.h.1.1 2
5.4 even 2 inner 650.6.b.g.599.1 4
20.7 even 4 1040.6.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.a.1.2 2 5.2 odd 4
650.6.a.h.1.1 2 5.3 odd 4
650.6.b.g.599.1 4 5.4 even 2 inner
650.6.b.g.599.4 4 1.1 even 1 trivial
1040.6.a.e.1.1 2 20.7 even 4