Properties

Label 650.6.b.g
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_1 q^{2} + (\beta_{2} + 2 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} + 8) q^{6} + ( - 4 \beta_{2} + 150 \beta_1) q^{7} + 64 \beta_1 q^{8} + ( - 4 \beta_{3} - 11) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 \beta_1 q^{2} + (\beta_{2} + 2 \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} + 8) q^{6} + ( - 4 \beta_{2} + 150 \beta_1) q^{7} + 64 \beta_1 q^{8} + ( - 4 \beta_{3} - 11) q^{9} + ( - 25 \beta_{3} + 192) q^{11} + ( - 16 \beta_{2} - 32 \beta_1) q^{12} + 169 \beta_1 q^{13} + ( - 16 \beta_{3} + 600) q^{14} + 256 q^{16} + ( - 18 \beta_{2} - 122 \beta_1) q^{17} + (16 \beta_{2} + 44 \beta_1) q^{18} + (71 \beta_{3} + 1204) q^{19} + ( - 142 \beta_{3} + 700) q^{21} + (100 \beta_{2} - 768 \beta_1) q^{22} + ( - 197 \beta_{2} - 166 \beta_1) q^{23} + ( - 64 \beta_{3} - 128) q^{24} + 676 q^{26} + (224 \beta_{2} - 536 \beta_1) q^{27} + (64 \beta_{2} - 2400 \beta_1) q^{28} + (284 \beta_{3} - 1764) q^{29} + (283 \beta_{3} + 440) q^{31} - 1024 \beta_1 q^{32} + (142 \beta_{2} - 5866 \beta_1) q^{33} + ( - 72 \beta_{3} - 488) q^{34} + (64 \beta_{3} + 176) q^{36} + ( - 142 \beta_{2} + 5372 \beta_1) q^{37} + ( - 284 \beta_{2} - 4816 \beta_1) q^{38} + ( - 169 \beta_{3} - 338) q^{39} + (446 \beta_{3} + 8010) q^{41} + (568 \beta_{2} - 2800 \beta_1) q^{42} + ( - 83 \beta_{2} - 1482 \beta_1) q^{43} + (400 \beta_{3} - 3072) q^{44} + ( - 788 \beta_{3} - 664) q^{46} + ( - 156 \beta_{2} + 19146 \beta_1) q^{47} + (256 \beta_{2} + 512 \beta_1) q^{48} + (1200 \beta_{3} - 9693) q^{49} + (158 \beta_{3} + 4744) q^{51} - 2704 \beta_1 q^{52} + (238 \beta_{2} - 21026 \beta_1) q^{53} + (896 \beta_{3} - 2144) q^{54} + (256 \beta_{3} - 9600) q^{56} + (1346 \beta_{2} + 20158 \beta_1) q^{57} + ( - 1136 \beta_{2} + 7056 \beta_1) q^{58} + (1181 \beta_{3} - 21436) q^{59} + ( - 16 \beta_{3} - 16596) q^{61} + ( - 1132 \beta_{2} - 1760 \beta_1) q^{62} + ( - 556 \beta_{2} + 2350 \beta_1) q^{63} - 4096 q^{64} + (568 \beta_{3} - 23464) q^{66} + (22 \beta_{2} + 18710 \beta_1) q^{67} + (288 \beta_{2} + 1952 \beta_1) q^{68} + (560 \beta_{3} + 49582) q^{69} + (2725 \beta_{3} - 34760) q^{71} + ( - 256 \beta_{2} - 704 \beta_1) q^{72} + ( - 3530 \beta_{2} + 6316 \beta_1) q^{73} + ( - 568 \beta_{3} + 21488) q^{74} + ( - 1136 \beta_{3} - 19264) q^{76} + ( - 4518 \beta_{2} + 53800 \beta_1) q^{77} + (676 \beta_{2} + 1352 \beta_1) q^{78} + ( - 4946 \beta_{3} - 17604) q^{79} + ( - 884 \beta_{3} - 57601) q^{81} + ( - 1784 \beta_{2} - 32040 \beta_1) q^{82} + ( - 1164 \beta_{2} - 15750 \beta_1) q^{83} + (2272 \beta_{3} - 11200) q^{84} + ( - 332 \beta_{3} - 5928) q^{86} + ( - 1196 \beta_{2} + 67472 \beta_1) q^{87} + ( - 1600 \beta_{2} + 12288 \beta_1) q^{88} + (1104 \beta_{3} + 9226) q^{89} + (676 \beta_{3} - 25350) q^{91} + (3152 \beta_{2} + 2656 \beta_1) q^{92} + (1006 \beta_{2} + 71630 \beta_1) q^{93} + ( - 624 \beta_{3} + 76584) q^{94} + (1024 \beta_{3} + 2048) q^{96} + (2492 \beta_{2} - 