Properties

Label 650.6.b.d
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2785})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1393x^{2} + 484416 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \beta_{2} q^{2} + ( - 4 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} - 20) q^{6} + (164 \beta_{2} + \beta_1) q^{7} + 64 \beta_{2} q^{8} + (9 \beta_{3} - 478) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 \beta_{2} q^{2} + ( - 4 \beta_{2} + \beta_1) q^{3} - 16 q^{4} + (4 \beta_{3} - 20) q^{6} + (164 \beta_{2} + \beta_1) q^{7} + 64 \beta_{2} q^{8} + (9 \beta_{3} - 478) q^{9} + (10 \beta_{3} + 38) q^{11} + (64 \beta_{2} - 16 \beta_1) q^{12} - 169 \beta_{2} q^{13} + (4 \beta_{3} + 652) q^{14} + 256 q^{16} + ( - 246 \beta_{2} - 11 \beta_1) q^{17} + (1876 \beta_{2} - 36 \beta_1) q^{18} + ( - 70 \beta_{3} - 586) q^{19} + ( - 159 \beta_{3} + 119) q^{21} + ( - 192 \beta_{2} - 40 \beta_1) q^{22} + (1320 \beta_{2} - 48 \beta_1) q^{23} + ( - 64 \beta_{3} + 320) q^{24} - 676 q^{26} + (7168 \beta_{2} - 271 \beta_1) q^{27} + ( - 2624 \beta_{2} - 16 \beta_1) q^{28} + ( - 240 \beta_{3} - 702) q^{29} + (312 \beta_{3} - 412) q^{31} - 1024 \beta_{2} q^{32} + (6768 \beta_{2} - 2 \beta_1) q^{33} + ( - 44 \beta_{3} - 940) q^{34} + ( - 144 \beta_{3} + 7648) q^{36} + (6686 \beta_{2} + 61 \beta_1) q^{37} + (2624 \beta_{2} + 280 \beta_1) q^{38} + (169 \beta_{3} - 845) q^{39} + ( - 542 \beta_{3} - 5704) q^{41} + (160 \beta_{2} + 636 \beta_1) q^{42} + ( - 7508 \beta_{2} + 479 \beta_1) q^{43} + ( - 160 \beta_{3} - 608) q^{44} + ( - 192 \beta_{3} + 5472) q^{46} + ( - 16692 \beta_{2} - 275 \beta_1) q^{47} + ( - 1024 \beta_{2} + 256 \beta_1) q^{48} + ( - 327 \beta_{3} - 10458) q^{49} + (191 \beta_{3} + 6481) q^{51} + 2704 \beta_{2} q^{52} + (5322 \beta_{2} - 142 \beta_1) q^{53} + ( - 1084 \beta_{3} + 29756) q^{54} + ( - 64 \beta_{3} - 10432) q^{56} + ( - 46096 \beta_{2} - 306 \beta_1) q^{57} + (3768 \beta_{2} + 960 \beta_1) q^{58} + ( - 326 \beta_{3} - 2362) q^{59} + (238 \beta_{3} - 272) q^{61} + (400 \beta_{2} - 1248 \beta_1) q^{62} + ( - 70652 \beta_{2} + 998 \beta_1) q^{63} - 4096 q^{64} + ( - 8 \beta_{3} + 27080) q^{66} + (18944 \beta_{2} - 918 \beta_1) q^{67} + (3936 \beta_{2} + 176 \beta_1) q^{68} + ( - 1560 \beta_{3} + 40248) q^{69} + (707 \beta_{3} + 36169) q^{71} + ( - 30016 \beta_{2} + 576 \beta_1) q^{72} + ( - 24698 \beta_{2} + 624 \beta_1) q^{73} + (244 \beta_{3} + 26500) q^{74} + (1120 \beta_{3} + 9376) q^{76} + (14832 \beta_{2} + 1678 \beta_1) q^{77} + (2704 \beta_{2} - 676 \beta_1) q^{78} + ( - 1680 \beta_{3} - 39176) q^{79} + ( - 6336 \beta_{3} + 109657) q^{81} + (24984 \beta_{2} + 2168 \beta_1) q^{82} + (40080 \beta_{2} + 2460 \beta_1) q^{83} + (2544 \beta_{3} - 1904) q^{84} + (1916 \beta_{3} - 31948) q^{86} + ( - 163272 \beta_{2} + 258 \beta_1) q^{87} + (3072 \beta_{2} + 640 \beta_1) q^{88} + (896 \beta_{3} - 20234) q^{89} + (169 \beta_{3} + 27547) q^{91} + ( - 21120 \beta_{2} + 768 \beta_1) q^{92} + (217552 \beta_{2} - 1660 \beta_1) q^{93} + ( - 1100 \beta_{3} - 65668) q^{94} + (1024 \beta_{3} - 5120) q^{96} + ( - 75886 \beta_{2} - 1580 \beta_1) q^{97} + (43140 \beta_{2} + 1308 \beta_1) q^{98} + ( - 4348 \beta_{3} + 44476) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} - 72 q^{6} - 1894 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} - 72 q^{6} - 1894 q^{9} + 172 q^{11} + 2616 q^{14} + 1024 q^{16} - 2484 q^{19} + 