Properties

Label 650.6.a.j.1.3
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1458804.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 361x - 1139 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(20.8905\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +27.8905 q^{3} +16.0000 q^{4} +111.562 q^{6} +240.426 q^{7} +64.0000 q^{8} +534.880 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +27.8905 q^{3} +16.0000 q^{4} +111.562 q^{6} +240.426 q^{7} +64.0000 q^{8} +534.880 q^{9} +544.151 q^{11} +446.248 q^{12} -169.000 q^{13} +961.702 q^{14} +256.000 q^{16} -1629.30 q^{17} +2139.52 q^{18} -805.920 q^{19} +6705.59 q^{21} +2176.61 q^{22} -373.152 q^{23} +1784.99 q^{24} -676.000 q^{26} +8140.67 q^{27} +3846.81 q^{28} +1503.62 q^{29} -2200.08 q^{31} +1024.00 q^{32} +15176.7 q^{33} -6517.20 q^{34} +8558.08 q^{36} +13109.1 q^{37} -3223.68 q^{38} -4713.49 q^{39} -17099.9 q^{41} +26822.4 q^{42} +8935.58 q^{43} +8706.42 q^{44} -1492.61 q^{46} -15749.7 q^{47} +7139.97 q^{48} +40997.5 q^{49} -45442.0 q^{51} -2704.00 q^{52} -40379.7 q^{53} +32562.7 q^{54} +15387.2 q^{56} -22477.5 q^{57} +6014.46 q^{58} -47562.1 q^{59} -30280.0 q^{61} -8800.31 q^{62} +128599. q^{63} +4096.00 q^{64} +60706.6 q^{66} -38769.4 q^{67} -26068.8 q^{68} -10407.4 q^{69} -10519.7 q^{71} +34232.3 q^{72} -1582.12 q^{73} +52436.5 q^{74} -12894.7 q^{76} +130828. q^{77} -18854.0 q^{78} -6191.23 q^{79} +97071.7 q^{81} -68399.8 q^{82} -37849.2 q^{83} +107289. q^{84} +35742.3 q^{86} +41936.6 q^{87} +34825.7 q^{88} +49151.0 q^{89} -40631.9 q^{91} -5970.43 q^{92} -61361.3 q^{93} -62999.0 q^{94} +28559.9 q^{96} +15654.2 q^{97} +163990. q^{98} +291056. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} + 22 q^{3} + 48 q^{4} + 88 q^{6} + 234 q^{7} + 192 q^{8} + 155 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 12 q^{2} + 22 q^{3} + 48 q^{4} + 88 q^{6} + 234 q^{7} + 192 q^{8} + 155 q^{9} + 48 q^{11} + 352 q^{12} - 507 q^{13} + 936 q^{14} + 768 q^{16} - 1506 q^{17} + 620 q^{18} - 360 q^{19} + 6904 q^{21} + 192 q^{22} + 2370 q^{23} + 1408 q^{24} - 2028 q^{26} + 10168 q^{27} + 3744 q^{28} - 3078 q^{29} - 5388 q^{31} + 3072 q^{32} + 22572 q^{33} - 6024 q^{34} + 2480 q^{36} + 25362 q^{37} - 1440 q^{38} - 3718 q^{39} - 15906 q^{41} + 27616 q^{42} + 39306 q^{43} + 768 q^{44} + 9480 q^{46} + 17778 q^{47} + 5632 q^{48} + 7767 q^{49} - 33972 q^{51} - 8112 q^{52} - 9246 q^{53} + 40672 q^{54} + 14976 q^{56} + 2996 q^{57} - 12312 q^{58} - 77760 q^{59} + 17982 q^{61} - 21552 q^{62} + 128762 q^{63} + 12288 q^{64} + 90288 q^{66} + 2922 q^{67} - 24096 q^{68} - 31860 q^{69} - 4944 q^{71} + 9920 q^{72} - 43278 q^{73} + 101448 q^{74} - 5760 q^{76} + 144420 q^{77} - 14872 q^{78} + 42120 q^{79} + 146519 q^{81} - 63624 q^{82} - 58098 q^{83} + 110464 q^{84} + 157224 q^{86} - 2016 q^{87} + 3072 q^{88} + 19614 q^{89} - 39546 q^{91} + 37920 q^{92} - 162796 q^{93} + 71112 q^{94} + 22528 q^{96} + 87078 q^{97} + 31068 q^{98} + 350340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 27.8905 1.78918 0.894588 0.446892i \(-0.147469\pi\)
0.894588 + 0.446892i \(0.147469\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 111.562 1.26514
\(7\) 240.426 1.85454 0.927269 0.374397i \(-0.122150\pi\)
0.927269 + 0.374397i \(0.122150\pi\)
\(8\) 64.0000 0.353553
\(9\) 534.880 2.20115
\(10\) 0 0
\(11\) 544.151 1.35593 0.677966 0.735093i \(-0.262862\pi\)
0.677966 + 0.735093i \(0.262862\pi\)
\(12\) 446.248 0.894588
\(13\) −169.000 −0.277350
\(14\) 961.702 1.31136
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1629.30 −1.36735 −0.683673 0.729788i \(-0.739619\pi\)
−0.683673 + 0.729788i \(0.739619\pi\)
\(18\) 2139.52 1.55645
\(19\) −805.920 −0.512162 −0.256081 0.966655i \(-0.582431\pi\)
−0.256081 + 0.966655i \(0.582431\pi\)
\(20\) 0 0
\(21\) 6705.59 3.31809
\(22\) 2176.61 0.958789
\(23\) −373.152 −0.147084 −0.0735421 0.997292i \(-0.523430\pi\)
−0.0735421 + 0.997292i \(0.523430\pi\)
\(24\) 1784.99 0.632569
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) 8140.67 2.14907
\(28\) 3846.81 0.927269
\(29\) 1503.62 0.332003 0.166001 0.986126i \(-0.446914\pi\)
0.166001 + 0.986126i \(0.446914\pi\)
\(30\) 0 0
\(31\) −2200.08 −0.411182 −0.205591 0.978638i \(-0.565912\pi\)
−0.205591 + 0.978638i \(0.565912\pi\)
\(32\) 1024.00 0.176777
\(33\) 15176.7 2.42600
\(34\) −6517.20 −0.966860
\(35\) 0 0
\(36\) 8558.08 1.10058
\(37\) 13109.1 1.57423 0.787117 0.616804i \(-0.211573\pi\)
0.787117 + 0.616804i \(0.211573\pi\)
\(38\) −3223.68 −0.362154
\(39\) −4713.49 −0.496228
\(40\) 0 0
\(41\) −17099.9 −1.58867 −0.794337 0.607477i \(-0.792182\pi\)
−0.794337 + 0.607477i \(0.792182\pi\)
\(42\) 26822.4 2.34625
\(43\) 8935.58 0.736973 0.368487 0.929633i \(-0.379876\pi\)
0.368487 + 0.929633i \(0.379876\pi\)
\(44\) 8706.42 0.677966
\(45\) 0 0
\(46\) −1492.61 −0.104004
\(47\) −15749.7 −1.03999 −0.519995 0.854170i \(-0.674066\pi\)
−0.519995 + 0.854170i \(0.674066\pi\)
\(48\) 7139.97 0.447294
\(49\) 40997.5 2.43931
\(50\) 0 0
\(51\) −45442.0 −2.44642
