Properties

Label 650.6.a.p.1.2
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 270934971 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,6,Mod(1,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,20,-9,80,0,-36,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 601x^{3} + 1405x^{2} + 36840x - 60300 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.92606\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -9.92606 q^{3} +16.0000 q^{4} -39.7042 q^{6} -124.276 q^{7} +64.0000 q^{8} -144.473 q^{9} +120.384 q^{11} -158.817 q^{12} -169.000 q^{13} -497.102 q^{14} +256.000 q^{16} +1234.94 q^{17} -577.893 q^{18} +2711.16 q^{19} +1233.57 q^{21} +481.535 q^{22} +1573.59 q^{23} -635.268 q^{24} -676.000 q^{26} +3846.08 q^{27} -1988.41 q^{28} -184.523 q^{29} -51.4763 q^{31} +1024.00 q^{32} -1194.94 q^{33} +4939.77 q^{34} -2311.57 q^{36} -12051.0 q^{37} +10844.6 q^{38} +1677.50 q^{39} -4439.57 q^{41} +4934.27 q^{42} -13909.2 q^{43} +1926.14 q^{44} +6294.35 q^{46} -27970.2 q^{47} -2541.07 q^{48} -1362.59 q^{49} -12258.1 q^{51} -2704.00 q^{52} +24170.2 q^{53} +15384.3 q^{54} -7953.64 q^{56} -26911.1 q^{57} -738.091 q^{58} -38786.4 q^{59} +53666.6 q^{61} -205.905 q^{62} +17954.5 q^{63} +4096.00 q^{64} -4779.75 q^{66} -10772.8 q^{67} +19759.1 q^{68} -15619.5 q^{69} +6297.35 q^{71} -9246.29 q^{72} +4254.45 q^{73} -48204.1 q^{74} +43378.5 q^{76} -14960.8 q^{77} +6710.02 q^{78} -49474.9 q^{79} -3069.45 q^{81} -17758.3 q^{82} -100785. q^{83} +19737.1 q^{84} -55636.8 q^{86} +1831.58 q^{87} +7704.56 q^{88} +55060.2 q^{89} +21002.6 q^{91} +25177.4 q^{92} +510.957 q^{93} -111881. q^{94} -10164.3 q^{96} -177285. q^{97} -5450.34 q^{98} -17392.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 20 q^{2} - 9 q^{3} + 80 q^{4} - 36 q^{6} + 42 q^{7} + 320 q^{8} + 4 q^{9} - 213 q^{11} - 144 q^{12} - 845 q^{13} + 168 q^{14} + 1280 q^{16} - 601 q^{17} + 16 q^{18} - 567 q^{19} - 3700 q^{21} - 852 q^{22}+ \cdots - 440284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −9.92606 −0.636757 −0.318379 0.947964i \(-0.603138\pi\)
−0.318379 + 0.947964i \(0.603138\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −39.7042 −0.450255
\(7\) −124.276 −0.958607 −0.479304 0.877649i \(-0.659111\pi\)
−0.479304 + 0.877649i \(0.659111\pi\)
\(8\) 64.0000 0.353553
\(9\) −144.473 −0.594540
\(10\) 0 0
\(11\) 120.384 0.299976 0.149988 0.988688i \(-0.452077\pi\)
0.149988 + 0.988688i \(0.452077\pi\)
\(12\) −158.817 −0.318379
\(13\) −169.000 −0.277350
\(14\) −497.102 −0.677838
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1234.94 1.03639 0.518197 0.855262i \(-0.326604\pi\)
0.518197 + 0.855262i \(0.326604\pi\)
\(18\) −577.893 −0.420404
\(19\) 2711.16 1.72294 0.861471 0.507807i \(-0.169544\pi\)
0.861471 + 0.507807i \(0.169544\pi\)
\(20\) 0 0
\(21\) 1233.57 0.610400
\(22\) 481.535 0.212115
\(23\) 1573.59 0.620257 0.310128 0.950695i \(-0.399628\pi\)
0.310128 + 0.950695i \(0.399628\pi\)
\(24\) −635.268 −0.225128
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) 3846.08 1.01533
\(28\) −1988.41 −0.479304
\(29\) −184.523 −0.0407432 −0.0203716 0.999792i \(-0.506485\pi\)
−0.0203716 + 0.999792i \(0.506485\pi\)
\(30\) 0 0
\(31\) −51.4763 −0.00962062 −0.00481031 0.999988i \(-0.501531\pi\)
−0.00481031 + 0.999988i \(0.501531\pi\)
\(32\) 1024.00 0.176777
\(33\) −1194.94 −0.191012
\(34\) 4939.77 0.732841
\(35\) 0 0
\(36\) −2311.57 −0.297270
\(37\) −12051.0 −1.44717 −0.723585 0.690236i \(-0.757507\pi\)
−0.723585 + 0.690236i \(0.757507\pi\)
\(38\) 10844.6 1.21830
\(39\) 1677.50 0.176605
\(40\) 0 0
\(41\) −4439.57 −0.412459 −0.206230 0.978504i \(-0.566119\pi\)
−0.206230 + 0.978504i \(0.566119\pi\)
\(42\) 4934.27 0.431618
\(43\) −13909.2 −1.14718 −0.573590 0.819143i \(-0.694450\pi\)
−0.573590 + 0.819143i \(0.694450\pi\)
\(44\) 1926.14 0.149988
\(45\) 0 0
\(46\) 6294.35 0.438588
\(47\) −27970.2 −1.84693 −0.923465 0.383683i \(-0.874655\pi\)
−0.923465 + 0.383683i \(0.874655\pi\)
\(48\) −2541.07 −0.159189
\(49\) −1362.59 −0.0810725
\(50\) 0 0
\(51\) −12258.1 −0.659931
\(52\) −2704.00 −0.138675
\(53\) 24170.2 1.18193 0.590963 0.806699i \(-0.298748\pi\)
0.590963 + 0.806699i \(0.298748\pi\)
\(54\) 15384.3 0.717950
\(55\) 0 0
\(56\) −7953.64 −0.338919
\(57\) −26911.1 −1.09710
\(58\) −738.091 −0.0288098
\(59\) −38786.4 −1.45060 −0.725302 0.688430i \(-0.758300\pi\)
−0.725302 + 0.688430i \(0.758300\pi\)
\(60\) 0 0
\(61\) 53666.6 1.84663 0.923314 0.384045i \(-0.125469\pi\)
0.923314 + 0.384045i \(0.125469\pi\)
\(62\) −205.905 −0.00680281
\(63\) 17954.5 0.569931
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −4779.75 −0.135066
\(67\) −10772.8 −0.293184 −0.146592 0.989197i \(-0.546830\pi\)
−0.146592 + 0.989197i \(0.546830\pi\)
\(68\) 19759.1 0.518197
\(69\) −15619.5 −0.394953
\(70\) 0 0
\(71\) 6297.35 0.148256 0.0741280 0.997249i \(-0.476383\pi\)
0.0741280 + 0.997249i \(0.476383\pi\)
