Properties

Label 650.6.a.h.1.1
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.16228\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -13.8114 q^{3} +16.0000 q^{4} -55.2456 q^{6} -213.246 q^{7} +64.0000 q^{8} -52.2456 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -13.8114 q^{3} +16.0000 q^{4} -55.2456 q^{6} -213.246 q^{7} +64.0000 q^{8} -52.2456 q^{9} +587.285 q^{11} -220.982 q^{12} +169.000 q^{13} -852.982 q^{14} +256.000 q^{16} -162.605 q^{17} -208.982 q^{18} -81.3914 q^{19} +2945.22 q^{21} +2349.14 q^{22} +2948.84 q^{23} -883.929 q^{24} +676.000 q^{26} +4077.75 q^{27} -3411.93 q^{28} +6254.43 q^{29} -4034.62 q^{31} +1024.00 q^{32} -8111.22 q^{33} -650.420 q^{34} -835.929 q^{36} -7617.22 q^{37} -325.566 q^{38} -2334.12 q^{39} +958.121 q^{41} +11780.9 q^{42} -169.655 q^{43} +9396.56 q^{44} +11795.4 q^{46} -21612.6 q^{47} -3535.72 q^{48} +28666.7 q^{49} +2245.80 q^{51} +2704.00 q^{52} -24789.1 q^{53} +16311.0 q^{54} -13647.7 q^{56} +1124.13 q^{57} +25017.7 q^{58} +40109.2 q^{59} -16343.0 q^{61} -16138.5 q^{62} +11141.1 q^{63} +4096.00 q^{64} -32444.9 q^{66} -18362.1 q^{67} -2601.68 q^{68} -40727.6 q^{69} -77846.0 q^{71} -3343.72 q^{72} +62130.2 q^{73} -30468.9 q^{74} -1302.26 q^{76} -125236. q^{77} -9336.50 q^{78} -60599.1 q^{79} -43623.7 q^{81} +3832.48 q^{82} +2654.46 q^{83} +47123.5 q^{84} -678.619 q^{86} -86382.4 q^{87} +37586.2 q^{88} +8229.77 q^{89} -36038.5 q^{91} +47181.5 q^{92} +55723.7 q^{93} -86450.3 q^{94} -14142.9 q^{96} +53844.0 q^{97} +114667. q^{98} -30683.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 4 q^{3} + 32 q^{4} + 16 q^{6} - 300 q^{7} + 128 q^{8} + 22 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 4 q^{3} + 32 q^{4} + 16 q^{6} - 300 q^{7} + 128 q^{8} + 22 q^{9} + 384 q^{11} + 64 q^{12} + 338 q^{13} - 1200 q^{14} + 512 q^{16} + 244 q^{17} + 88 q^{18} - 2408 q^{19} + 1400 q^{21} + 1536 q^{22} - 332 q^{23} + 256 q^{24} + 1352 q^{26} + 1072 q^{27} - 4800 q^{28} + 3528 q^{29} + 880 q^{31} + 2048 q^{32} - 11732 q^{33} + 976 q^{34} + 352 q^{36} - 10744 q^{37} - 9632 q^{38} + 676 q^{39} + 16020 q^{41} + 5600 q^{42} - 2964 q^{43} + 6144 q^{44} - 1328 q^{46} - 38292 q^{47} + 1024 q^{48} + 19386 q^{49} + 9488 q^{51} + 5408 q^{52} - 42052 q^{53} + 4288 q^{54} - 19200 q^{56} - 40316 q^{57} + 14112 q^{58} + 42872 q^{59} - 33192 q^{61} + 3520 q^{62} + 4700 q^{63} + 8192 q^{64} - 46928 q^{66} - 37420 q^{67} + 3904 q^{68} - 99164 q^{69} - 69520 q^{71} + 1408 q^{72} + 12632 q^{73} - 42976 q^{74} - 38528 q^{76} - 107600 q^{77} + 2704 q^{78} + 35208 q^{79} - 115202 q^{81} + 64080 q^{82} - 31500 q^{83} + 22400 q^{84} - 11856 q^{86} - 134944 q^{87} + 24576 q^{88} - 18452 q^{89} - 50700 q^{91} - 5312 q^{92} + 143260 q^{93} - 153168 q^{94} + 4096 q^{96} + 28884 q^{97} + 77544 q^{98} - 45776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −13.8114 −0.886001 −0.443000 0.896521i \(-0.646086\pi\)