\(52\) −2704.00 −0.138675
\(53\) −40379.7 −1.97457 −0.987286 0.158951i \(-0.949189\pi\)
−0.987286 + 0.158951i \(0.949189\pi\)
\(54\) 32562.7 1.51962
\(55\) 0 0
\(56\) 15387.2 0.655678
\(57\) −22477.5 −0.916349
\(58\) 6014.46 0.234761
\(59\) −47562.1 −1.77881 −0.889407 0.457116i \(-0.848882\pi\)
−0.889407 + 0.457116i \(0.848882\pi\)
\(60\) 0 0
\(61\) −30280.0 −1.04191 −0.520956 0.853584i \(-0.674424\pi\)
−0.520956 + 0.853584i \(0.674424\pi\)
\(62\) −8800.31 −0.290749
\(63\) 128599. 4.08212
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 60706.6 1.71544
\(67\) −38769.4 −1.05512 −0.527561 0.849517i \(-0.676893\pi\)
−0.527561 + 0.849517i \(0.676893\pi\)
\(68\) −26068.8 −0.683673
\(69\) −10407.4 −0.263160
\(70\) 0 0
\(71\) −10519.7 −0.247660 −0.123830 0.992303i \(-0.539518\pi\)
−0.123830 + 0.992303i \(0.539518\pi\)
\(72\) 34232.3 0.778225
\(73\) −1582.12 −0.0347483 −0.0173742 0.999849i \(-0.505531\pi\)
−0.0173742 + 0.999849i \(0.505531\pi\)
\(74\) 52436.5 1.11315
\(75\) 0 0
\(76\) −12894.7 −0.256081
\(77\) 130828. 2.51463
\(78\) −18854.0 −0.350886
\(79\) −6191.23 −0.111612 −0.0558058 0.998442i \(-0.517773\pi\)
−0.0558058 + 0.998442i \(0.517773\pi\)
\(80\) 0 0
\(81\) 97071.7 1.64392
\(82\) −68399.8 −1.12336
\(83\) −37849.2 −0.603062 −0.301531 0.953456i \(-0.597498\pi\)
−0.301531 + 0.953456i \(0.597498\pi\)
\(84\) 107289. 1.65905
\(85\) 0 0
\(86\) 35742.3 0.521119
\(87\) 41936.6 0.594011
\(88\) 34825.7 0.479394
\(89\) 49151.0 0.657744 0.328872 0.944374i \(-0.393331\pi\)
0.328872 + 0.944374i \(0.393331\pi\)
\(90\) 0 0
\(91\) −40631.9 −0.514356
\(92\) −5970.43 −0.0735421
\(93\) −61361.3 −0.735677
\(94\) −62999.0 −0.735383
\(95\) 0 0
\(96\) 28559.9 0.316285
\(97\) 15654.2 0.168928 0.0844641 0.996427i \(-0.473082\pi\)
0.0844641 + 0.996427i \(0.473082\pi\)
\(98\) 163990. 1.72485
\(99\) 291056. 2.98461
\(100\) 0 0
\(101\) −138108. −1.34714 −0.673572 0.739122i \(-0.735241\pi\)
−0.673572 + 0.739122i \(0.735241\pi\)
\(102\) −181768. −1.72988
\(103\) 47642.1 0.442484 0.221242 0.975219i \(-0.428989\pi\)
0.221242 + 0.975219i \(0.428989\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) −161519. −1.39623
\(107\) 186527. 1.57500 0.787501 0.616313i \(-0.211374\pi\)
0.787501 + 0.616313i \(0.211374\pi\)
\(108\) 130251. 1.07454
\(109\) 14407.1 0.116147 0.0580736 0.998312i \(-0.481504\pi\)
0.0580736 + 0.998312i \(0.481504\pi\)
\(110\) 0 0
\(111\) 365620. 2.81658
\(112\) 61548.9 0.463634
\(113\) 50802.0 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(114\) −89910.0 −0.647957
\(115\) 0 0
\(116\) 24057.8 0.166001
\(117\) −90394.7 −0.610490
\(118\) −190248. −1.25781
\(119\) −391725. −2.53580
\(120\) 0 0
\(121\) 135050. 0.838552
\(122\) −121120. −0.736742
\(123\) −476926. −2.84242
\(124\) −35201.3 −0.205591
\(125\) 0 0
\(126\) 514395. 2.88649
\(127\) 182278. 1.00282 0.501411 0.865209i \(-0.332814\pi\)
0.501411 + 0.865209i \(0.332814\pi\)
\(128\) 16384.0 0.0883883
\(129\) 249218. 1.31858
\(130\) 0 0
\(131\) 199714. 1.01679 0.508394 0.861124i \(-0.330239\pi\)
0.508394 + 0.861124i \(0.330239\pi\)
\(132\) 242826. 1.21300
\(133\) −193764. −0.949824
\(134\) −155078. −0.746083
\(135\) 0 0
\(136\) −104275. −0.483430
\(137\) 345418. 1.57233 0.786165 0.618017i \(-0.212064\pi\)
0.786165 + 0.618017i \(0.212064\pi\)
\(138\) −41629.6 −0.186082
\(139\) 183088. 0.803754 0.401877 0.915694i \(-0.368358\pi\)
0.401877 + 0.915694i \(0.368358\pi\)
\(140\) 0 0
\(141\) −439268. −1.86072
\(142\) −42078.7 −0.175122
\(143\) −91961.6 −0.376068
\(144\) 136929. 0.550288
\(145\) 0 0
\(146\) −6328.50 −0.0245708
\(147\) 1.14344e6 4.36435
\(148\) 209746. 0.787117
\(149\) −187082. −0.690344 −0.345172 0.938540i \(-0.612179\pi\)
−0.345172 + 0.938540i \(0.612179\pi\)
\(150\) 0 0
\(151\) −10616.3 −0.0378907 −0.0189454 0.999821i \(-0.506031\pi\)
−0.0189454 + 0.999821i \(0.506031\pi\)
\(152\) −51578.9 −0.181077
\(153\) −871480. −3.00974
\(154\) 523312. 1.77811
\(155\) 0 0
\(156\) −75415.9 −0.248114
\(157\) 335884. 1.08753 0.543764 0.839238i \(-0.316999\pi\)
0.543764 + 0.839238i \(0.316999\pi\)
\(158\) −24764.9 −0.0789213
\(159\) −1.12621e6 −3.53286
\(160\) 0 0
\(161\) −89715.3 −0.272773
\(162\) 388287. 1.16242
\(163\) −201881. −0.595150 −0.297575 0.954698i \(-0.596178\pi\)
−0.297575 + 0.954698i \(0.596178\pi\)
\(164\) −273599. −0.794337
\(165\) 0 0
\(166\) −151397. −0.426429
\(167\) 446050. 1.23764 0.618818 0.785535i \(-0.287612\pi\)
0.618818 + 0.785535i \(0.287612\pi\)
\(168\) 429158. 1.17312
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −431070. −1.12735
\(172\) 142969. 0.368487
\(173\) −57408.8 −0.145835 −0.0729177 0.997338i \(-0.523231\pi\)
−0.0729177 + 0.997338i \(0.523231\pi\)
\(174\) 167746. 0.420030
\(175\) 0 0
\(176\) 139303. 0.338983
\(177\) −1.32653e6 −3.18261
\(178\) 196604. 0.465095
\(179\) 87439.4 0.203974 0.101987 0.994786i \(-0.467480\pi\)
0.101987 + 0.994786i \(0.467480\pi\)
\(180\) 0 0
\(181\) 21341.6 0.0484206 0.0242103 0.999707i \(-0.492293\pi\)