14442 \beta_1) q^{97} + ( - 4800 \beta_{2} + 38772 \beta_1) q^{98} + ( - 493 \beta_{3} + 22888) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} + 32 q^{6} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} + 32 q^{6} - 44 q^{9} + 768 q^{11} + 2400 q^{14} + 1024 q^{16} + 4816 q^{19} + 2800 q^{21} - 512 q^{24} + 2704 q^{26} - 7056 q^{29} + 1760 q^{31} - 1952 q^{34} + 704 q^{36} - 1352 q^{39} + 32040 q^{41} - 12288 q^{44} - 2656 q^{46} - 38772 q^{49} + 18976 q^{51} - 8576 q^{54} - 38400 q^{56} - 85744 q^{59} - 66384 q^{61} - 16384 q^{64} - 93856 q^{66} + 198328 q^{69} - 139040 q^{71} + 85952 q^{74} - 77056 q^{76} - 70416 q^{79} - 230404 q^{81} - 44800 q^{84} - 23712 q^{86} + 36904 q^{89} - 101400 q^{91} + 306336 q^{94} + 8192 q^{96} + 91552 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
−1.58114 1.58114i
1.58114 + 1.58114i
1.58114 1.58114i
−1.58114 + 1.58114i
4.00000i 13.8114i −16.0000 0 −55.2456 213.246i 64.0000i 52.2456 0
599.2 4.00000i 17.8114i −16.0000 0 71.2456 86.7544i 64.0000i −74.2456 0
599.3 4.00000i 17.8114i −16.0000 0 71.2456 86.7544i 64.0000i −74.2456 0
599.4 4.00000i 13.8114i −16.0000 0 −55.2456 213.246i 64.0000i 52.2456 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.g 4
5.b even 2 1 inner 650.6.b.g 4
5.c odd 4 1 130.6.a.a 2
5.c odd 4 1 650.6.a.h 2
20.e even 4 1 1040.6.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.6.a.a 2 5.c odd 4 1
650.6.a.h 2 5.c odd 4 1
650.6.b.g 4 1.a even 1 1 trivial
650.6.b.g 4 5.b even 2 1 inner
1040.6.a.e 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 508T_{3}^{2} + 60516 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 508 T^{2} + 60516 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 53000 T^{2} + 342250000 \) Copy content Toggle raw display
$11$ \( (T^{2} - 384 T - 119386)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 4371325456 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2408 T + 189366)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 93599703993636 \) Copy content Toggle raw display
$29$ \( (T^{2} + 3528 T - 17052304)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 880 T - 19828650)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 567267780603456 \) Copy content Toggle raw display
$41$ \( (T^{2} - 16020 T + 14431100)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 224746157476 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 18\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{2} + 42872 T + 110811846)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 33192 T + 275363216)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{2} + 69520 T - 648148650)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 94\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( (T^{2} + 35208 T - 5805828184)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 82\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} - 18452 T - 219584924)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
show more
show less