\(72\) −9246.29 −0.210202
\(73\) 4254.45 0.0934407 0.0467204 0.998908i \(-0.485123\pi\)
0.0467204 + 0.998908i \(0.485123\pi\)
\(74\) −48204.1 −1.02330
\(75\) 0 0
\(76\) 43378.5 0.861471
\(77\) −14960.8 −0.287559
\(78\) 6710.02 0.124878
\(79\) −49474.9 −0.891901 −0.445951 0.895058i \(-0.647134\pi\)
−0.445951 + 0.895058i \(0.647134\pi\)
\(80\) 0 0
\(81\) −3069.45 −0.0519814
\(82\) −17758.3 −0.291653
\(83\) −100785. −1.60584 −0.802918 0.596089i \(-0.796721\pi\)
−0.802918 + 0.596089i \(0.796721\pi\)
\(84\) 19737.1 0.305200
\(85\) 0 0
\(86\) −55636.8 −0.811178
\(87\) 1831.58 0.0259435
\(88\) 7704.56 0.106057
\(89\) 55060.2 0.736823 0.368411 0.929663i \(-0.379902\pi\)
0.368411 + 0.929663i \(0.379902\pi\)
\(90\) 0 0
\(91\) 21002.6 0.265870
\(92\) 25177.4 0.310128
\(93\) 510.957 0.00612600
\(94\) −111881. −1.30598
\(95\) 0 0
\(96\) −10164.3 −0.112564
\(97\) −177285. −1.91312 −0.956559 0.291538i \(-0.905833\pi\)
−0.956559 + 0.291538i \(0.905833\pi\)
\(98\) −5450.34 −0.0573269
\(99\) −17392.2 −0.178348
\(100\) 0 0
\(101\) 2837.71 0.0276799 0.0138399 0.999904i \(-0.495594\pi\)
0.0138399 + 0.999904i \(0.495594\pi\)
\(102\) −49032.5 −0.466642
\(103\) −26102.5 −0.242431 −0.121216 0.992626i \(-0.538679\pi\)
−0.121216 + 0.992626i \(0.538679\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) 96680.7 0.835748
\(107\) 23317.1 0.196886 0.0984429 0.995143i \(-0.468614\pi\)
0.0984429 + 0.995143i \(0.468614\pi\)
\(108\) 61537.3 0.507667
\(109\) −107035. −0.862902 −0.431451 0.902136i \(-0.641998\pi\)
−0.431451 + 0.902136i \(0.641998\pi\)
\(110\) 0 0
\(111\) 119619. 0.921496
\(112\) −31814.5 −0.239652
\(113\) 131107. 0.965898 0.482949 0.875649i \(-0.339566\pi\)
0.482949 + 0.875649i \(0.339566\pi\)
\(114\) −107644. −0.775763
\(115\) 0 0
\(116\) −2952.36 −0.0203716
\(117\) 24416.0 0.164896
\(118\) −155145. −1.02573
\(119\) −153473. −0.993494
\(120\) 0 0
\(121\) −146559. −0.910015
\(122\) 214666. 1.30576
\(123\) 44067.4 0.262636
\(124\) −823.621 −0.00481031
\(125\) 0 0
\(126\) 71818.0 0.403002
\(127\) 311667. 1.71467 0.857336 0.514757i \(-0.172118\pi\)
0.857336 + 0.514757i \(0.172118\pi\)
\(128\) 16384.0 0.0883883
\(129\) 138064. 0.730474
\(130\) 0 0
\(131\) −230646. −1.17427 −0.587134 0.809490i \(-0.699744\pi\)
−0.587134 + 0.809490i \(0.699744\pi\)
\(132\) −19119.0 −0.0955059
\(133\) −336930. −1.65162
\(134\) −43091.1 −0.207313
\(135\) 0 0
\(136\) 79036.3 0.366420
\(137\) −233169. −1.06138 −0.530689 0.847567i \(-0.678067\pi\)
−0.530689 + 0.847567i \(0.678067\pi\)
\(138\) −62478.1 −0.279274
\(139\) −30074.1 −0.132025 −0.0660125 0.997819i \(-0.521028\pi\)
−0.0660125 + 0.997819i \(0.521028\pi\)
\(140\) 0 0
\(141\) 277634. 1.17605
\(142\) 25189.4 0.104833
\(143\) −20344.9 −0.0831983
\(144\) −36985.2 −0.148635
\(145\) 0 0
\(146\) 17017.8 0.0660726
\(147\) 13525.1 0.0516235
\(148\) −192816. −0.723585
\(149\) 19221.5 0.0709288 0.0354644 0.999371i \(-0.488709\pi\)
0.0354644 + 0.999371i \(0.488709\pi\)
\(150\) 0 0
\(151\) 342311. 1.22174 0.610869 0.791732i \(-0.290820\pi\)
0.610869 + 0.791732i \(0.290820\pi\)
\(152\) 173514. 0.609152
\(153\) −178416. −0.616178
\(154\) −59843.0 −0.203335
\(155\) 0 0
\(156\) 26840.1 0.0883023
\(157\) −549352. −1.77869 −0.889347 0.457233i \(-0.848841\pi\)
−0.889347 + 0.457233i \(0.848841\pi\)
\(158\) −197899. −0.630670
\(159\) −239915. −0.752600
\(160\) 0 0
\(161\) −195559. −0.594582
\(162\) −12277.8 −0.0367564
\(163\) 280982. 0.828342 0.414171 0.910199i \(-0.364072\pi\)
0.414171 + 0.910199i \(0.364072\pi\)
\(164\) −71033.1 −0.206230
\(165\) 0 0
\(166\) −403141. −1.13550
\(167\) −652406. −1.81020 −0.905101 0.425197i \(-0.860205\pi\)
−0.905101 + 0.425197i \(0.860205\pi\)
\(168\) 78948.3 0.215809
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −391690. −1.02436
\(172\) −222547. −0.573590
\(173\) −474856. −1.20628 −0.603139 0.797636i \(-0.706083\pi\)
−0.603139 + 0.797636i \(0.706083\pi\)
\(174\) 7326.33 0.0183448
\(175\) 0 0
\(176\) 30818.2 0.0749939
\(177\) 384996. 0.923683
\(178\) 220241. 0.521012
\(179\) −274864. −0.641189 −0.320594 0.947217i \(-0.603883\pi\)
−0.320594 + 0.947217i \(0.603883\pi\)
\(180\) 0 0
\(181\) 483212. 1.09633 0.548165 0.836370i \(-0.315326\pi\)
0.548165 + 0.836370i \(0.315326\pi\)
\(182\) 84010.3 0.187998
\(183\) −532698. −1.17585
\(184\) 100710. 0.219294
\(185\) 0 0
\(186\) 2043.83 0.00433174
\(187\) 148667. 0.310893
\(188\) −447523. −0.923465
\(189\) −477974. −0.973307
\(190\) 0 0
\(191\) 517802. 1.02702 0.513511 0.858083i \(-0.328344\pi\)
0.513511 + 0.858083i \(0.328344\pi\)
\(192\) −40657.1 −0.0795946
\(193\) −294358. −0.568830 −0.284415 0.958701i \(-0.591799\pi\)
−0.284415 + 0.958701i \(0.591799\pi\)
\(194\) −709139. −1.35278
\(195\) 0 0
\(196\) −21801.4 −0.0405362
\(197\) −124861. −0.229225 −0.114613 0.993410i \(-0.536563\pi\)
−0.114613 + 0.993410i \(0.536563\pi\)
\(198\) −69569.0 −0.126111