0.0242103 + 0.999707i \(0.492293\pi\)
\(182\) −162528. −0.363705
\(183\) −844523. −1.86416
\(184\) −23881.7 −0.0520021
\(185\) 0 0
\(186\) −245445. −0.520202
\(187\) −886586. −1.85403
\(188\) −251996. −0.519995
\(189\) 1.95723e6 3.98553
\(190\) 0 0
\(191\) 307517. 0.609938 0.304969 0.952362i \(-0.401354\pi\)
0.304969 + 0.952362i \(0.401354\pi\)
\(192\) 114239. 0.223647
\(193\) −182409. −0.352496 −0.176248 0.984346i \(-0.556396\pi\)
−0.176248 + 0.984346i \(0.556396\pi\)
\(194\) 62616.9 0.119450
\(195\) 0 0
\(196\) 655959. 1.21965
\(197\) 152508. 0.279980 0.139990 0.990153i \(-0.455293\pi\)
0.139990 + 0.990153i \(0.455293\pi\)
\(198\) 1.16422e6 2.11044
\(199\) −586606. −1.05006 −0.525029 0.851084i \(-0.675946\pi\)
−0.525029 + 0.851084i \(0.675946\pi\)
\(200\) 0 0
\(201\) −1.08130e6 −1.88780
\(202\) −552430. −0.952574
\(203\) 361508. 0.615711
\(204\) −727072. −1.22321
\(205\) 0 0
\(206\) 190568. 0.312884
\(207\) −199592. −0.323755
\(208\) −43264.0 −0.0693375
\(209\) −438542. −0.694458
\(210\) 0 0
\(211\) −207041. −0.320147 −0.160073 0.987105i \(-0.551173\pi\)
−0.160073 + 0.987105i \(0.551173\pi\)
\(212\) −646075. −0.987286
\(213\) −293399. −0.443108
\(214\) 746106. 1.11369
\(215\) 0 0
\(216\) 521003. 0.759812
\(217\) −528955. −0.762552
\(218\) 57628.2 0.0821285
\(219\) −44126.3 −0.0621708
\(220\) 0 0
\(221\) 275352. 0.379234
\(222\) 1.46248e6 1.99162
\(223\) 1.04889e6 1.41243 0.706214 0.707998i \(-0.250401\pi\)
0.706214 + 0.707998i \(0.250401\pi\)
\(224\) 246196. 0.327839
\(225\) 0 0
\(226\) 203208. 0.264649
\(227\) 100709. 0.129719 0.0648593 0.997894i \(-0.479340\pi\)
0.0648593 + 0.997894i \(0.479340\pi\)
\(228\) −359640. −0.458174
\(229\) 487174. 0.613896 0.306948 0.951726i \(-0.400692\pi\)
0.306948 + 0.951726i \(0.400692\pi\)
\(230\) 0 0
\(231\) 3.64886e6 4.49911
\(232\) 96231.4 0.117381
\(233\) 832844. 1.00502 0.502509 0.864572i \(-0.332410\pi\)
0.502509 + 0.864572i \(0.332410\pi\)
\(234\) −361579. −0.431681
\(235\) 0 0
\(236\) −760993. −0.889407
\(237\) −172677. −0.199693
\(238\) −1.56690e6 −1.79308
\(239\) 1.34919e6 1.52785 0.763923 0.645308i \(-0.223271\pi\)
0.763923 + 0.645308i \(0.223271\pi\)
\(240\) 0 0
\(241\) −1.66283e6 −1.84419 −0.922096 0.386962i \(-0.873524\pi\)
−0.922096 + 0.386962i \(0.873524\pi\)
\(242\) 540199. 0.592946
\(243\) 729193. 0.792185
\(244\) −484479. −0.520956
\(245\) 0 0
\(246\) −1.90770e6 −2.00989
\(247\) 136200. 0.142048
\(248\) −140805. −0.145375
\(249\) −1.05563e6 −1.07898
\(250\) 0 0
\(251\) −291273. −0.291820 −0.145910 0.989298i \(-0.546611\pi\)
−0.145910 + 0.989298i \(0.546611\pi\)
\(252\) 2.05758e6 2.04106
\(253\) −203051. −0.199436
\(254\) 729110. 0.709102
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 548204. 0.517737 0.258868 0.965913i \(-0.416650\pi\)
0.258868 + 0.965913i \(0.416650\pi\)
\(258\) 996872. 0.932374
\(259\) 3.15177e6 2.91947
\(260\) 0 0
\(261\) 804253. 0.730788
\(262\) 798857. 0.718978
\(263\) −818412. −0.729596 −0.364798 0.931087i \(-0.618862\pi\)
−0.364798 + 0.931087i \(0.618862\pi\)
\(264\) 971306. 0.857721
\(265\) 0 0
\(266\) −775055. −0.671627
\(267\) 1.37085e6 1.17682
\(268\) −620311. −0.527561
\(269\) −939455. −0.791581 −0.395790 0.918341i \(-0.629529\pi\)
−0.395790 + 0.918341i \(0.629529\pi\)
\(270\) 0 0
\(271\) −1.52416e6 −1.26069 −0.630345 0.776315i \(-0.717087\pi\)
−0.630345 + 0.776315i \(0.717087\pi\)
\(272\) −417101. −0.341837
\(273\) −1.13324e6 −0.920274
\(274\) 1.38167e6 1.11180
\(275\) 0 0
\(276\) −166518. −0.131580
\(277\) 439704. 0.344319 0.172159 0.985069i \(-0.444926\pi\)
0.172159 + 0.985069i \(0.444926\pi\)
\(278\) 732352. 0.568340
\(279\) −1.17678e6 −0.905074
\(280\) 0 0
\(281\) −592033. −0.447280 −0.223640 0.974672i \(-0.571794\pi\)
−0.223640 + 0.974672i \(0.571794\pi\)
\(282\) −1.75707e6 −1.31573
\(283\) 777226. 0.576875 0.288437 0.957499i \(-0.406864\pi\)
0.288437 + 0.957499i \(0.406864\pi\)
\(284\) −168315. −0.123830
\(285\) 0 0
\(286\) −367846. −0.265920
\(287\) −4.11126e6 −2.94626
\(288\) 547717. 0.389112
\(289\) 1.23476e6 0.869637
\(290\) 0 0
\(291\) 436604. 0.302242
\(292\) −25314.0 −0.0173742
\(293\) −609025. −0.414444 −0.207222 0.978294i \(-0.566442\pi\)
−0.207222 + 0.978294i \(0.566442\pi\)
\(294\) 4.57376e6 3.08606
\(295\) 0 0
\(296\) 838984. 0.556576
\(297\) 4.42976e6 2.91400
\(298\) −748326. −0.488147
\(299\) 63062.7 0.0407938
\(300\) 0 0
\(301\) 2.14834e6 1.36674
\(302\) −42465.4 −0.0267928
\(303\) −3.85189e6 −2.41028
\(304\) −206315. −0.128041
\(305\) 0 0
\(306\) −3.48592e6 −2.12821
\(307\) 2.66761e6 1.61538 0.807692 0.589604i \(-0.200716\pi\)
0.807692 + 0.589604i \(0.200716\pi\)
\(308\) 2.09325e6 1.25731
\(309\) 1.32876e6 0.791682
\(310\) 0 0
\(311\) −1.62320e6 −0.951634 −0.475817 0.879544i \(-0.657847\pi\)
−0.475817 + 0.879544i \(0.657847\pi\)
\(312\) −301664. −0.175443
\(313\) −592115. −0.341622 −0.170811 0.985304i \(-0.554639\pi\)
−0.170811 + 0.985304i \(0.554639\pi\)
\(314\) 1.34354e6 0.768998
\(315\) 0 0
\(316\) −99059.7 −0.0558058