−0.443000 + 0.896521i \(0.646086\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −55.2456 −0.626497
\(7\) −213.246 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(8\) 64.0000 0.353553
\(9\) −52.2456 −0.215002
\(10\) 0 0
\(11\) 587.285 1.46341 0.731707 0.681620i \(-0.238724\pi\)
0.731707 + 0.681620i \(0.238724\pi\)
\(12\) −220.982 −0.443000
\(13\) 169.000 0.277350
\(14\) −852.982 −1.16311
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −162.605 −0.136462 −0.0682310 0.997670i \(-0.521735\pi\)
−0.0682310 + 0.997670i \(0.521735\pi\)
\(18\) −208.982 −0.152030
\(19\) −81.3914 −0.0517243 −0.0258622 0.999666i \(-0.508233\pi\)
−0.0258622 + 0.999666i \(0.508233\pi\)
\(20\) 0 0
\(21\) 2945.22 1.45737
\(22\) 2349.14 1.03479
\(23\) 2948.84 1.16234 0.581169 0.813783i \(-0.302596\pi\)
0.581169 + 0.813783i \(0.302596\pi\)
\(24\) −883.929 −0.313249
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) 4077.75 1.07649
\(28\) −3411.93 −0.822441
\(29\) 6254.43 1.38100 0.690499 0.723333i \(-0.257391\pi\)
0.690499 + 0.723333i \(0.257391\pi\)
\(30\) 0 0
\(31\) −4034.62 −0.754048 −0.377024 0.926204i \(-0.623052\pi\)
−0.377024 + 0.926204i \(0.623052\pi\)
\(32\) 1024.00 0.176777
\(33\) −8111.22 −1.29659
\(34\) −650.420 −0.0964932
\(35\) 0 0
\(36\) −835.929 −0.107501
\(37\) −7617.22 −0.914728 −0.457364 0.889280i \(-0.651206\pi\)
−0.457364 + 0.889280i \(0.651206\pi\)
\(38\) −325.566 −0.0365746
\(39\) −2334.12 −0.245732
\(40\) 0 0
\(41\) 958.121 0.0890145 0.0445072 0.999009i \(-0.485828\pi\)
0.0445072 + 0.999009i \(0.485828\pi\)
\(42\) 11780.9 1.03051
\(43\) −169.655 −0.0139925 −0.00699624 0.999976i \(-0.502227\pi\)
−0.00699624 + 0.999976i \(0.502227\pi\)
\(44\) 9396.56 0.731707
\(45\) 0 0
\(46\) 11795.4 0.821897
\(47\) −21612.6 −1.42712 −0.713562 0.700592i \(-0.752919\pi\)
−0.713562 + 0.700592i \(0.752919\pi\)
\(48\) −3535.72 −0.221500
\(49\) 28666.7 1.70564
\(50\) 0 0
\(51\) 2245.80 0.120905
\(52\) 2704.00 0.138675
\(53\) −24789.1 −1.21219 −0.606096 0.795392i \(-0.707265\pi\)
−0.606096 + 0.795392i \(0.707265\pi\)
\(54\) 16311.0 0.761196
\(55\) 0 0
\(56\) −13647.7 −0.581554
\(57\) 1124.13 0.0458278
\(58\) 25017.7 0.976513
\(59\) 40109.2 1.50008 0.750040 0.661392i \(-0.230034\pi\)
0.750040 + 0.661392i \(0.230034\pi\)
\(60\) 0 0
\(61\) −16343.0 −0.562351 −0.281176 0.959656i \(-0.590724\pi\)
−0.281176 + 0.959656i \(0.590724\pi\)
\(62\) −16138.5 −0.533192
\(63\) 11141.1 0.353653
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −32444.9 −0.916824
\(67\) −18362.1 −0.499731 −0.249866 0.968281i \(-0.580386\pi\)
−0.249866 + 0.968281i \(0.580386\pi\)
\(68\) −2601.68 −0.0682310
\(69\) −40727.6 −1.02983
\(70\) 0 0
\(71\) −77846.0 −1.83270 −0.916348 0.400382i \(-0.868877\pi\)
−0.916348 + 0.400382i \(0.868877\pi\)
\(72\) −3343.72 −0.0760148
\(73\) 62130.2 1.36457 0.682285 0.731087i \(-0.260986\pi\)
0.682285 + 0.731087i \(0.260986\pi\)