\(199\) −142136. −0.254433 −0.127216 0.991875i \(-0.540604\pi\)
−0.127216 + 0.991875i \(0.540604\pi\)
\(200\) 0 0
\(201\) 106931. 0.186687
\(202\) 11350.8 0.0195726
\(203\) 22931.7 0.0390567
\(204\) −196130. −0.329965
\(205\) 0 0
\(206\) −104410. −0.171425
\(207\) −227341. −0.368768
\(208\) −43264.0 −0.0693375
\(209\) 326379. 0.516841
\(210\) 0 0
\(211\) 313639. 0.484981 0.242490 0.970154i \(-0.422036\pi\)
0.242490 + 0.970154i \(0.422036\pi\)
\(212\) 386723. 0.590963
\(213\) −62507.9 −0.0944030
\(214\) 93268.3 0.139219
\(215\) 0 0
\(216\) 246149. 0.358975
\(217\) 6397.25 0.00922240
\(218\) −428142. −0.610164
\(219\) −42229.9 −0.0594991
\(220\) 0 0
\(221\) −208705. −0.287444
\(222\) 478477. 0.651596
\(223\) −692260. −0.932196 −0.466098 0.884733i \(-0.654341\pi\)
−0.466098 + 0.884733i \(0.654341\pi\)
\(224\) −127258. −0.169459
\(225\) 0 0
\(226\) 524430. 0.682993
\(227\) −308536. −0.397412 −0.198706 0.980059i \(-0.563674\pi\)
−0.198706 + 0.980059i \(0.563674\pi\)
\(228\) −430578. −0.548548
\(229\) −382705. −0.482254 −0.241127 0.970494i \(-0.577517\pi\)
−0.241127 + 0.970494i \(0.577517\pi\)
\(230\) 0 0
\(231\) 148501. 0.183105
\(232\) −11809.4 −0.0144049
\(233\) −893271. −1.07794 −0.538969 0.842326i \(-0.681186\pi\)
−0.538969 + 0.842326i \(0.681186\pi\)
\(234\) 97664.0 0.116599
\(235\) 0 0
\(236\) −620582. −0.725302
\(237\) 491091. 0.567925
\(238\) −613893. −0.702506
\(239\) 494660. 0.560160 0.280080 0.959977i \(-0.409639\pi\)
0.280080 + 0.959977i \(0.409639\pi\)
\(240\) 0 0
\(241\) 1.35585e6 1.50372 0.751861 0.659322i \(-0.229156\pi\)
0.751861 + 0.659322i \(0.229156\pi\)
\(242\) −586235. −0.643477
\(243\) −904131. −0.982235
\(244\) 858666. 0.923314
\(245\) 0 0
\(246\) 176270. 0.185712
\(247\) −458185. −0.477858
\(248\) −3294.48 −0.00340140
\(249\) 1.00040e6 1.02253
\(250\) 0 0
\(251\) 1.54382e6 1.54672 0.773362 0.633965i \(-0.218574\pi\)
0.773362 + 0.633965i \(0.218574\pi\)
\(252\) 287272. 0.284965
\(253\) 189434. 0.186062
\(254\) 1.24667e6 1.21246
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −538940. −0.508988 −0.254494 0.967074i \(-0.581909\pi\)
−0.254494 + 0.967074i \(0.581909\pi\)
\(258\) 552255. 0.516523
\(259\) 1.49765e6 1.38727
\(260\) 0 0
\(261\) 26658.6 0.0242235
\(262\) −922583. −0.830333
\(263\) −548461. −0.488941 −0.244471 0.969657i \(-0.578614\pi\)
−0.244471 + 0.969657i \(0.578614\pi\)
\(264\) −76475.9 −0.0675328
\(265\) 0 0
\(266\) −1.34772e6 −1.16787
\(267\) −546531. −0.469177
\(268\) −172364. −0.146592
\(269\) −1.67327e6 −1.40989 −0.704947 0.709260i \(-0.749029\pi\)
−0.704947 + 0.709260i \(0.749029\pi\)
\(270\) 0 0
\(271\) 150037. 0.124101 0.0620503 0.998073i \(-0.480236\pi\)
0.0620503 + 0.998073i \(0.480236\pi\)
\(272\) 316145. 0.259098
\(273\) −208473. −0.169294
\(274\) −932678. −0.750508
\(275\) 0 0
\(276\) −249913. −0.197476
\(277\) −1.59009e6 −1.24515 −0.622574 0.782561i \(-0.713913\pi\)
−0.622574 + 0.782561i \(0.713913\pi\)
\(278\) −120297. −0.0933558
\(279\) 7436.95 0.00571985
\(280\) 0 0
\(281\) 1.11166e6 0.839862 0.419931 0.907556i \(-0.362054\pi\)
0.419931 + 0.907556i \(0.362054\pi\)
\(282\) 1.11053e6 0.831590
\(283\) 960225. 0.712701 0.356350 0.934352i \(-0.384021\pi\)
0.356350 + 0.934352i \(0.384021\pi\)
\(284\) 100758. 0.0741280
\(285\) 0 0
\(286\) −81379.4 −0.0588301
\(287\) 551730. 0.395387
\(288\) −147941. −0.105101
\(289\) 105227. 0.0741110
\(290\) 0 0
\(291\) 1.75974e6 1.21819
\(292\) 68071.2 0.0467204
\(293\) −1.01821e6 −0.692898 −0.346449 0.938069i \(-0.612613\pi\)
−0.346449 + 0.938069i \(0.612613\pi\)
\(294\) 54100.4 0.0365033
\(295\) 0 0
\(296\) −771265. −0.511652
\(297\) 463006. 0.304576
\(298\) 76886.1 0.0501542
\(299\) −265936. −0.172028
\(300\) 0 0
\(301\) 1.72857e6 1.09969
\(302\) 1.36924e6 0.863899
\(303\) −28167.3 −0.0176254
\(304\) 694056. 0.430735
\(305\) 0 0
\(306\) −713665. −0.435703
\(307\) 3.27466e6 1.98299 0.991494 0.130152i \(-0.0415464\pi\)
0.991494 + 0.130152i \(0.0415464\pi\)
\(308\) −239372. −0.143779
\(309\) 259095. 0.154370
\(310\) 0 0
\(311\) 2.37790e6 1.39409 0.697047 0.717026i \(-0.254497\pi\)
0.697047 + 0.717026i \(0.254497\pi\)
\(312\) 107360. 0.0624392
\(313\) −424354. −0.244832 −0.122416 0.992479i \(-0.539064\pi\)
−0.122416 + 0.992479i \(0.539064\pi\)
\(314\) −2.19741e6 −1.25773
\(315\) 0 0
\(316\) −791598. −0.445951
\(317\) −2.30415e6 −1.28784 −0.643921 0.765092i \(-0.722694\pi\)
−0.643921 + 0.765092i \(0.722694\pi\)
\(318\) −959659. −0.532168
\(319\) −22213.5 −0.0122220
\(320\) 0 0
\(321\) −231447. −0.125368
\(322\) −782234. −0.420433
\(323\) 3.34812e6 1.78564
\(324\) −49111.2 −0.0259907
\(325\) 0 0
\(326\) 1.12393e6 0.585726
\(327\) 1.06244e6 0.549459
\(328\) −284132. −0.145826
\(329\) 3.47601e6 1.77048
\(330\) 0 0
\(331\) −2.03936e6 −1.02311 −0.511557 0.859250i \(-0.670931\pi\)
−0.511557 + 0.859250i \(0.670931\pi\)
\(332\) −1.61256e6 −0.802918
\(333\) 1.74105e6 0.860401
\(334\) −2.60962e6 −1.28001