\(317\) 2.61036e6 1.45899 0.729494 0.683987i \(-0.239756\pi\)
0.729494 + 0.683987i \(0.239756\pi\)
\(318\) −4.50484e6 −2.49811
\(319\) 818194. 0.450173
\(320\) 0 0
\(321\) 5.20232e6 2.81796
\(322\) −358861. −0.192880
\(323\) 1.31308e6 0.700304
\(324\) 1.55315e6 0.821959
\(325\) 0 0
\(326\) −807524. −0.420834
\(327\) 401820. 0.207808
\(328\) −1.09440e6 −0.561681
\(329\) −3.78664e6 −1.92870
\(330\) 0 0
\(331\) 818785. 0.410771 0.205386 0.978681i \(-0.434155\pi\)
0.205386 + 0.978681i \(0.434155\pi\)
\(332\) −605588. −0.301531
\(333\) 7.01180e6 3.46513
\(334\) 1.78420e6 0.875140
\(335\) 0 0
\(336\) 1.71663e6 0.829523
\(337\) −3.28910e6 −1.57762 −0.788809 0.614638i \(-0.789302\pi\)
−0.788809 + 0.614638i \(0.789302\pi\)
\(338\) 114244. 0.0543928
\(339\) 1.41689e6 0.669634
\(340\) 0 0
\(341\) −1.19718e6 −0.557535
\(342\) −1.72428e6 −0.797155
\(343\) 5.81600e6 2.66925
\(344\) 571877. 0.260559
\(345\) 0 0
\(346\) −229635. −0.103121
\(347\) −139108. −0.0620195 −0.0310098 0.999519i \(-0.509872\pi\)
−0.0310098 + 0.999519i \(0.509872\pi\)
\(348\) 670985. 0.297006
\(349\) 1.41781e6 0.623097 0.311549 0.950230i \(-0.399152\pi\)
0.311549 + 0.950230i \(0.399152\pi\)
\(350\) 0 0
\(351\) −1.37577e6 −0.596045
\(352\) 557211. 0.239697
\(353\) −2.45675e6 −1.04936 −0.524679 0.851300i \(-0.675815\pi\)
−0.524679 + 0.851300i \(0.675815\pi\)
\(354\) −5.30612e6 −2.25045
\(355\) 0 0
\(356\) 786416. 0.328872
\(357\) −1.09254e7 −4.53698
\(358\) 349758. 0.144231
\(359\) −2.88601e6 −1.18185 −0.590924 0.806727i \(-0.701237\pi\)
−0.590924 + 0.806727i \(0.701237\pi\)
\(360\) 0 0
\(361\) −1.82659e6 −0.737690
\(362\) 85366.4 0.0342386
\(363\) 3.76660e6 1.50032
\(364\) −650111. −0.257178
\(365\) 0 0
\(366\) −3.37809e6 −1.31816
\(367\) 2.83587e6 1.09906 0.549530 0.835474i \(-0.314807\pi\)
0.549530 + 0.835474i \(0.314807\pi\)
\(368\) −95526.9 −0.0367711
\(369\) −9.14641e6 −3.49691
\(370\) 0 0
\(371\) −9.70831e6 −3.66192
\(372\) −981781. −0.367838
\(373\) −5.02691e6 −1.87081 −0.935403 0.353583i \(-0.884963\pi\)
−0.935403 + 0.353583i \(0.884963\pi\)
\(374\) −3.54634e6 −1.31100
\(375\) 0 0
\(376\) −1.00798e6 −0.367692
\(377\) −254111. −0.0920810
\(378\) 7.82891e6 2.81820
\(379\) 2.14892e6 0.768462 0.384231 0.923237i \(-0.374467\pi\)
0.384231 + 0.923237i \(0.374467\pi\)
\(380\) 0 0
\(381\) 5.08381e6 1.79423
\(382\) 1.23007e6 0.431291
\(383\) −832971. −0.290157 −0.145078 0.989420i \(-0.546343\pi\)
−0.145078 + 0.989420i \(0.546343\pi\)
\(384\) 456958. 0.158142
\(385\) 0 0
\(386\) −729637. −0.249252
\(387\) 4.77946e6 1.62219
\(388\) 250468. 0.0844641
\(389\) −725243. −0.243002 −0.121501 0.992591i \(-0.538771\pi\)
−0.121501 + 0.992591i \(0.538771\pi\)
\(390\) 0 0
\(391\) 607976. 0.201115
\(392\) 2.62384e6 0.862426
\(393\) 5.57013e6 1.81921
\(394\) 610032. 0.197976
\(395\) 0 0
\(396\) 4.65689e6 1.49231
\(397\) −2.42654e6 −0.772701 −0.386351 0.922352i \(-0.626265\pi\)
−0.386351 + 0.922352i \(0.626265\pi\)
\(398\) −2.34642e6 −0.742504
\(399\) −5.40417e6 −1.69940
\(400\) 0 0
\(401\) −2.14376e6 −0.665758 −0.332879 0.942970i \(-0.608020\pi\)
−0.332879 + 0.942970i \(0.608020\pi\)
\(402\) −4.32519e6 −1.33487
\(403\) 371813. 0.114041
\(404\) −2.20972e6 −0.673572
\(405\) 0 0
\(406\) 1.44603e6 0.435374
\(407\) 7.13335e6 2.13455
\(408\) −2.90829e6 −0.864942
\(409\) −3.66144e6 −1.08229 −0.541145 0.840929i \(-0.682009\pi\)
−0.541145 + 0.840929i \(0.682009\pi\)
\(410\) 0 0
\(411\) 9.63388e6 2.81317
\(412\) 762273. 0.221242
\(413\) −1.14351e7 −3.29888
\(414\) −798366. −0.228929
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) 5.10642e6 1.43806
\(418\) −1.75417e6 −0.491056
\(419\) 3.03786e6 0.845341 0.422671 0.906283i \(-0.361093\pi\)
0.422671 + 0.906283i \(0.361093\pi\)
\(420\) 0 0
\(421\) −1.88663e6 −0.518777 −0.259389 0.965773i \(-0.583521\pi\)
−0.259389 + 0.965773i \(0.583521\pi\)
\(422\) −828162. −0.226378
\(423\) −8.42422e6 −2.28917
\(424\) −2.58430e6 −0.698117
\(425\) 0 0
\(426\) −1.17360e6 −0.313325
\(427\) −7.28008e6 −1.93226
\(428\) 2.98442e6 0.787501
\(429\) −2.56485e6 −0.672852
\(430\) 0 0
\(431\) 717193. 0.185970 0.0929850 0.995668i \(-0.470359\pi\)
0.0929850 + 0.995668i \(0.470359\pi\)
\(432\) 2.08401e6 0.537268
\(433\) −2.64569e6 −0.678140 −0.339070 0.940761i \(-0.610112\pi\)
−0.339070 + 0.940761i \(0.610112\pi\)
\(434\) −2.11582e6 −0.539206
\(435\) 0 0
\(436\) 230513. 0.0580736
\(437\) 300731. 0.0753310
\(438\) −176505. −0.0439614
\(439\) 4.47973e6 1.10941 0.554704 0.832048i \(-0.312832\pi\)
0.554704 + 0.832048i \(0.312832\pi\)
\(440\) 0 0
\(441\) 2.19287e7 5.36929
\(442\) 1.10141e6 0.268159
\(443\) −4.30731e6 −1.04279 −0.521395 0.853315i \(-0.674588\pi\)
−0.521395 + 0.853315i \(0.674588\pi\)
\(444\) 5.84992e6 1.40829
\(445\) 0 0
\(446\) 4.19555e6 0.998738
\(447\) −5.21780e6 −1.23515
\(448\) 984783. 0.231817
\(449\) −25272.9 −0.00591615 −0.00295808 0.999996i \(-0.500942\pi\)
−0.00295808 + 0.999996i \(0.500942\pi\)
\(450\) 0 0
\(451\) −9.30495e6 −2.15413
\(452\) 812832. 0.187135
\(453\) −296095. −0.0677932
