Properties

Label 650.6.b.c
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 \beta_1 q^{2} + (3 \beta_{2} + 8 \beta_1) q^{3} - 16 q^{4} + ( - 12 \beta_{3} - 32) q^{6} + (20 \beta_{2} - 126 \beta_1) q^{7} - 64 \beta_1 q^{8} + ( - 48 \beta_{3} + 53) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 \beta_1 q^{2} + (3 \beta_{2} + 8 \beta_1) q^{3} - 16 q^{4} + ( - 12 \beta_{3} - 32) q^{6} + (20 \beta_{2} - 126 \beta_1) q^{7} - 64 \beta_1 q^{8} + ( - 48 \beta_{3} + 53) q^{9} + (137 \beta_{3} - 18) q^{11} + ( - 48 \beta_{2} - 128 \beta_1) q^{12} + 169 \beta_1 q^{13} + ( - 80 \beta_{3} + 504) q^{14} + 256 q^{16} + ( - 314 \beta_{2} - 1190 \beta_1) q^{17} + ( - 192 \beta_{2} + 212 \beta_1) q^{18} + (41 \beta_{3} + 546) q^{19} + (218 \beta_{3} + 168) q^{21} + (548 \beta_{2} - 72 \beta_1) q^{22} + (861 \beta_{2} + 588 \beta_1) q^{23} + (192 \beta_{3} + 512) q^{24} - 676 q^{26} + (504 \beta_{2} + 352 \beta_1) q^{27} + ( - 320 \beta_{2} + 2016 \beta_1) q^{28} + ( - 1256 \beta_{3} + 2436) q^{29} + ( - 2127 \beta_{3} - 1130) q^{31} + 1024 \beta_1 q^{32} + (1042 \beta_{2} + 5610 \beta_1) q^{33} + (1256 \beta_{3} + 4760) q^{34} + (768 \beta_{3} - 848) q^{36} + (1174 \beta_{2} - 8880 \beta_1) q^{37} + (164 \beta_{2} + 2184 \beta_1) q^{38} + ( - 507 \beta_{3} - 1352) q^{39} + ( - 2090 \beta_{3} - 4610) q^{41} + (872 \beta_{2} + 672 \beta_1) q^{42} + (199 \beta_{2} + 11828 \beta_1) q^{43} + ( - 2192 \beta_{3} + 288) q^{44} + ( - 3444 \beta_{3} - 2352) q^{46} + ( - 756 \beta_{2} + 6430 \beta_1) q^{47} + (768 \beta_{2} + 2048 \beta_1) q^{48} + (5040 \beta_{3} - 4669) q^{49} + (6082 \beta_{3} + 22708) q^{51} - 2704 \beta_1 q^{52} + ( - 538 \beta_{2} - 5534 \beta_1) q^{53} + ( - 2016 \beta_{3} - 1408) q^{54} + (1280 \beta_{3} - 8064) q^{56} + (1966 \beta_{2} + 6090 \beta_1) q^{57} + ( - 5024 \beta_{2} + 9744 \beta_1) q^{58} + ( - 1301 \beta_{3} - 45202) q^{59} + (2604 \beta_{3} - 34500) q^{61} + ( - 8508 \beta_{2} - 4520 \beta_1) q^{62} + (7108 \beta_{2} - 20118 \beta_1) q^{63} - 4096 q^{64} + ( - 4168 \beta_{3} - 22440) q^{66} + (4898 \beta_{2} + 25398 \beta_1) q^{67} + (5024 \beta_{2} + 19040 \beta_1) q^{68} + ( - 8652 \beta_{3} - 40866) q^{69} + (5863 \beta_{3} - 14334) q^{71} + (3072 \beta_{2} - 3392 \beta_1) q^{72} + ( - 2598 \beta_{2} + 31344 \beta_1) q^{73} + ( - 4696 \beta_{3} + 35520) q^{74} + ( - 656 \beta_{3} - 8736) q^{76} + ( - 17622 \beta_{2} + 40628 \beta_1) q^{77} + ( - 2028 \beta_{2} - 5408 \beta_1) q^{78} + ( - 16438 \beta_{3} - 42032) q^{79} + ( - 16752 \beta_{3} - 11105) q^{81} + ( - 8360 \beta_{2} - 18440 \beta_1) q^{82} + (19772 \beta_{2} + 6414 \beta_1) q^{83} + ( - 3488 \beta_{3} - 2688) q^{84} + ( - 796 \beta_{3} - 47312) q^{86} + ( - 2740 \beta_{2} - 33264 \beta_1) q^{87} + ( - 8768 \beta_{2} + 1152 \beta_1) q^{88} + ( - 3472 \beta_{3} - 46310) q^{89} + ( - 3380 \beta_{3} + 21294) q^{91} + ( - 13776 \beta_{2} - 9408 \beta_1) q^{92} + ( - 20406 \beta_{2} - 98374 \beta_1) q^{93} + (3024 \beta_{3} - 25720) q^{94} + ( - 3072 \beta_{3} - 8192) q^{96} + ( - 9524 \beta_{2} - 37842 \beta_1) q^{97} + (20160 \beta_{2} - 