\(335\) 0 0
\(336\) 315793. 0.152600
\(337\) −1.87281e6 −0.898293 −0.449147 0.893458i \(-0.648272\pi\)
−0.449147 + 0.893458i \(0.648272\pi\)
\(338\) 114244. 0.0543928
\(339\) −1.30138e6 −0.615042
\(340\) 0 0
\(341\) −6196.91 −0.00288595
\(342\) −1.56676e6 −0.724331
\(343\) 2.25804e6 1.03632
\(344\) −890189. −0.405589
\(345\) 0 0
\(346\) −1.89943e6 −0.852967
\(347\) 501716. 0.223684 0.111842 0.993726i \(-0.464325\pi\)
0.111842 + 0.993726i \(0.464325\pi\)
\(348\) 29305.3 0.0129717
\(349\) −1.52260e6 −0.669147 −0.334573 0.942370i \(-0.608592\pi\)
−0.334573 + 0.942370i \(0.608592\pi\)
\(350\) 0 0
\(351\) −649988. −0.281603
\(352\) 123273. 0.0530287
\(353\) 1.87049e6 0.798949 0.399475 0.916744i \(-0.369193\pi\)
0.399475 + 0.916744i \(0.369193\pi\)
\(354\) 1.53998e6 0.653142
\(355\) 0 0
\(356\) 880964. 0.368411
\(357\) 1.52338e6 0.632614
\(358\) −1.09946e6 −0.453389
\(359\) −1.70160e6 −0.696820 −0.348410 0.937342i \(-0.613278\pi\)
−0.348410 + 0.937342i \(0.613278\pi\)
\(360\) 0 0
\(361\) 4.87427e6 1.96853
\(362\) 1.93285e6 0.775223
\(363\) 1.45475e6 0.579458
\(364\) 336041. 0.132935
\(365\) 0 0
\(366\) −2.13079e6 −0.831454
\(367\) −314731. −0.121976 −0.0609880 0.998139i \(-0.519425\pi\)
−0.0609880 + 0.998139i \(0.519425\pi\)
\(368\) 402839. 0.155064
\(369\) 641399. 0.245224
\(370\) 0 0
\(371\) −3.00376e6 −1.13300
\(372\) 8175.31 0.00306300
\(373\) 2.16445e6 0.805519 0.402759 0.915306i \(-0.368051\pi\)
0.402759 + 0.915306i \(0.368051\pi\)
\(374\) 594668. 0.219834
\(375\) 0 0
\(376\) −1.79009e6 −0.652988
\(377\) 31184.3 0.0113001
\(378\) −1.91190e6 −0.688232
\(379\) 1.67898e6 0.600410 0.300205 0.953875i \(-0.402945\pi\)
0.300205 + 0.953875i \(0.402945\pi\)
\(380\) 0 0
\(381\) −3.09362e6 −1.09183
\(382\) 2.07121e6 0.726215
\(383\) −2.42699e6 −0.845417 −0.422709 0.906266i \(-0.638921\pi\)
−0.422709 + 0.906266i \(0.638921\pi\)
\(384\) −162629. −0.0562819
\(385\) 0 0
\(386\) −1.17743e6 −0.402224
\(387\) 2.00951e6 0.682044
\(388\) −2.83656e6 −0.956559
\(389\) −3.41549e6 −1.14440 −0.572202 0.820113i \(-0.693911\pi\)
−0.572202 + 0.820113i \(0.693911\pi\)
\(390\) 0 0
\(391\) 1.94329e6 0.642830
\(392\) −87205.5 −0.0286635
\(393\) 2.28940e6 0.747724
\(394\) −499445. −0.162087
\(395\) 0 0
\(396\) −278276. −0.0891739
\(397\) −3.57792e6 −1.13934 −0.569672 0.821872i \(-0.692930\pi\)
−0.569672 + 0.821872i \(0.692930\pi\)
\(398\) −568546. −0.179911
\(399\) 3.34439e6 1.05168
\(400\) 0 0
\(401\) −4.70140e6 −1.46004 −0.730022 0.683423i \(-0.760490\pi\)
−0.730022 + 0.683423i \(0.760490\pi\)
\(402\) 427725. 0.132008
\(403\) 8699.50 0.00266828
\(404\) 45403.3 0.0138399
\(405\) 0 0
\(406\) 91726.6 0.0276172
\(407\) −1.45075e6 −0.434116
\(408\) −784520. −0.233321
\(409\) −4.96552e6 −1.46776 −0.733882 0.679277i \(-0.762293\pi\)
−0.733882 + 0.679277i \(0.762293\pi\)
\(410\) 0 0
\(411\) 2.31445e6 0.675840
\(412\) −417640. −0.121216
\(413\) 4.82020e6 1.39056
\(414\) −909366. −0.260758
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) 298518. 0.0840679
\(418\) 1.30552e6 0.365462
\(419\) −2.71480e6 −0.755445 −0.377723 0.925919i \(-0.623293\pi\)
−0.377723 + 0.925919i \(0.623293\pi\)
\(420\) 0 0
\(421\) 883315. 0.242890 0.121445 0.992598i \(-0.461247\pi\)
0.121445 + 0.992598i \(0.461247\pi\)
\(422\) 1.25456e6 0.342933
\(423\) 4.04094e6 1.09807
\(424\) 1.54689e6 0.417874
\(425\) 0 0
\(426\) −250032. −0.0667530
\(427\) −6.66945e6 −1.77019
\(428\) 373073. 0.0984429
\(429\) 201944. 0.0529771
\(430\) 0 0
\(431\) −5.47099e6 −1.41864 −0.709321 0.704886i \(-0.750998\pi\)
−0.709321 + 0.704886i \(0.750998\pi\)
\(432\) 984597. 0.253834
\(433\) −5.10026e6 −1.30729 −0.653646 0.756801i \(-0.726761\pi\)
−0.653646 + 0.756801i \(0.726761\pi\)
\(434\) 25589.0 0.00652122
\(435\) 0 0
\(436\) −1.71257e6 −0.431451
\(437\) 4.26624e6 1.06867
\(438\) −168920. −0.0420722
\(439\) 4.45494e6 1.10327 0.551633 0.834087i \(-0.314005\pi\)
0.551633 + 0.834087i \(0.314005\pi\)
\(440\) 0 0
\(441\) 196857. 0.0482009
\(442\) −834821. −0.203253
\(443\) 938918. 0.227310 0.113655 0.993520i \(-0.463744\pi\)
0.113655 + 0.993520i \(0.463744\pi\)
\(444\) 1.91391e6 0.460748
\(445\) 0 0
\(446\) −2.76904e6 −0.659162
\(447\) −190794. −0.0451644
\(448\) −509033. −0.119826
\(449\) 4.55776e6 1.06693 0.533464 0.845823i \(-0.320890\pi\)
0.533464 + 0.845823i \(0.320890\pi\)
\(450\) 0 0
\(451\) −534452. −0.123728
\(452\) 2.09772e6 0.482949
\(453\) −3.39780e6 −0.777950
\(454\) −1.23414e6 −0.281013
\(455\) 0 0
\(456\) −1.72231e6 −0.387882
\(457\) 294965. 0.0660662 0.0330331 0.999454i \(-0.489483\pi\)
0.0330331 + 0.999454i \(0.489483\pi\)
\(458\) −1.53082e6 −0.341005
\(459\) 4.74969e6 1.05229
\(460\) 0 0
\(461\) −3.53147e6 −0.773933 −0.386966 0.922094i \(-0.626477\pi\)
−0.386966 + 0.922094i \(0.626477\pi\)
\(462\) 594006. 0.129475
\(463\) 6.20665e6 1.34556 0.672782 0.739841i \(-0.265099\pi\)
0.672782 + 0.739841i \(0.265099\pi\)