\(454\) 402835. 0.0917250
\(455\) 0 0
\(456\) −1.43856e6 −0.323978
\(457\) −1.14360e6 −0.256143 −0.128072 0.991765i \(-0.540879\pi\)
−0.128072 + 0.991765i \(0.540879\pi\)
\(458\) 1.94869e6 0.434090
\(459\) −1.32636e7 −2.93853
\(460\) 0 0
\(461\) −8.34911e6 −1.82973 −0.914867 0.403755i \(-0.867705\pi\)
−0.914867 + 0.403755i \(0.867705\pi\)
\(462\) 1.45954e7 3.18135
\(463\) 3.41596e6 0.740561 0.370280 0.928920i \(-0.379262\pi\)
0.370280 + 0.928920i \(0.379262\pi\)
\(464\) 384925. 0.0830007
\(465\) 0 0
\(466\) 3.33138e6 0.710655
\(467\) −5.67105e6 −1.20329 −0.601646 0.798763i \(-0.705488\pi\)
−0.601646 + 0.798763i \(0.705488\pi\)
\(468\) −1.44632e6 −0.305245
\(469\) −9.32116e6 −1.95676
\(470\) 0 0
\(471\) 9.36797e6 1.94578
\(472\) −3.04397e6 −0.628906
\(473\) 4.86231e6 0.999286
\(474\) −690706. −0.141204
\(475\) 0 0
\(476\) −6.26760e6 −1.26790
\(477\) −2.15983e7 −4.34633
\(478\) 5.39677e6 1.08035
\(479\) −6.16340e6 −1.22739 −0.613694 0.789544i \(-0.710317\pi\)
−0.613694 + 0.789544i \(0.710317\pi\)
\(480\) 0 0
\(481\) −2.21544e6 −0.436614
\(482\) −6.65133e6 −1.30404
\(483\) −2.50220e6 −0.488039
\(484\) 2.16080e6 0.419276
\(485\) 0 0
\(486\) 2.91677e6 0.560160
\(487\) 7.32701e6 1.39992 0.699962 0.714180i \(-0.253200\pi\)
0.699962 + 0.714180i \(0.253200\pi\)
\(488\) −1.93792e6 −0.368371
\(489\) −5.63056e6 −1.06483
\(490\) 0 0
\(491\) 8.89739e6 1.66555 0.832777 0.553608i \(-0.186750\pi\)
0.832777 + 0.553608i \(0.186750\pi\)
\(492\) −7.63081e6 −1.42121
\(493\) −2.44984e6 −0.453963
\(494\) 544802. 0.100443
\(495\) 0 0
\(496\) −563220. −0.102795
\(497\) −2.52920e6 −0.459295
\(498\) −4.22254e6 −0.762957
\(499\) 3.02237e6 0.543371 0.271686 0.962386i \(-0.412419\pi\)
0.271686 + 0.962386i \(0.412419\pi\)
\(500\) 0 0
\(501\) 1.24406e7 2.21435
\(502\) −1.16509e6 −0.206348
\(503\) 7.48799e6 1.31961 0.659805 0.751437i \(-0.270639\pi\)
0.659805 + 0.751437i \(0.270639\pi\)
\(504\) 8.23032e6 1.44325
\(505\) 0 0
\(506\) −812205. −0.141023
\(507\) 796581. 0.137629
\(508\) 2.91644e6 0.501411
\(509\) 4.87997e6 0.834878 0.417439 0.908705i \(-0.362928\pi\)
0.417439 + 0.908705i \(0.362928\pi\)
\(510\) 0 0
\(511\) −380383. −0.0644420
\(512\) 262144. 0.0441942
\(513\) −6.56073e6 −1.10067
\(514\) 2.19281e6 0.366095
\(515\) 0 0
\(516\) 3.98749e6 0.659288
\(517\) −8.57024e6 −1.41015
\(518\) 1.26071e7 2.06438
\(519\) −1.60116e6 −0.260925
\(520\) 0 0
\(521\) −3.79679e6 −0.612805 −0.306403 0.951902i \(-0.599125\pi\)
−0.306403 + 0.951902i \(0.599125\pi\)
\(522\) 3.21701e6 0.516745
\(523\) 5.66643e6 0.905848 0.452924 0.891549i \(-0.350381\pi\)
0.452924 + 0.891549i \(0.350381\pi\)
\(524\) 3.19543e6 0.508394
\(525\) 0 0
\(526\) −3.27365e6 −0.515902
\(527\) 3.58459e6 0.562228
\(528\) 3.88522e6 0.606500
\(529\) −6.29710e6 −0.978366
\(530\) 0 0
\(531\) −2.54400e7 −3.91544
\(532\) −3.10022e6 −0.474912
\(533\) 2.88989e6 0.440619
\(534\) 5.48338e6 0.832138
\(535\) 0 0
\(536\) −2.48124e6 −0.373042
\(537\) 2.43873e6 0.364945
\(538\) −3.75782e6 −0.559732
\(539\) 2.23088e7 3.30754
\(540\) 0 0
\(541\) 1.15648e7 1.69881 0.849403 0.527745i \(-0.176962\pi\)
0.849403 + 0.527745i \(0.176962\pi\)
\(542\) −6.09665e6 −0.891442
\(543\) 595228. 0.0866330
\(544\) −1.66840e6 −0.241715
\(545\) 0 0
\(546\) −4.53298e6 −0.650732
\(547\) 1.28104e7 1.83060 0.915299 0.402776i \(-0.131955\pi\)
0.915299 + 0.402776i \(0.131955\pi\)
\(548\) 5.52669e6 0.786165
\(549\) −1.61961e7 −2.29340
\(550\) 0 0
\(551\) −1.21179e6 −0.170039
\(552\) −666073. −0.0930410
\(553\) −1.48853e6 −0.206988
\(554\) 1.75881e6 0.243470
\(555\) 0 0
\(556\) 2.92941e6 0.401877
\(557\) −3.51737e6 −0.480374 −0.240187 0.970727i \(-0.577209\pi\)
−0.240187 + 0.970727i \(0.577209\pi\)
\(558\) −4.70711e6 −0.639984
\(559\) −1.51011e6 −0.204400
\(560\) 0 0
\(561\) −2.47273e7 −3.31719
\(562\) −2.36813e6 −0.316275
\(563\) −9.45258e6 −1.25684 −0.628419 0.777875i \(-0.716298\pi\)
−0.628419 + 0.777875i \(0.716298\pi\)
\(564\) −7.02829e6 −0.930362
\(565\) 0 0
\(566\) 3.10891e6 0.407912
\(567\) 2.33385e7 3.04871
\(568\) −673259. −0.0875611
\(569\) 1.11315e7 1.44136 0.720679 0.693269i \(-0.243830\pi\)
0.720679 + 0.693269i \(0.243830\pi\)
\(570\) 0 0
\(571\) 4.92935e6 0.632702 0.316351 0.948642i \(-0.397542\pi\)
0.316351 + 0.948642i \(0.397542\pi\)
\(572\) −1.47139e6 −0.188034
\(573\) 8.57680e6 1.09129
\(574\) −1.64450e7 −2.08332
\(575\) 0 0
\(576\) 2.19087e6 0.275144
\(577\) −1.09437e7 −1.36843 −0.684217 0.729279i \(-0.739856\pi\)
−0.684217 + 0.729279i \(0.739856\pi\)
\(578\) 4.93904e6 0.614926
\(579\) −5.08749e6 −0.630677
\(580\) 0 0
\(581\) −9.09993e6 −1.11840
\(582\) 1.74642e6 0.213718
\(583\) −2.19727e7 −2.67739
\(584\) −101256. −0.0122854
\(585\) 0 0
\(586\) −2.43610e6 −0.293056
\(587\) −7.96444e6 −0.954025 −0.477013 0.878896i \(-0.658280\pi\)
−0.477013 + 0.878896i \(0.658280\pi\)
\(588\) 1.82950e7 2.18218
\(589\) 1.77309e6 0.210592
\(590\) 0 0
\(591\) 4.25352e6 0.500934
\(592\) 3.35593e6 0.393558
\(593\) 1.19793e7 1.39892 0.699460 0.714671i \(-0.253424\pi\)