18676 \beta_1) q^{98} + (8125 \beta_{3} - 93018) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} - 128 q^{6} + 212 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 64 q^{4} - 128 q^{6} + 212 q^{9} - 72 q^{11} + 2016 q^{14} + 1024 q^{16} + 2184 q^{19} + 672 q^{21} + 2048 q^{24} - 2704 q^{26} + 9744 q^{29} - 4520 q^{31} + 19040 q^{34} - 3392 q^{36} - 5408 q^{39} - 18440 q^{41} + 1152 q^{44} - 9408 q^{46} - 18676 q^{49} + 90832 q^{51} - 5632 q^{54} - 32256 q^{56} - 180808 q^{59} - 138000 q^{61} - 16384 q^{64} - 89760 q^{66} - 163464 q^{69} - 57336 q^{71} + 142080 q^{74} - 34944 q^{76} - 168128 q^{79} - 44420 q^{81} - 10752 q^{84} - 189248 q^{86} - 185240 q^{89} + 85176 q^{91} - 102880 q^{94} - 32768 q^{96} - 372072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 7\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 7\nu ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -7\beta_{3} + 7\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
1.87083 1.87083i
−1.87083 + 1.87083i
−1.87083 1.87083i
1.87083 + 1.87083i
4.00000i 19.2250i −16.0000 0 −76.8999 51.1669i 64.0000i −126.600 0
599.2 4.00000i 3.22497i −16.0000 0 12.8999 200.833i 64.0000i 232.600 0
599.3 4.00000i 3.22497i −16.0000 0 12.8999 200.833i 64.0000i 232.600 0
599.4 4.00000i 19.2250i −16.0000 0 −76.8999 51.1669i 64.0000i −126.600 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.c 4
5.b even 2 1 inner 650.6.b.c 4
5.c odd 4 1 130.6.a.e 2
5.c odd 4 1 650.6.a.c 2
20.e even 4 1 1040.6.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.6.a.e 2 5.c odd 4 1
650.6.a.c 2 5.c odd 4 1
650.6.b.c 4 1.a even 1 1 trivial
650.6.b.c 4 5.b even 2 1 inner
1040.6.a.h 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 380T_{3}^{2} + 3844 \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 380T^{2} + 3844 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 42952 T^{2} + 105596176 \) Copy content Toggle raw display
$11$ \( (T^{2} + 36 T - 262442)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 28561)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 1278491536 \) Copy content Toggle raw display
$19$ \( (T^{2} - 1092 T + 274582)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 100656072562500 \) Copy content Toggle raw display
$29$ \( (T^{2} - 4872 T - 16151408)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2260 T - 62060906)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 35\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( (T^{2} + 9220 T - 39901300)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 706121140243600 \) Copy content Toggle raw display
$59$ \( (T^{2} + 90404 T + 2019524390)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 69000 T + 1095318576)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 95\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( (T^{2} + 28668 T - 275783210)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{2} + 84064 T - 2016220792)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} + 92620 T + 1975849124)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
show more
show less