\(464\) −47237.8 −0.0101858
\(465\) 0 0
\(466\) −3.57308e6 −0.762217
\(467\) 3.68433e6 0.781746 0.390873 0.920445i \(-0.372173\pi\)
0.390873 + 0.920445i \(0.372173\pi\)
\(468\) 390656. 0.0824479
\(469\) 1.33879e6 0.281048
\(470\) 0 0
\(471\) 5.45290e6 1.13260
\(472\) −2.48233e6 −0.512866
\(473\) −1.67444e6 −0.344126
\(474\) 1.96436e6 0.401583
\(475\) 0 0
\(476\) −2.45557e6 −0.496747
\(477\) −3.49195e6 −0.702703
\(478\) 1.97864e6 0.396093
\(479\) 3.55198e6 0.707347 0.353673 0.935369i \(-0.384932\pi\)
0.353673 + 0.935369i \(0.384932\pi\)
\(480\) 0 0
\(481\) 2.03662e6 0.401373
\(482\) 5.42338e6 1.06329
\(483\) 1.94113e6 0.378605
\(484\) −2.34494e6 −0.455007
\(485\) 0 0
\(486\) −3.61652e6 −0.694545
\(487\) −2.39824e6 −0.458217 −0.229108 0.973401i \(-0.573581\pi\)
−0.229108 + 0.973401i \(0.573581\pi\)
\(488\) 3.43466e6 0.652882
\(489\) −2.78904e6 −0.527452
\(490\) 0 0
\(491\) −7.64714e6 −1.43151 −0.715757 0.698350i \(-0.753918\pi\)
−0.715757 + 0.698350i \(0.753918\pi\)
\(492\) 705079. 0.131318
\(493\) −227875. −0.0422259
\(494\) −1.83274e6 −0.337897
\(495\) 0 0
\(496\) −13177.9 −0.00240516
\(497\) −782607. −0.142119
\(498\) 4.00160e6 0.723036
\(499\) −1.00417e6 −0.180533 −0.0902666 0.995918i \(-0.528772\pi\)
−0.0902666 + 0.995918i \(0.528772\pi\)
\(500\) 0 0
\(501\) 6.47582e6 1.15266
\(502\) 6.17528e6 1.09370
\(503\) 6.21382e6 1.09506 0.547531 0.836785i \(-0.315568\pi\)
0.547531 + 0.836785i \(0.315568\pi\)
\(504\) 1.14909e6 0.201501
\(505\) 0 0
\(506\) 757738. 0.131566
\(507\) −283498. −0.0489813
\(508\) 4.98667e6 0.857336
\(509\) 6.93843e6 1.18704 0.593522 0.804818i \(-0.297737\pi\)
0.593522 + 0.804818i \(0.297737\pi\)
\(510\) 0 0
\(511\) −528724. −0.0895729
\(512\) 262144. 0.0441942
\(513\) 1.04273e7 1.74936
\(514\) −2.15576e6 −0.359909
\(515\) 0 0
\(516\) 2.20902e6 0.365237
\(517\) −3.36715e6 −0.554034
\(518\) 5.99059e6 0.980946
\(519\) 4.71345e6 0.768106
\(520\) 0 0
\(521\) −3.32358e6 −0.536428 −0.268214 0.963359i \(-0.586433\pi\)
−0.268214 + 0.963359i \(0.586433\pi\)
\(522\) 106634. 0.0171286
\(523\) 5.25138e6 0.839497 0.419748 0.907641i \(-0.362118\pi\)
0.419748 + 0.907641i \(0.362118\pi\)
\(524\) −3.69033e6 −0.587134
\(525\) 0 0
\(526\) −2.19384e6 −0.345734
\(527\) −63570.3 −0.00997075
\(528\) −305904. −0.0477529
\(529\) −3.96016e6 −0.615282
\(530\) 0 0
\(531\) 5.60359e6 0.862443
\(532\) −5.39089e6 −0.825812
\(533\) 750287. 0.114396
\(534\) −2.18612e6 −0.331758
\(535\) 0 0
\(536\) −689458. −0.103656
\(537\) 2.72832e6 0.408282
\(538\) −6.69310e6 −0.996946
\(539\) −164033. −0.0243198
\(540\) 0 0
\(541\) −8.53307e6 −1.25346 −0.626732 0.779234i \(-0.715608\pi\)
−0.626732 + 0.779234i \(0.715608\pi\)
\(542\) 600146. 0.0877524
\(543\) −4.79640e6 −0.698096
\(544\) 1.26458e6 0.183210
\(545\) 0 0
\(546\) −833891. −0.119709
\(547\) 550812. 0.0787109 0.0393554 0.999225i \(-0.487470\pi\)
0.0393554 + 0.999225i \(0.487470\pi\)
\(548\) −3.73071e6 −0.530689
\(549\) −7.75339e6 −1.09790
\(550\) 0 0
\(551\) −500270. −0.0701981
\(552\) −999650. −0.139637
\(553\) 6.14852e6 0.854983
\(554\) −6.36034e6 −0.880453
\(555\) 0 0
\(556\) −481186. −0.0660125
\(557\) 4.49923e6 0.614470 0.307235 0.951634i \(-0.400596\pi\)
0.307235 + 0.951634i \(0.400596\pi\)
\(558\) 29747.8 0.00404454
\(559\) 2.35066e6 0.318170
\(560\) 0 0
\(561\) −1.47568e6 −0.197963
\(562\) 4.44666e6 0.593872
\(563\) 4.45441e6 0.592269 0.296134 0.955146i \(-0.404302\pi\)
0.296134 + 0.955146i \(0.404302\pi\)
\(564\) 4.44214e6 0.588023
\(565\) 0 0
\(566\) 3.84090e6 0.503955
\(567\) 381458. 0.0498298
\(568\) 403031. 0.0524164
\(569\) 1.11716e7 1.44655 0.723274 0.690561i \(-0.242636\pi\)
0.723274 + 0.690561i \(0.242636\pi\)
\(570\) 0 0
\(571\) −165900. −0.0212939 −0.0106469 0.999943i \(-0.503389\pi\)
−0.0106469 + 0.999943i \(0.503389\pi\)
\(572\) −325518. −0.0415992
\(573\) −5.13973e6 −0.653964
\(574\) 2.20692e6 0.279581
\(575\) 0 0
\(576\) −591763. −0.0743175
\(577\) 1.14786e7 1.43532 0.717659 0.696394i \(-0.245213\pi\)
0.717659 + 0.696394i \(0.245213\pi\)
\(578\) 420908. 0.0524044
\(579\) 2.92182e6 0.362207
\(580\) 0 0
\(581\) 1.25251e7 1.53937
\(582\) 7.03896e6 0.861392
\(583\) 2.90970e6 0.354549
\(584\) 272285. 0.0330363
\(585\) 0 0
\(586\) −4.07285e6 −0.489953
\(587\) −1.47023e7 −1.76113 −0.880563 0.473930i \(-0.842835\pi\)
−0.880563 + 0.473930i \(0.842835\pi\)
\(588\) 216402. 0.0258117
\(589\) −139560. −0.0165758
\(590\) 0 0
\(591\) 1.23938e6 0.145961
\(592\) −3.08506e6 −0.361792
\(593\) 3.89089e6 0.454373 0.227186 0.973851i \(-0.427047\pi\)
0.227186 + 0.973851i \(0.427047\pi\)
\(594\) 1.85202e6 0.215368
\(595\) 0 0
\(596\) 307545. 0.0354644
\(597\) 1.41086e6 0.162012
\(598\) −1.06375e6 −0.121642
\(599\) 4.56164e6 0.519462 0.259731 0.965681i \(-0.416366\pi\)
0.259731 + 0.965681i \(0.416366\pi\)
\(600\) 0 0
\(601\) −2.07826e6 −0.234700 −0.117350 0.993091i \(-0.537440\pi\)
−0.117350 + 0.993091i \(0.537440\pi\)