\(74\) −30468.9 −0.646810
\(75\) 0 0
\(76\) −1302.26 −0.0258622
\(77\) −125236. −2.40714
\(78\) −9336.50 −0.173759
\(79\) −60599.1 −1.09244 −0.546221 0.837641i \(-0.683934\pi\)
−0.546221 + 0.837641i \(0.683934\pi\)
\(80\) 0 0
\(81\) −43623.7 −0.738772
\(82\) 3832.48 0.0629427
\(83\) 2654.46 0.0422941 0.0211471 0.999776i \(-0.493268\pi\)
0.0211471 + 0.999776i \(0.493268\pi\)
\(84\) 47123.5 0.728684
\(85\) 0 0
\(86\) −678.619 −0.00989418
\(87\) −86382.4 −1.22357
\(88\) 37586.2 0.517395
\(89\) 8229.77 0.110132 0.0550659 0.998483i \(-0.482463\pi\)
0.0550659 + 0.998483i \(0.482463\pi\)
\(90\) 0 0
\(91\) −36038.5 −0.456208
\(92\) 47181.5 0.581169
\(93\) 55723.7 0.668087
\(94\) −86450.3 −1.00913
\(95\) 0 0
\(96\) −14142.9 −0.156624
\(97\) 53844.0 0.581042 0.290521 0.956869i \(-0.406171\pi\)
0.290521 + 0.956869i \(0.406171\pi\)
\(98\) 114667. 1.20607
\(99\) −30683.0 −0.314637
\(100\) 0 0
\(101\) −167556. −1.63439 −0.817196 0.576360i \(-0.804473\pi\)
−0.817196 + 0.576360i \(0.804473\pi\)
\(102\) 8983.20 0.0854930
\(103\) −30973.8 −0.287675 −0.143837 0.989601i \(-0.545944\pi\)
−0.143837 + 0.989601i \(0.545944\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) −99156.4 −0.857149
\(107\) 97343.8 0.821956 0.410978 0.911645i \(-0.365187\pi\)
0.410978 + 0.911645i \(0.365187\pi\)
\(108\) 65244.0 0.538247
\(109\) 16696.8 0.134607 0.0673035 0.997733i \(-0.478560\pi\)
0.0673035 + 0.997733i \(0.478560\pi\)
\(110\) 0 0
\(111\) 105204. 0.810450
\(112\) −54590.9 −0.411221
\(113\) −219357. −1.61605 −0.808027 0.589145i \(-0.799465\pi\)
−0.808027 + 0.589145i \(0.799465\pi\)
\(114\) 4496.51 0.0324051
\(115\) 0 0
\(116\) 100071. 0.690499
\(117\) −8829.50 −0.0596309
\(118\) 160437. 1.06072
\(119\) 34674.8 0.224464
\(120\) 0 0
\(121\) 183852. 1.14158
\(122\) −65372.1 −0.397642
\(123\) −13233.0 −0.0788669
\(124\) −64554.0 −0.377024
\(125\) 0 0
\(126\) 44564.5 0.250071
\(127\) −158753. −0.873399 −0.436700 0.899607i \(-0.643853\pi\)
−0.436700 + 0.899607i \(0.643853\pi\)
\(128\) 16384.0 0.0883883
\(129\) 2343.17 0.0123974
\(130\) 0 0
\(131\) 160566. 0.817477 0.408739 0.912651i \(-0.365969\pi\)
0.408739 + 0.912651i \(0.365969\pi\)
\(132\) −129779. −0.648293
\(133\) 17356.4 0.0850804
\(134\) −73448.6 −0.353363
\(135\) 0 0
\(136\) −10406.7 −0.0482466
\(137\) 295668. 1.34587 0.672934 0.739702i \(-0.265034\pi\)
0.672934 + 0.739702i \(0.265034\pi\)
\(138\) −162910. −0.728201
\(139\) 6197.57 0.0272072 0.0136036 0.999907i \(-0.495670\pi\)
0.0136036 + 0.999907i \(0.495670\pi\)
\(140\) 0 0
\(141\) 298500. 1.26443
\(142\) −311384. −1.29591
\(143\) 99251.1 0.405878
\(144\) −13374.9 −0.0537506
\(145\) 0 0
\(146\) 248521. 0.964896
\(147\) −395926. −1.51120
\(148\) −121875. −0.457364
\(149\) −371033. −1.36914 −0.684569 0.728948i \(-0.740010\pi\)
−0.684569 + 0.728948i \(0.740010\pi\)
\(150\) 0 0
\(151\) −508361. −1.81439 −0.907193 0.420714i \(-0.861780\pi\)