158 q^{21} + 1152 q^{24} - 2704 q^{26} - 3288 q^{29} - 1024 q^{31} - 3848 q^{34} + 30304 q^{36} - 3042 q^{39} - 23900 q^{41} - 2752 q^{44} + 21504 q^{46} - 42486 q^{49} + 26306 q^{51} + 116856 q^{54} - 41856 q^{56} - 10100 q^{59} - 612 q^{61} - 16384 q^{64} + 108304 q^{66} + 157872 q^{69} + 146090 q^{71} + 106488 q^{74} + 39744 q^{76} - 160064 q^{79} + 425956 q^{81} - 2528 q^{84} - 123960 q^{86} - 79144 q^{89} + 110526 q^{91} - 264872 q^{94} - 18432 q^{96} + 169208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 1393x^{2} + 484416 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 697\nu ) / 696 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 697 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 697 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 696\beta_{2} - 697\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
26.8865i
25.8865i
25.8865i
26.8865i
4.00000i 30.8865i −16.0000 0 −123.546 137.113i 64.0000i −710.979 0
599.2 4.00000i 21.8865i −16.0000 0 87.5462 189.887i 64.0000i −236.021 0
599.3 4.00000i 21.8865i −16.0000 0 87.5462 189.887i 64.0000i −236.021 0
599.4 4.00000i 30.8865i −16.0000 0 −123.546 137.113i 64.0000i −710.979 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.d 4
5.b even 2 1 inner 650.6.b.d 4
5.c odd 4 1 26.6.a.b 2
5.c odd 4 1 650.6.a.e 2
15.e even 4 1 234.6.a.m 2
20.e even 4 1 208.6.a.f 2
40.i odd 4 1 832.6.a.l 2
40.k even 4 1 832.6.a.n 2
65.f even 4 1 338.6.b.c 4
65.h odd 4 1 338.6.a.g 2
65.k even 4 1 338.6.b.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.b 2 5.c odd 4 1
208.6.a.f 2 20.e even 4 1
234.6.a.m 2 15.e even 4 1
338.6.a.g 2 65.h odd 4 1
338.6.b.c 4 65.f even 4 1
338.6.b.c 4 65.k even 4 1
650.6.a.e 2 5.c odd 4 1
650.6.b.d 4 1.a even 1 1 trivial
650.6.b.d 4 5.b even 2 1 inner
832.6.a.l 2 40.i odd 4 1
832.6.a.n 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 1433T_{3}^{2} + 456976 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 1433 T^{2} + 456976 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 54857 T^{2} + 677873296 \) Copy content Toggle raw display
$11$ \( (T^{2} - 86 T - 67776)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 284173 T^{2} + 697276836 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1242 T - 3025984)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 40875134976 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1644 T - 39428316)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 512 T - 67710224)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 17\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( (T^{2} + 11950 T - 168832560)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 99\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 49\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 226359968829696 \) Copy content Toggle raw display
$59$ \( (T^{2} + 5050 T - 67619040)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 306 T - 39414976)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 44\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( (T^{2} - 73045 T + 985873140)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + 80032 T - 363815744)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 73\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} + 39572 T - 167474844)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 15\!\cdots\!56 \) Copy content Toggle raw display
show more
show less