\(602\) 6.91430e6 0.777601
\(603\) 1.55638e6 0.174310
\(604\) 5.47697e6 0.610869
\(605\) 0 0
\(606\) −112669. −0.0124630
\(607\) −4.20281e6 −0.462986 −0.231493 0.972837i \(-0.574361\pi\)
−0.231493 + 0.972837i \(0.574361\pi\)
\(608\) 2.77622e6 0.304576
\(609\) −227621. −0.0248696
\(610\) 0 0
\(611\) 4.72696e6 0.512246
\(612\) −2.85466e6 −0.308089
\(613\) −5.73233e6 −0.616141 −0.308071 0.951363i \(-0.599683\pi\)
−0.308071 + 0.951363i \(0.599683\pi\)
\(614\) 1.30986e7 1.40218
\(615\) 0 0
\(616\) −957489. −0.101667
\(617\) −7.42348e6 −0.785046 −0.392523 0.919742i \(-0.628398\pi\)
−0.392523 + 0.919742i \(0.628398\pi\)
\(618\) 1.03638e6 0.109156
\(619\) 1.60192e7 1.68041 0.840203 0.542271i \(-0.182436\pi\)
0.840203 + 0.542271i \(0.182436\pi\)
\(620\) 0 0
\(621\) 6.05215e6 0.629768
\(622\) 9.51158e6 0.985773
\(623\) −6.84264e6 −0.706323
\(624\) 429441. 0.0441512
\(625\) 0 0
\(626\) −1.69742e6 −0.173122
\(627\) −3.23966e6 −0.329102
\(628\) −8.78963e6 −0.889347
\(629\) −1.48823e7 −1.49984
\(630\) 0 0
\(631\) −1.04270e7 −1.04252 −0.521260 0.853398i \(-0.674538\pi\)
−0.521260 + 0.853398i \(0.674538\pi\)
\(632\) −3.16639e6 −0.315335
\(633\) −3.11320e6 −0.308815
\(634\) −9.21660e6 −0.910642
\(635\) 0 0
\(636\) −3.83863e6 −0.376300
\(637\) 230277. 0.0224855
\(638\) −88854.1 −0.00864223
\(639\) −909799. −0.0881441
\(640\) 0 0
\(641\) 5.56044e6 0.534520 0.267260 0.963624i \(-0.413882\pi\)
0.267260 + 0.963624i \(0.413882\pi\)
\(642\) −925787. −0.0886489
\(643\) −3.35787e6 −0.320285 −0.160142 0.987094i \(-0.551195\pi\)
−0.160142 + 0.987094i \(0.551195\pi\)
\(644\) −3.12894e6 −0.297291
\(645\) 0 0
\(646\) 1.33925e7 1.26264
\(647\) 1.16363e7 1.09284 0.546419 0.837512i \(-0.315991\pi\)
0.546419 + 0.837512i \(0.315991\pi\)
\(648\) −196445. −0.0183782
\(649\) −4.66925e6 −0.435146
\(650\) 0 0
\(651\) −63499.5 −0.00587243
\(652\) 4.49571e6 0.414171
\(653\) −3.20815e6 −0.294423 −0.147211 0.989105i \(-0.547030\pi\)
−0.147211 + 0.989105i \(0.547030\pi\)
\(654\) 4.24976e6 0.388526
\(655\) 0 0
\(656\) −1.13653e6 −0.103115
\(657\) −614654. −0.0555543
\(658\) 1.39040e7 1.25192
\(659\) 1.08724e6 0.0975242 0.0487621 0.998810i \(-0.484472\pi\)
0.0487621 + 0.998810i \(0.484472\pi\)
\(660\) 0 0
\(661\) 7.81571e6 0.695769 0.347884 0.937537i \(-0.386900\pi\)
0.347884 + 0.937537i \(0.386900\pi\)
\(662\) −8.15743e6 −0.723450
\(663\) 2.07162e6 0.183032
\(664\) −6.45025e6 −0.567749
\(665\) 0 0
\(666\) 6.96420e6 0.608395
\(667\) −290363. −0.0252712
\(668\) −1.04385e7 −0.905101
\(669\) 6.87142e6 0.593582
\(670\) 0 0
\(671\) 6.46059e6 0.553944
\(672\) 1.26317e6 0.107904
\(673\) 1.58854e7 1.35195 0.675975 0.736924i \(-0.263723\pi\)
0.675975 + 0.736924i \(0.263723\pi\)
\(674\) −7.49123e6 −0.635189
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 1.74735e7 1.46524 0.732621 0.680637i \(-0.238297\pi\)
0.732621 + 0.680637i \(0.238297\pi\)
\(678\) −5.20552e6 −0.434900
\(679\) 2.20322e7 1.83393
\(680\) 0 0
\(681\) 3.06255e6 0.253055
\(682\) −24787.6 −0.00204068
\(683\) 9.62616e6 0.789590 0.394795 0.918769i \(-0.370816\pi\)
0.394795 + 0.918769i \(0.370816\pi\)
\(684\) −6.26703e6 −0.512179
\(685\) 0 0
\(686\) 9.03214e6 0.732792
\(687\) 3.79875e6 0.307078
\(688\) −3.56076e6 −0.286795
\(689\) −4.08476e6 −0.327807
\(690\) 0 0
\(691\) −5.38851e6 −0.429312 −0.214656 0.976690i \(-0.568863\pi\)
−0.214656 + 0.976690i \(0.568863\pi\)
\(692\) −7.59770e6 −0.603139
\(693\) 2.16143e6 0.170965
\(694\) 2.00686e6 0.158168
\(695\) 0 0
\(696\) 117221. 0.00917241
\(697\) −5.48262e6 −0.427470
\(698\) −6.09039e6 −0.473158
\(699\) 8.86666e6 0.686384
\(700\) 0 0
\(701\) −2.33991e6 −0.179848 −0.0899238 0.995949i \(-0.528662\pi\)
−0.0899238 + 0.995949i \(0.528662\pi\)
\(702\) −2.59995e6 −0.199124
\(703\) −3.26722e7 −2.49339
\(704\) 493092. 0.0374970
\(705\) 0 0
\(706\) 7.48197e6 0.564943
\(707\) −352658. −0.0265341
\(708\) 6.15993e6 0.461841
\(709\) −4.25213e6 −0.317681 −0.158840 0.987304i \(-0.550776\pi\)
−0.158840 + 0.987304i \(0.550776\pi\)
\(710\) 0 0
\(711\) 7.14780e6 0.530271
\(712\) 3.52385e6 0.260506
\(713\) −81002.5 −0.00596726
\(714\) 6.09354e6 0.447326
\(715\) 0 0
\(716\) −4.39783e6 −0.320594
\(717\) −4.91003e6 −0.356686
\(718\) −6.80639e6 −0.492726
\(719\) −5.05655e6 −0.364781 −0.182390 0.983226i \(-0.558383\pi\)
−0.182390 + 0.983226i \(0.558383\pi\)
\(720\) 0 0
\(721\) 3.24390e6 0.232396
\(722\) 1.94971e7 1.39196
\(723\) −1.34582e7 −0.957506
\(724\) 7.73140e6 0.548165
\(725\) 0 0
\(726\) 5.81900e6 0.409739
\(727\) −5.03627e6 −0.353405 −0.176703 0.984264i \(-0.556543\pi\)
−0.176703 + 0.984264i \(0.556543\pi\)
\(728\) 1.34416e6 0.0939992
\(729\) 9.72033e6 0.677427
\(730\) 0 0
\(731\) −1.71771e7 −1.18893
\(732\) −8.52317e6 −0.587927
\(733\) −4.12919e6 −0.283861 −0.141930 0.989877i \(-0.545331\pi\)
−0.141930 + 0.989877i \(0.545331\pi\)
\(734\) −1.25892e6 −0.0862500
\(735\) 0 0
\(736\) 1.61135e6 0.109647