−0.907193 + 0.420714i \(0.861780\pi\)
\(152\) −5209.05 −0.0182873
\(153\) 8495.39 0.0293396
\(154\) −500943. −1.70211
\(155\) 0 0
\(156\) −37346.0 −0.122866
\(157\) −60014.9 −0.194317 −0.0971583 0.995269i \(-0.530975\pi\)
−0.0971583 + 0.995269i \(0.530975\pi\)
\(158\) −242397. −0.772474
\(159\) 342372. 1.07400
\(160\) 0 0
\(161\) −628828. −1.91191
\(162\) −174495. −0.522391
\(163\) 365913. 1.07872 0.539360 0.842075i \(-0.318666\pi\)
0.539360 + 0.842075i \(0.318666\pi\)
\(164\) 15329.9 0.0445072
\(165\) 0 0
\(166\) 10617.8 0.0299065
\(167\) −67392.0 −0.186990 −0.0934948 0.995620i \(-0.529804\pi\)
−0.0934948 + 0.995620i \(0.529804\pi\)
\(168\) 188494. 0.515257
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 4252.34 0.0111208
\(172\) −2714.48 −0.00699624
\(173\) −518921. −1.31821 −0.659107 0.752049i \(-0.729066\pi\)
−0.659107 + 0.752049i \(0.729066\pi\)
\(174\) −345530. −0.865191
\(175\) 0 0
\(176\) 150345. 0.365853
\(177\) −553964. −1.32907
\(178\) 32919.1 0.0778750
\(179\) −89728.6 −0.209314 −0.104657 0.994508i \(-0.533374\pi\)
−0.104657 + 0.994508i \(0.533374\pi\)
\(180\) 0 0
\(181\) −376272. −0.853700 −0.426850 0.904322i \(-0.640377\pi\)
−0.426850 + 0.904322i \(0.640377\pi\)
\(182\) −144154. −0.322588
\(183\) 225720. 0.498244
\(184\) 188726. 0.410948
\(185\) 0 0
\(186\) 222895. 0.472409
\(187\) −95495.4 −0.199700
\(188\) −345801. −0.713562
\(189\) −869562. −1.77070
\(190\) 0 0
\(191\) 206748. 0.410070 0.205035 0.978755i \(-0.434269\pi\)
0.205035 + 0.978755i \(0.434269\pi\)
\(192\) −56571.4 −0.110750
\(193\) 413088. 0.798269 0.399135 0.916892i \(-0.369311\pi\)
0.399135 + 0.916892i \(0.369311\pi\)
\(194\) 215376. 0.410859
\(195\) 0 0
\(196\) 458667. 0.852819
\(197\) −538825. −0.989196 −0.494598 0.869122i \(-0.664685\pi\)
−0.494598 + 0.869122i \(0.664685\pi\)
\(198\) −122732. −0.222482
\(199\) −147336. −0.263740 −0.131870 0.991267i \(-0.542098\pi\)
−0.131870 + 0.991267i \(0.542098\pi\)
\(200\) 0 0
\(201\) 253607. 0.442762
\(202\) −670223. −1.15569
\(203\) −1.33373e6 −2.27158
\(204\) 35932.8 0.0604527
\(205\) 0 0
\(206\) −123895. −0.203417
\(207\) −154064. −0.249905
\(208\) 43264.0 0.0693375
\(209\) −47799.9 −0.0756940
\(210\) 0 0
\(211\) −1.14921e6 −1.77703 −0.888515 0.458847i \(-0.848262\pi\)
−0.888515 + 0.458847i \(0.848262\pi\)
\(212\) −396626. −0.606096
\(213\) 1.07516e6 1.62377
\(214\) 389375. 0.581211
\(215\) 0 0
\(216\) 260976. 0.380598
\(217\) 860365. 1.24032
\(218\) 66787.3 0.0951815
\(219\) −858104. −1.20901
\(220\) 0 0
\(221\) −27480.2 −0.0378477
\(222\) 420817. 0.573075
\(223\) 1.39430e6 1.87756 0.938782 0.344513i \(-0.111956\pi\)
0.938782 + 0.344513i \(0.111956\pi\)
\(224\) −218363. −0.290777
\(225\) 0 0
\(226\) −877429. −1.14272
\(227\) −1.40291e6 −1.80703 −0.903515 0.428556i \(-0.859023\pi\)
−0.903515 + 0.428556i \(0.859023\pi\)
\(228\) 17986.1 0.0229139
\(229\) −796626. −1.00384 −0.501922 0.864913i \(-0.667373\pi\)
