Properties

Label 650.6.b.a
Level $650$
Weight $6$
Character orbit 650.b
Analytic conductor $104.249$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(599,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.599");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{2} - 16 q^{4} + 170 i q^{7} - 64 i q^{8} + 243 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 4 i q^{2} - 16 q^{4} + 170 i q^{7} - 64 i q^{8} + 243 q^{9} - 250 q^{11} - 169 i q^{13} - 680 q^{14} + 256 q^{16} - 1062 i q^{17} + 972 i q^{18} + 78 q^{19} - 1000 i q^{22} + 1576 i q^{23} + 676 q^{26} - 2720 i q^{28} - 2578 q^{29} - 8654 q^{31} + 1024 i q^{32} + 4248 q^{34} - 3888 q^{36} - 10986 i q^{37} + 312 i q^{38} + 1050 q^{41} - 5900 i q^{43} + 4000 q^{44} - 6304 q^{46} + 5962 i q^{47} - 12093 q^{49} + 2704 i q^{52} + 29046 i q^{53} + 10880 q^{56} - 10312 i q^{58} + 13922 q^{59} - 32882 q^{61} - 34616 i q^{62} + 41310 i q^{63} - 4096 q^{64} + 69566 i q^{67} + 16992 i q^{68} - 50542 q^{71} - 15552 i q^{72} - 46750 i q^{73} + 43944 q^{74} - 1248 q^{76} - 42500 i q^{77} + 19348 q^{79} + 59049 q^{81} + 4200 i q^{82} - 87438 i q^{83} + 23600 q^{86} + 16000 i q^{88} - 94170 q^{89} + 28730 q^{91} - 25216 i q^{92} - 23848 q^{94} - 182786 i q^{97} - 48372 i q^{98} - 60750 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 486 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} + 486 q^{9} - 500 q^{11} - 1360 q^{14} + 512 q^{16} + 156 q^{19} + 1352 q^{26} - 5156 q^{29} - 17308 q^{31} + 8496 q^{34} - 7776 q^{36} + 2100 q^{41} + 8000 q^{44} - 12608 q^{46} - 24186 q^{49} + 21760 q^{56} + 27844 q^{59} - 65764 q^{61} - 8192 q^{64} - 101084 q^{71} + 87888 q^{74} - 2496 q^{76} + 38696 q^{79} + 118098 q^{81} + 47200 q^{86} - 188340 q^{89} + 57460 q^{91} - 47696 q^{94} - 121500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
1.00000i
1.00000i
4.00000i 0 −16.0000 0 0 170.000i 64.0000i 243.000 0
599.2 4.00000i 0 −16.0000 0 0 170.000i 64.0000i 243.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.6.b.a 2
5.b even 2 1 inner 650.6.b.a 2
5.c odd 4 1 26.6.a.a 1
5.c odd 4 1 650.6.a.a 1
15.e even 4 1 234.6.a.g 1
20.e even 4 1 208.6.a.b 1
40.i odd 4 1 832.6.a.d 1
40.k even 4 1 832.6.a.e 1
65.f even 4 1 338.6.b.a 2
65.h odd 4 1 338.6.a.d 1
65.k even 4 1 338.6.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.a 1 5.c odd 4 1
208.6.a.b 1 20.e even 4 1
234.6.a.g 1 15.e even 4 1
338.6.a.d 1 65.h odd 4 1
338.6.b.a 2 65.f even 4 1
338.6.b.a 2 65.k even 4 1
650.6.a.a 1 5.c odd 4 1
650.6.b.a 2 1.a even 1 1 trivial
650.6.b.a 2 5.b even 2 1 inner
832.6.a.d 1 40.i odd 4 1
832.6.a.e 1 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{6}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 28900 \) Copy content Toggle raw display
$11$ \( (T + 250)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 28561 \) Copy content Toggle raw display
$17$ \( T^{2} + 1127844 \) Copy content Toggle raw display
$19$ \( (T - 78)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2483776 \) Copy content Toggle raw display
$29$ \( (T + 2578)^{2} \) Copy content Toggle raw display
$31$ \( (T + 8654)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 120692196 \) Copy content Toggle raw display
$41$ \( (T - 1050)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 34810000 \) Copy content Toggle raw display
$47$ \( T^{2} + 35545444 \) Copy content Toggle raw display
$53$ \( T^{2} + 843670116 \) Copy content Toggle raw display
$59$ \( (T - 13922)^{2} \) Copy content Toggle raw display
$61$ \( (T + 32882)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4839428356 \) Copy content Toggle raw display
$71$ \( (T + 50542)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2185562500 \) Copy content Toggle raw display
$79$ \( (T - 19348)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 7645403844 \) Copy content Toggle raw display
$89$ \( (T + 94170)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 33410721796 \) Copy content Toggle raw display
show more
show less