\(737\) −1.29687e6 −0.0879482
\(738\) 2.56560e6 0.173399
\(739\) −1.44286e7 −0.971881 −0.485940 0.873992i \(-0.661523\pi\)
−0.485940 + 0.873992i \(0.661523\pi\)
\(740\) 0 0
\(741\) 4.54798e6 0.304279
\(742\) −1.20150e7 −0.801154
\(743\) −1.53445e7 −1.01972 −0.509860 0.860258i \(-0.670303\pi\)
−0.509860 + 0.860258i \(0.670303\pi\)
\(744\) 32701.2 0.00216587
\(745\) 0 0
\(746\) 8.65780e6 0.569588
\(747\) 1.45608e7 0.954735
\(748\) 2.37867e6 0.155446
\(749\) −2.89774e6 −0.188736
\(750\) 0 0
\(751\) −2.17168e7 −1.40506 −0.702530 0.711654i \(-0.747946\pi\)
−0.702530 + 0.711654i \(0.747946\pi\)
\(752\) −7.16036e6 −0.461732
\(753\) −1.53241e7 −0.984887
\(754\) 124737. 0.00799039
\(755\) 0 0
\(756\) −7.64759e6 −0.486654
\(757\) −4.93082e6 −0.312737 −0.156369 0.987699i \(-0.549979\pi\)
−0.156369 + 0.987699i \(0.549979\pi\)
\(758\) 6.71592e6 0.424554
\(759\) −1.88034e6 −0.118476
\(760\) 0 0
\(761\) 2.14880e6 0.134504 0.0672520 0.997736i \(-0.478577\pi\)
0.0672520 + 0.997736i \(0.478577\pi\)
\(762\) −1.23745e7 −0.772040
\(763\) 1.33019e7 0.827184
\(764\) 8.28483e6 0.513511
\(765\) 0 0
\(766\) −9.70796e6 −0.597800
\(767\) 6.55490e6 0.402325
\(768\) −650514. −0.0397973
\(769\) −296609. −0.0180871 −0.00904354 0.999959i \(-0.502879\pi\)
−0.00904354 + 0.999959i \(0.502879\pi\)
\(770\) 0 0
\(771\) 5.34955e6 0.324102
\(772\) −4.70973e6 −0.284415
\(773\) −4.37418e6 −0.263298 −0.131649 0.991296i \(-0.542027\pi\)
−0.131649 + 0.991296i \(0.542027\pi\)
\(774\) 8.03804e6 0.482278
\(775\) 0 0
\(776\) −1.13462e7 −0.676390
\(777\) −1.48657e7 −0.883352
\(778\) −1.36620e7 −0.809216
\(779\) −1.20364e7 −0.710643
\(780\) 0 0
\(781\) 758099. 0.0444732
\(782\) 7.77317e6 0.454549
\(783\) −709690. −0.0413680
\(784\) −348822. −0.0202681
\(785\) 0 0
\(786\) 9.15762e6 0.528720
\(787\) 3.18884e7 1.83525 0.917625 0.397447i \(-0.130104\pi\)
0.917625 + 0.397447i \(0.130104\pi\)
\(788\) −1.99778e6 −0.114613
\(789\) 5.44406e6 0.311337
\(790\) 0 0
\(791\) −1.62934e7 −0.925916
\(792\) −1.11310e6 −0.0630554
\(793\) −9.06966e6 −0.512163
\(794\) −1.43117e7 −0.805637
\(795\) 0 0
\(796\) −2.27418e6 −0.127216
\(797\) −3.17291e7 −1.76934 −0.884671 0.466216i \(-0.845617\pi\)
−0.884671 + 0.466216i \(0.845617\pi\)
\(798\) 1.33776e7 0.743652
\(799\) −3.45416e7 −1.91415
\(800\) 0 0
\(801\) −7.95473e6 −0.438071
\(802\) −1.88056e7 −1.03241
\(803\) 512167. 0.0280300
\(804\) 1.71090e6 0.0933436
\(805\) 0 0
\(806\) 34798.0 0.00188676
\(807\) 1.66090e7 0.897760
\(808\) 181613. 0.00978632
\(809\) −2.63959e7 −1.41796 −0.708981 0.705227i \(-0.750845\pi\)
−0.708981 + 0.705227i \(0.750845\pi\)
\(810\) 0 0
\(811\) 3.04865e7 1.62763 0.813814 0.581125i \(-0.197387\pi\)
0.813814 + 0.581125i \(0.197387\pi\)
\(812\) 366906. 0.0195283
\(813\) −1.48927e6 −0.0790220
\(814\) −5.80299e6 −0.306966
\(815\) 0 0
\(816\) −3.13808e6 −0.164983
\(817\) −3.77100e7 −1.97652
\(818\) −1.98621e7 −1.03787
\(819\) −3.03431e6 −0.158070
\(820\) 0 0
\(821\) −2.32779e7 −1.20528 −0.602638 0.798015i \(-0.705884\pi\)
−0.602638 + 0.798015i \(0.705884\pi\)
\(822\) 9.25782e6 0.477891
\(823\) 9.66183e6 0.497233 0.248616 0.968602i \(-0.420024\pi\)
0.248616 + 0.968602i \(0.420024\pi\)
\(824\) −1.67056e6 −0.0857124
\(825\) 0 0
\(826\) 1.92808e7 0.983274
\(827\) 1.66692e7 0.847523 0.423761 0.905774i \(-0.360710\pi\)
0.423761 + 0.905774i \(0.360710\pi\)
\(828\) −3.63746e6 −0.184384
\(829\) −1.71154e7 −0.864970 −0.432485 0.901641i \(-0.642363\pi\)
−0.432485 + 0.901641i \(0.642363\pi\)
\(830\) 0 0
\(831\) 1.57833e7 0.792857
\(832\) −692224. −0.0346688
\(833\) −1.68271e6 −0.0840230
\(834\) 1.19407e6 0.0594450
\(835\) 0 0
\(836\) 5.22207e6 0.258420
\(837\) −197982. −0.00976815
\(838\) −1.08592e7 −0.534180
\(839\) −4.89613e6 −0.240131 −0.120066 0.992766i \(-0.538310\pi\)
−0.120066 + 0.992766i \(0.538310\pi\)
\(840\) 0 0
\(841\) −2.04771e7 −0.998340
\(842\) 3.53326e6 0.171749
\(843\) −1.10345e7 −0.534788
\(844\) 5.01823e6 0.242490
\(845\) 0 0
\(846\) 1.61638e7 0.776456
\(847\) 1.82137e7 0.872346
\(848\) 6.18757e6 0.295481
\(849\) −9.53126e6 −0.453817
\(850\) 0 0
\(851\) −1.89633e7 −0.897617
\(852\) −1.00013e6 −0.0472015
\(853\) 2.59891e6 0.122298 0.0611490 0.998129i \(-0.480524\pi\)
0.0611490 + 0.998129i \(0.480524\pi\)
\(854\) −2.66778e7 −1.25171
\(855\) 0 0
\(856\) 1.49229e6 0.0696097
\(857\) −5.01734e6 −0.233357 −0.116679 0.993170i \(-0.537225\pi\)
−0.116679 + 0.993170i \(0.537225\pi\)
\(858\) 807777. 0.0374605
\(859\) −2.55874e7 −1.18316 −0.591580 0.806246i \(-0.701496\pi\)
−0.591580 + 0.806246i \(0.701496\pi\)
\(860\) 0 0
\(861\) −5.47651e6 −0.251765
\(862\) −2.18840e7 −1.00313
\(863\) −1.15679e7 −0.528721 −0.264361 0.964424i \(-0.585161\pi\)
−0.264361 + 0.964424i \(0.585161\pi\)
\(864\) 3.93839e6 0.179488
\(865\) 0 0
\(866\) −2.04010e7 −0.924394
\(867\) −1.04449e6 −0.0471907
\(868\) 102356. 0.00461120
\(869\) −5.95597e6 −0.267549
\(870\) 0 0
\(871\) 1.82060e6 0.0813147