0.699460 + 0.714671i \(0.253424\pi\)
\(594\) 1.77190e7 2.06051
\(595\) 0 0
\(596\) −2.99330e6 −0.345172
\(597\) −1.63607e7 −1.87874
\(598\) 252251. 0.0288456
\(599\) 7.45663e6 0.849132 0.424566 0.905397i \(-0.360427\pi\)
0.424566 + 0.905397i \(0.360427\pi\)
\(600\) 0 0
\(601\) −1.04196e7 −1.17670 −0.588351 0.808606i \(-0.700223\pi\)
−0.588351 + 0.808606i \(0.700223\pi\)
\(602\) 8.59337e6 0.966434
\(603\) −2.07370e7 −2.32248
\(604\) −169862. −0.0189454
\(605\) 0 0
\(606\) −1.54075e7 −1.70432
\(607\) −571939. −0.0630054 −0.0315027 0.999504i \(-0.510029\pi\)
−0.0315027 + 0.999504i \(0.510029\pi\)
\(608\) −825262. −0.0905384
\(609\) 1.00826e7 1.10162
\(610\) 0 0
\(611\) 2.66171e6 0.288441
\(612\) −1.39437e7 −1.50487
\(613\) 1.61323e7 1.73398 0.866991 0.498323i \(-0.166051\pi\)
0.866991 + 0.498323i \(0.166051\pi\)
\(614\) 1.06704e7 1.14225
\(615\) 0 0
\(616\) 8.37299e6 0.889055
\(617\) 6.39133e6 0.675894 0.337947 0.941165i \(-0.390268\pi\)
0.337947 + 0.941165i \(0.390268\pi\)
\(618\) 5.31505e6 0.559804
\(619\) 1.27062e7 1.33287 0.666435 0.745563i \(-0.267819\pi\)
0.666435 + 0.745563i \(0.267819\pi\)
\(620\) 0 0
\(621\) −3.03771e6 −0.316095
\(622\) −6.49278e6 −0.672907
\(623\) 1.18172e7 1.21981
\(624\) −1.20665e6 −0.124057
\(625\) 0 0
\(626\) −2.36846e6 −0.241563
\(627\) −1.22312e7 −1.24251
\(628\) 5.37414e6 0.543764
\(629\) −2.13587e7 −2.15252
\(630\) 0 0
\(631\) −694354. −0.0694237 −0.0347118 0.999397i \(-0.511051\pi\)
−0.0347118 + 0.999397i \(0.511051\pi\)
\(632\) −396239. −0.0394607
\(633\) −5.77447e6 −0.572799
\(634\) 1.04414e7 1.03166
\(635\) 0 0
\(636\) −1.80193e7 −1.76643
\(637\) −6.92857e6 −0.676542
\(638\) 3.27278e6 0.318321
\(639\) −5.62676e6 −0.545138
\(640\) 0 0
\(641\) −8.71863e6 −0.838114 −0.419057 0.907960i \(-0.637639\pi\)
−0.419057 + 0.907960i \(0.637639\pi\)
\(642\) 2.08093e7 1.99260
\(643\) −5.98737e6 −0.571096 −0.285548 0.958364i \(-0.592176\pi\)
−0.285548 + 0.958364i \(0.592176\pi\)
\(644\) −1.43544e6 −0.136387
\(645\) 0 0
\(646\) 5.25234e6 0.495189
\(647\) 1.09581e7 1.02914 0.514571 0.857448i \(-0.327951\pi\)
0.514571 + 0.857448i \(0.327951\pi\)
\(648\) 6.21259e6 0.581212
\(649\) −2.58810e7 −2.41195
\(650\) 0 0
\(651\) −1.47528e7 −1.36434
\(652\) −3.23009e6 −0.297575
\(653\) −6.47503e6 −0.594236 −0.297118 0.954841i \(-0.596025\pi\)
−0.297118 + 0.954841i \(0.596025\pi\)
\(654\) 1.60728e6 0.146942
\(655\) 0 0
\(656\) −4.37758e6 −0.397169
\(657\) −846247. −0.0764863
\(658\) −1.51466e7 −1.36380
\(659\) 501723. 0.0450039 0.0225020 0.999747i \(-0.492837\pi\)
0.0225020 + 0.999747i \(0.492837\pi\)
\(660\) 0 0
\(661\) 4.00659e6 0.356674 0.178337 0.983969i \(-0.442928\pi\)
0.178337 + 0.983969i \(0.442928\pi\)
\(662\) 3.27514e6 0.290459
\(663\) 7.67969e6 0.678516
\(664\) −2.42235e6 −0.213215
\(665\) 0 0
\(666\) 2.80472e7 2.45021
\(667\) −561077. −0.0488324
\(668\) 7.13681e6 0.618818
\(669\) 2.92540e7 2.52708
\(670\) 0 0
\(671\) −1.64769e7 −1.41276
\(672\) 6.86652e6 0.586562
\(673\) −8.17473e6 −0.695722 −0.347861 0.937546i \(-0.613092\pi\)
−0.347861 + 0.937546i \(0.613092\pi\)
\(674\) −1.31564e7 −1.11554
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −1.00935e6 −0.0846392 −0.0423196 0.999104i \(-0.513475\pi\)
−0.0423196 + 0.999104i \(0.513475\pi\)
\(678\) 5.66757e6 0.473503
\(679\) 3.76368e6 0.313284
\(680\) 0 0
\(681\) 2.80882e6 0.232090
\(682\) −4.78870e6 −0.394237
\(683\) −1.99189e7 −1.63386 −0.816928 0.576739i \(-0.804325\pi\)
−0.816928 + 0.576739i \(0.804325\pi\)
\(684\) −6.89712e6 −0.563674
\(685\) 0 0
\(686\) 2.32640e7 1.88745
\(687\) 1.35875e7 1.09837
\(688\) 2.28751e6 0.184243
\(689\) 6.82417e6 0.547648
\(690\) 0 0
\(691\) −677407. −0.0539703 −0.0269851 0.999636i \(-0.508591\pi\)
−0.0269851 + 0.999636i \(0.508591\pi\)
\(692\) −918541. −0.0729177
\(693\) 6.99772e7 5.53508
\(694\) −556432. −0.0438544
\(695\) 0 0
\(696\) 2.68394e6 0.210015
\(697\) 2.78609e7 2.17227
\(698\) 5.67126e6 0.440596
\(699\) 2.32284e7 1.79815
\(700\) 0 0
\(701\) 1.04542e7 0.803518 0.401759 0.915745i \(-0.368399\pi\)
0.401759 + 0.915745i \(0.368399\pi\)
\(702\) −5.50310e6 −0.421468
\(703\) −1.05649e7 −0.806263
\(704\) 2.22884e6 0.169492
\(705\) 0 0
\(706\) −9.82700e6 −0.742009
\(707\) −3.32046e7 −2.49833
\(708\) −2.12245e7 −1.59131
\(709\) −2.25125e7 −1.68193 −0.840964 0.541091i \(-0.818011\pi\)
−0.840964 + 0.541091i \(0.818011\pi\)
\(710\) 0 0
\(711\) −3.31157e6 −0.245674
\(712\) 3.14566e6 0.232548
\(713\) 820964. 0.0604784
\(714\) −4.37017e7 −3.20813
\(715\) 0 0
\(716\) 1.39903e6 0.101987
\(717\) 3.76297e7 2.73358
\(718\) −1.15440e7 −0.835693
\(719\) −2.77678e6 −0.200317 −0.100159 0.994971i \(-0.531935\pi\)
−0.100159 + 0.994971i \(0.531935\pi\)
\(720\) 0 0
\(721\) 1.14544e7 0.820603
\(722\) −7.30637e6 −0.521625
\(723\) −4.63772e7 −3.29958
\(724\) 341466. 0.0242103
\(725\) 0 0
\(726\) 1.50664e7 1.06089
\(727\) −2.76872e6 −0.194287 −0.0971434 0.995270i \(-0.530971\pi\)
−0.0971434 + 0.995270i \(0.530971\pi\)
\(728\) −2.60044e6 −0.181852
\(729\) −3.25086e6 −0.226558