\(872\) −6.85027e6 −0.305082
\(873\) 2.56129e7 1.13743
\(874\) 1.70650e7 0.755661
\(875\) 0 0
\(876\) −675679. −0.0297495
\(877\) −1.09871e7 −0.482376 −0.241188 0.970478i \(-0.577537\pi\)
−0.241188 + 0.970478i \(0.577537\pi\)
\(878\) 1.78198e7 0.780127
\(879\) 1.01068e7 0.441208
\(880\) 0 0
\(881\) 2.80039e7 1.21557 0.607784 0.794102i \(-0.292059\pi\)
0.607784 + 0.794102i \(0.292059\pi\)
\(882\) 787429. 0.0340832
\(883\) −2.79370e7 −1.20581 −0.602904 0.797814i \(-0.705990\pi\)
−0.602904 + 0.797814i \(0.705990\pi\)
\(884\) −3.33929e6 −0.143722
\(885\) 0 0
\(886\) 3.75567e6 0.160732
\(887\) −1.68485e7 −0.719040 −0.359520 0.933137i \(-0.617060\pi\)
−0.359520 + 0.933137i \(0.617060\pi\)
\(888\) 7.65563e6 0.325798
\(889\) −3.87325e7 −1.64370
\(890\) 0 0
\(891\) −369512. −0.0155932
\(892\) −1.10762e7 −0.466098
\(893\) −7.58315e7 −3.18215
\(894\) −763176. −0.0319360
\(895\) 0 0
\(896\) −2.03613e6 −0.0847297
\(897\) 2.63970e6 0.109540
\(898\) 1.82310e7 0.754433
\(899\) 9498.54 0.000391975 0
\(900\) 0 0
\(901\) 2.98488e7 1.22494
\(902\) −2.13781e6 −0.0874888
\(903\) −1.71579e7 −0.700238
\(904\) 8.39087e6 0.341496
\(905\) 0 0
\(906\) −1.35912e7 −0.550094
\(907\) −3.17618e7 −1.28200 −0.640998 0.767543i \(-0.721479\pi\)
−0.640998 + 0.767543i \(0.721479\pi\)
\(908\) −4.93658e6 −0.198706
\(909\) −409973. −0.0164568
\(910\) 0 0
\(911\) 1.96774e7 0.785548 0.392774 0.919635i \(-0.371516\pi\)
0.392774 + 0.919635i \(0.371516\pi\)
\(912\) −6.88924e6 −0.274274
\(913\) −1.21329e7 −0.481712
\(914\) 1.17986e6 0.0467159
\(915\) 0 0
\(916\) −6.12328e6 −0.241127
\(917\) 2.86636e7 1.12566
\(918\) 1.89988e7 0.744079
\(919\) 2.01620e7 0.787491 0.393745 0.919220i \(-0.371179\pi\)
0.393745 + 0.919220i \(0.371179\pi\)
\(920\) 0 0
\(921\) −3.25045e7 −1.26268
\(922\) −1.41259e7 −0.547253
\(923\) −1.06425e6 −0.0411188
\(924\) 2.37602e6 0.0915526
\(925\) 0 0
\(926\) 2.48266e7 0.951458
\(927\) 3.77111e6 0.144135
\(928\) −188951. −0.00720244
\(929\) −6.24509e6 −0.237410 −0.118705 0.992930i \(-0.537874\pi\)
−0.118705 + 0.992930i \(0.537874\pi\)
\(930\) 0 0
\(931\) −3.69418e6 −0.139683
\(932\) −1.42923e7 −0.538969
\(933\) −2.36031e7 −0.887699
\(934\) 1.47373e7 0.552778
\(935\) 0 0
\(936\) 1.56262e6 0.0582995
\(937\) 3.44012e7 1.28004 0.640021 0.768358i \(-0.278926\pi\)
0.640021 + 0.768358i \(0.278926\pi\)
\(938\) 5.35517e6 0.198731
\(939\) 4.21217e6 0.155898
\(940\) 0 0
\(941\) 1.22495e7 0.450967 0.225483 0.974247i \(-0.427604\pi\)
0.225483 + 0.974247i \(0.427604\pi\)
\(942\) 2.18116e7 0.800867
\(943\) −6.98605e6 −0.255831
\(944\) −9.92931e6 −0.362651
\(945\) 0 0
\(946\) −6.69777e6 −0.243334
\(947\) 1.04126e7 0.377298 0.188649 0.982045i \(-0.439589\pi\)
0.188649 + 0.982045i \(0.439589\pi\)
\(948\) 7.85745e6 0.283962
\(949\) −719002. −0.0259158
\(950\) 0 0
\(951\) 2.28711e7 0.820043
\(952\) −9.82229e6 −0.351253
\(953\) 1.10546e7 0.394286 0.197143 0.980375i \(-0.436834\pi\)
0.197143 + 0.980375i \(0.436834\pi\)
\(954\) −1.39678e7 −0.496886
\(955\) 0 0
\(956\) 7.91457e6 0.280080
\(957\) 220493. 0.00778242
\(958\) 1.42079e7 0.500170
\(959\) 2.89773e7 1.01744
\(960\) 0 0
\(961\) −2.86265e7 −0.999907
\(962\) 8.14649e6 0.283813
\(963\) −3.36869e6 −0.117057
\(964\) 2.16935e7 0.751861
\(965\) 0 0
\(966\) 7.76450e6 0.267714
\(967\) −5.56761e6 −0.191471 −0.0957354 0.995407i \(-0.530520\pi\)
−0.0957354 + 0.995407i \(0.530520\pi\)
\(968\) −9.37976e6 −0.321739
\(969\) −3.32337e7 −1.13702
\(970\) 0 0
\(971\) 2.43458e7 0.828661 0.414330 0.910127i \(-0.364016\pi\)
0.414330 + 0.910127i \(0.364016\pi\)
\(972\) −1.44661e7 −0.491118
\(973\) 3.73748e6 0.126560
\(974\) −9.59298e6 −0.324008
\(975\) 0 0
\(976\) 1.37387e7 0.461657
\(977\) 2.31597e7 0.776242 0.388121 0.921608i \(-0.373124\pi\)
0.388121 + 0.921608i \(0.373124\pi\)
\(978\) −1.11562e7 −0.372965
\(979\) 6.62836e6 0.221029
\(980\) 0 0
\(981\) 1.54638e7 0.513030
\(982\) −3.05886e7 −1.01223
\(983\) 2.54095e7 0.838710 0.419355 0.907822i \(-0.362256\pi\)
0.419355 + 0.907822i \(0.362256\pi\)
\(984\) 2.82032e6 0.0928560
\(985\) 0 0
\(986\) −911500. −0.0298582
\(987\) −3.45031e7 −1.12737
\(988\) −7.33097e6 −0.238929
\(989\) −2.18874e7 −0.711546
\(990\) 0 0
\(991\) 6.88244e6 0.222617 0.111308 0.993786i \(-0.464496\pi\)
0.111308 + 0.993786i \(0.464496\pi\)
\(992\) −52711.7 −0.00170070
\(993\) 2.02428e7 0.651475
\(994\) −3.13043e6 −0.100493
\(995\) 0 0
\(996\) 1.60064e7 0.511264
\(997\) −4.06394e7 −1.29482 −0.647411 0.762141i \(-0.724148\pi\)
−0.647411 + 0.762141i \(0.724148\pi\)
\(998\) −4.01669e6 −0.127656
\(999\) −4.63492e7 −1.46936
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.p.1.2 yes 5
5.2 odd 4 650.6.b.m.599.9 10
5.3 odd 4 650.6.b.m.599.2 10
5.4 even 2 650.6.a.o.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.6.a.o.1.4 5 5.4 even 2
650.6.a.p.1.2 yes 5 1.1 even 1 trivial
650.6.b.m.599.2 10 5.3 odd 4
650.6.b.m.599.9 10 5.2 odd 4