\(730\) 0 0
\(731\) −1.45587e7 −1.00770
\(732\) −1.35124e7 −0.932081
\(733\) 1.80998e7 1.24427 0.622133 0.782911i \(-0.286266\pi\)
0.622133 + 0.782911i \(0.286266\pi\)
\(734\) 1.13435e7 0.777152
\(735\) 0 0
\(736\) −382108. −0.0260011
\(737\) −2.10964e7 −1.43067
\(738\) −3.65857e7 −2.47269
\(739\) −3.57016e6 −0.240479 −0.120239 0.992745i \(-0.538366\pi\)
−0.120239 + 0.992745i \(0.538366\pi\)
\(740\) 0 0
\(741\) 3.79870e6 0.254149
\(742\) −3.88332e7 −2.58937
\(743\) 1.73285e7 1.15157 0.575783 0.817603i \(-0.304697\pi\)
0.575783 + 0.817603i \(0.304697\pi\)
\(744\) −3.92712e6 −0.260101
\(745\) 0 0
\(746\) −2.01076e7 −1.32286
\(747\) −2.02448e7 −1.32743
\(748\) −1.41854e7 −0.927015
\(749\) 4.48457e7 2.92090
\(750\) 0 0
\(751\) 3.04634e6 0.197096 0.0985480 0.995132i \(-0.468580\pi\)
0.0985480 + 0.995132i \(0.468580\pi\)
\(752\) −4.03193e6 −0.259997
\(753\) −8.12374e6 −0.522118
\(754\) −1.01644e6 −0.0651111
\(755\) 0 0
\(756\) 3.13156e7 1.99277
\(757\) 8.98398e6 0.569808 0.284904 0.958556i \(-0.408038\pi\)
0.284904 + 0.958556i \(0.408038\pi\)
\(758\) 8.59568e6 0.543384
\(759\) −5.66320e6 −0.356827
\(760\) 0 0
\(761\) 1.31757e7 0.824731 0.412366 0.911018i \(-0.364703\pi\)
0.412366 + 0.911018i \(0.364703\pi\)
\(762\) 2.03352e7 1.26871
\(763\) 3.46382e6 0.215399
\(764\) 4.92027e6 0.304969
\(765\) 0 0
\(766\) −3.33188e6 −0.205172
\(767\) 8.03799e6 0.493354
\(768\) 1.82783e6 0.111824
\(769\) 3.53661e6 0.215661 0.107830 0.994169i \(-0.465610\pi\)
0.107830 + 0.994169i \(0.465610\pi\)
\(770\) 0 0
\(771\) 1.52897e7 0.926322
\(772\) −2.91855e6 −0.176248
\(773\) 3.14397e7 1.89247 0.946235 0.323479i \(-0.104853\pi\)
0.946235 + 0.323479i \(0.104853\pi\)
\(774\) 1.91179e7 1.14706
\(775\) 0 0
\(776\) 1.00187e6 0.0597251
\(777\) 8.79044e7 5.22346
\(778\) −2.90097e6 −0.171828
\(779\) 1.37812e7 0.813659
\(780\) 0 0
\(781\) −5.72429e6 −0.335810
\(782\) 2.43191e6 0.142210
\(783\) 1.22404e7 0.713498
\(784\) 1.04953e7 0.609827
\(785\) 0 0
\(786\) 2.22805e7 1.28638
\(787\) −1.27213e7 −0.732139 −0.366069 0.930588i \(-0.619297\pi\)
−0.366069 + 0.930588i \(0.619297\pi\)
\(788\) 2.44013e6 0.139990
\(789\) −2.28259e7 −1.30538
\(790\) 0 0
\(791\) 1.22141e7 0.694097
\(792\) 1.86276e7 1.05522
\(793\) 5.11731e6 0.288974
\(794\) −9.70617e6 −0.546382
\(795\) 0 0
\(796\) −9.38569e6 −0.525029
\(797\) −1.84237e7 −1.02738 −0.513689 0.857977i \(-0.671721\pi\)
−0.513689 + 0.857977i \(0.671721\pi\)
\(798\) −2.16167e7 −1.20166
\(799\) 2.56610e7 1.42203
\(800\) 0 0
\(801\) 2.62899e7 1.44780
\(802\) −8.57506e6 −0.470762
\(803\) −860915. −0.0471164
\(804\) −1.73008e7 −0.943899
\(805\) 0 0
\(806\) 1.48725e6 0.0806394
\(807\) −2.62019e7 −1.41628
\(808\) −8.83888e6 −0.476287
\(809\) 2.10360e7 1.13004 0.565018 0.825079i \(-0.308869\pi\)
0.565018 + 0.825079i \(0.308869\pi\)
\(810\) 0 0
\(811\) 3.53571e7 1.88767 0.943833 0.330424i \(-0.107192\pi\)
0.943833 + 0.330424i \(0.107192\pi\)
\(812\) 5.78412e6 0.307856
\(813\) −4.25097e7 −2.25560
\(814\) 2.85334e7 1.50936
\(815\) 0 0
\(816\) −1.16331e7 −0.611606
\(817\) −7.20136e6 −0.377450
\(818\) −1.46458e7 −0.765295
\(819\) −2.17332e7 −1.13218
\(820\) 0 0
\(821\) 1.72038e7 0.890770 0.445385 0.895339i \(-0.353067\pi\)
0.445385 + 0.895339i \(0.353067\pi\)
\(822\) 3.85355e7 1.98921
\(823\) 947098. 0.0487411 0.0243705 0.999703i \(-0.492242\pi\)
0.0243705 + 0.999703i \(0.492242\pi\)
\(824\) 3.04909e6 0.156442
\(825\) 0 0
\(826\) −4.57405e7 −2.33266
\(827\) 3.05385e7 1.55269 0.776345 0.630308i \(-0.217072\pi\)
0.776345 + 0.630308i \(0.217072\pi\)
\(828\) −3.19346e6 −0.161877
\(829\) −1.57415e7 −0.795538 −0.397769 0.917486i \(-0.630215\pi\)
−0.397769 + 0.917486i \(0.630215\pi\)
\(830\) 0 0
\(831\) 1.22636e7 0.616047
\(832\) −692224. −0.0346688
\(833\) −6.67971e7 −3.33538
\(834\) 2.04257e7 1.01686
\(835\) 0 0
\(836\) −7.01668e6 −0.347229
\(837\) −1.79101e7 −0.883659
\(838\) 1.21514e7 0.597746
\(839\) 2.07700e7 1.01867 0.509333 0.860570i \(-0.329892\pi\)
0.509333 + 0.860570i \(0.329892\pi\)
\(840\) 0 0
\(841\) −1.82503e7 −0.889774
\(842\) −7.54651e6 −0.366831
\(843\) −1.65121e7 −0.800263
\(844\) −3.31265e6 −0.160073
\(845\) 0 0
\(846\) −3.36969e7 −1.61869
\(847\) 3.24694e7 1.55513
\(848\) −1.03372e7 −0.493643
\(849\) 2.16772e7 1.03213
\(850\) 0 0
\(851\) −4.89169e6 −0.231545
\(852\) −4.69438e6 −0.221554
\(853\) 1.91838e7 0.902740 0.451370 0.892337i \(-0.350936\pi\)
0.451370 + 0.892337i \(0.350936\pi\)
\(854\) −2.91203e7 −1.36632
\(855\) 0 0
\(856\) 1.19377e7 0.556847
\(857\) −2.64211e7 −1.22885 −0.614425 0.788975i \(-0.710612\pi\)
−0.614425 + 0.788975i \(0.710612\pi\)
\(858\) −1.02594e7 −0.475778
\(859\) −3.30576e7 −1.52858 −0.764289 0.644873i \(-0.776910\pi\)
−0.764289 + 0.644873i \(0.776910\pi\)
\(860\) 0 0
\(861\) −1.14665e8 −5.27137
\(862\) 2.86877e6 0.131501
\(863\) −1.19324e7 −0.545380 −0.272690 0.962102i \(-0.587913\pi\)
−0.272690 + 0.962102i \(0.587913\pi\)
\(864\) 8.33605e6 0.379906
\(865\) 0 0
\(866\) −1.05828e7 −0.479518
\(867\) 3.44381e7 1.55593
\(868\) −8.46328e6 −0.381276
\(869\) −3.36897e6 −0.151338
\(870\) 0 0
\(871\) 6.55203e6 0.292638
\(872\) 922051. 0.0410643
\(873\) 8.37313e6 0.371837
\(874\) 1.20292e6 0.0532671
\(875\) 0 0
\(876\) −706020. −0.0310854
\(877\) −3.88434e6 −0.170537 −0.0852684 0.996358i \(-0.527175\pi\)
−0.0852684 + 0.996358i \(0.527175\pi\)
\(878\) 1.79189e7 0.784469
\(879\) −1.69860e7 −0.741513
\(880\) 0 0
\(881\) −8.93397e6 −0.387797 −0.193899 0.981022i \(-0.562113\pi\)
−0.193899 + 0.981022i \(0.562113\pi\)
\(882\) 8.77148e7 3.79666
\(883\) 4.32552e6 0.186697 0.0933484 0.995634i \(-0.470243\pi\)
0.0933484 + 0.995634i \(0.470243\pi\)
\(884\) 4.40563e6 0.189617
\(885\) 0 0
\(886\) −1.72292e7 −0.737364
\(887\) −3.55552e7 −1.51738 −0.758689 0.651453i \(-0.774160\pi\)
−0.758689 + 0.651453i \(0.774160\pi\)
\(888\) 2.33997e7 0.995812
\(889\) 4.38242e7 1.85977
\(890\) 0 0
\(891\) 5.28217e7 2.22904
\(892\) 1.67822e7 0.706214
\(893\) 1.26930e7 0.532643
\(894\) −2.08712e7 −0.873380
\(895\) 0 0
\(896\) 3.93913e6 0.163919
\(897\) 1.75885e6 0.0729874
\(898\) −101092. −0.00418335
\(899\) −3.30807e6 −0.136514
\(900\) 0 0
\(901\) 6.57906e7 2.69993
\(902\) −3.72198e7 −1.52320
\(903\) 5.99184e7 2.44535
\(904\) 3.25133e6 0.132324
\(905\) 0 0
\(906\) −1.18438e6 −0.0479370
\(907\) −2.44157e7 −0.985486 −0.492743 0.870175i \(-0.664006\pi\)
−0.492743 + 0.870175i \(0.664006\pi\)
\(908\) 1.61134e6 0.0648593
\(909\) −7.38709e7 −2.96527
\(910\) 0 0
\(911\) 3.00267e7 1.19870 0.599352 0.800486i \(-0.295425\pi\)
0.599352 + 0.800486i \(0.295425\pi\)
\(912\) −5.75424e6 −0.229087
\(913\) −2.05957e7 −0.817711
\(914\) −4.57439e6 −0.181120
\(915\) 0 0
\(916\) 7.79478e6 0.306948
\(917\) 4.80164e7 1.88567
\(918\) −5.30544e7 −2.07785
\(919\) −1.30118e7 −0.508216 −0.254108 0.967176i \(-0.581782\pi\)
−0.254108 + 0.967176i \(0.581782\pi\)
\(920\) 0 0
\(921\) 7.44009e7 2.89021
\(922\) −3.33964e7 −1.29382
\(923\) 1.77782e6 0.0686886
\(924\) 5.83817e7 2.24956
\(925\) 0 0
\(926\) 1.36639e7 0.523656
\(927\) 2.54828e7 0.973975
\(928\) 1.53970e6 0.0586904
\(929\) −5.16678e7 −1.96418 −0.982089 0.188419i \(-0.939664\pi\)
−0.982089 + 0.188419i \(0.939664\pi\)
\(930\) 0 0
\(931\) −3.30407e7 −1.24932
\(932\) 1.33255e7 0.502509
\(933\) −4.52717e7 −1.70264
\(934\) −2.26842e7 −0.850857
\(935\) 0 0
\(936\) −5.78526e6 −0.215841
\(937\) 4.04703e6 0.150587 0.0752936 0.997161i \(-0.476011\pi\)
0.0752936 + 0.997161i \(0.476011\pi\)
\(938\) −3.72846e7 −1.38364
\(939\) −1.65144e7 −0.611221
\(940\) 0 0
\(941\) −4.43008e7 −1.63094 −0.815470 0.578799i \(-0.803521\pi\)
−0.815470 + 0.578799i \(0.803521\pi\)
\(942\) 3.74719e7 1.37587
\(943\) 6.38088e6 0.233669
\(944\) −1.21759e7 −0.444704
\(945\) 0 0
\(946\) 1.94492e7 0.706602
\(947\) 3.60463e7 1.30613 0.653064 0.757303i \(-0.273483\pi\)
0.653064 + 0.757303i \(0.273483\pi\)
\(948\) −2.76283e6 −0.0998464
\(949\) 267379. 0.00963745
\(950\) 0 0
\(951\) 7.28042e7 2.61039
\(952\) −2.50704e7 −0.896539
\(953\) 1.31248e7 0.468123 0.234061 0.972222i \(-0.424798\pi\)
0.234061 + 0.972222i \(0.424798\pi\)
\(954\) −8.63931e7 −3.07332
\(955\) 0 0
\(956\) 2.15871e7 0.763923
\(957\) 2.28198e7 0.805439
\(958\) −2.46536e7 −0.867894
\(959\) 8.30473e7 2.91594
\(960\) 0 0
\(961\) −2.37888e7 −0.830929
\(962\) −8.86176e6 −0.308733
\(963\) 9.97693e7 3.46682
\(964\) −2.66053e7 −0.922096
\(965\) 0 0
\(966\) −1.00088e7 −0.345096
\(967\) −2.48150e7 −0.853390 −0.426695 0.904396i \(-0.640322\pi\)
−0.426695 + 0.904396i \(0.640322\pi\)
\(968\) 8.64318e6 0.296473
\(969\) 3.66226e7 1.25297
\(970\) 0 0
\(971\) −3.54227e6 −0.120569 −0.0602843 0.998181i \(-0.519201\pi\)
−0.0602843 + 0.998181i \(0.519201\pi\)
\(972\) 1.16671e7 0.396093
\(973\) 4.40191e7 1.49059
\(974\) 2.93080e7 0.989896
\(975\) 0 0
\(976\) −7.75167e6 −0.260478
\(977\) −9.16916e6 −0.307322 −0.153661 0.988124i \(-0.549106\pi\)
−0.153661 + 0.988124i \(0.549106\pi\)
\(978\) −2.25222e7 −0.752947
\(979\) 2.67456e7 0.891857
\(980\) 0 0
\(981\) 7.70604e6 0.255658
\(982\) 3.55895e7 1.17772
\(983\) 3.05912e7 1.00975 0.504874 0.863193i \(-0.331539\pi\)
0.504874 + 0.863193i \(0.331539\pi\)
\(984\) −3.05233e7 −1.00495
\(985\) 0 0
\(986\) −9.79936e6 −0.321000
\(987\) −1.05611e8 −3.45078
\(988\) 2.17921e6 0.0710242
\(989\) −3.33433e6 −0.108397
\(990\) 0 0
\(991\) 3.47852e7 1.12515 0.562575 0.826746i \(-0.309811\pi\)
0.562575 + 0.826746i \(0.309811\pi\)
\(992\) −2.25288e6 −0.0726874
\(993\) 2.28363e7 0.734942
\(994\) −1.01168e7 −0.324771
\(995\) 0 0
\(996\) −1.68902e7 −0.539492
\(997\) 4.21812e7 1.34394 0.671972 0.740577i \(-0.265448\pi\)
0.671972 + 0.740577i \(0.265448\pi\)
\(998\) 1.20895e7 0.384222
\(999\) 1.06717e8 3.38314
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.j.1.3 3
5.2 odd 4 650.6.b.j.599.4 6
5.3 odd 4 650.6.b.j.599.3 6
5.4 even 2 130.6.a.f.1.1 3
20.19 odd 2 1040.6.a.l.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.f.1.1 3 5.4 even 2
650.6.a.j.1.3 3 1.1 even 1 trivial
650.6.b.j.599.3 6 5.3 odd 4
650.6.b.j.599.4 6 5.2 odd 4
1040.6.a.l.1.3 3 20.19 odd 2