−0.501922 + 0.864913i \(0.667373\pi\)
\(230\) 0 0
\(231\) 1.72968e6 2.13273
\(232\) 400284. 0.488257
\(233\) −1.15975e6 −1.39951 −0.699753 0.714385i \(-0.746707\pi\)
−0.699753 + 0.714385i \(0.746707\pi\)
\(234\) −35318.0 −0.0421654
\(235\) 0 0
\(236\) 641748. 0.750040
\(237\) 836958. 0.967905
\(238\) 138699. 0.158720
\(239\) −687529. −0.778568 −0.389284 0.921118i \(-0.627278\pi\)
−0.389284 + 0.921118i \(0.627278\pi\)
\(240\) 0 0
\(241\) −391345. −0.434028 −0.217014 0.976169i \(-0.569632\pi\)
−0.217014 + 0.976169i \(0.569632\pi\)
\(242\) 735409. 0.807218
\(243\) −388389. −0.421941
\(244\) −261488. −0.281176
\(245\) 0 0
\(246\) −52931.9 −0.0557673
\(247\) −13755.2 −0.0143457
\(248\) −258216. −0.266596
\(249\) −36661.7 −0.0374727
\(250\) 0 0
\(251\) 944723. 0.946499 0.473249 0.880928i \(-0.343081\pi\)
0.473249 + 0.880928i \(0.343081\pi\)
\(252\) 178258. 0.176827
\(253\) 1.73181e6 1.70098
\(254\) −635012. −0.617587
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −297219. −0.280701 −0.140351 0.990102i \(-0.544823\pi\)
−0.140351 + 0.990102i \(0.544823\pi\)
\(258\) 9372.67 0.00876626
\(259\) 1.62434e6 1.50462
\(260\) 0 0
\(261\) −326766. −0.296918
\(262\) 642264. 0.578044
\(263\) 1.53097e6 1.36483 0.682414 0.730966i \(-0.260930\pi\)
0.682414 + 0.730966i \(0.260930\pi\)
\(264\) −519118. −0.458412
\(265\) 0 0
\(266\) 69425.4 0.0601609
\(267\) −113665. −0.0975769
\(268\) −293794. −0.249866
\(269\) −1.00878e6 −0.849994 −0.424997 0.905195i \(-0.639725\pi\)
−0.424997 + 0.905195i \(0.639725\pi\)
\(270\) 0 0
\(271\) 2.19122e6 1.81244 0.906220 0.422806i \(-0.138955\pi\)
0.906220 + 0.422806i \(0.138955\pi\)
\(272\) −41626.9 −0.0341155
\(273\) 497742. 0.404201
\(274\) 1.18267e6 0.951673
\(275\) 0 0
\(276\) −651642. −0.514916
\(277\) 17924.0 0.0140357 0.00701786 0.999975i \(-0.497766\pi\)
0.00701786 + 0.999975i \(0.497766\pi\)
\(278\) 24790.3 0.0192384
\(279\) 210791. 0.162122
\(280\) 0 0
\(281\) −2.40663e6 −1.81821 −0.909106 0.416566i \(-0.863234\pi\)
−0.909106 + 0.416566i \(0.863234\pi\)
\(282\) 1.19400e6 0.894090
\(283\) 1.36921e6 1.01626 0.508128 0.861281i \(-0.330338\pi\)
0.508128 + 0.861281i \(0.330338\pi\)
\(284\) −1.24554e6 −0.916348
\(285\) 0 0
\(286\) 397004. 0.286999
\(287\) −204315. −0.146418
\(288\) −53499.4 −0.0380074
\(289\) −1.39342e6 −0.981378
\(290\) 0 0
\(291\) −743660. −0.514804
\(292\) 994083. 0.682285
\(293\) 390649. 0.265838 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(294\) −1.58371e6 −1.06858
\(295\) 0 0
\(296\) −487502. −0.323405
\(297\) 2.39480e6 1.57535
\(298\) −1.48413e6 −0.968127
\(299\) 498355. 0.322374
\(300\) 0 0
\(301\) 36178.1 0.0230160
\(302\) −2.03344e6 −1.28297
\(303\) 2.31418e6 1.44807
\(304\) −20836.2 −0.0129311
\(305\) 0 0
\(306\) 33981.6 0.0207463
\(307\) −566546. −0.343075 −0.171537 0.985178i \(-0.554873\pi\)
−0.171537 + 0.985178i \(0.554873\pi\)
\(308\) −2.00377e6 −1.20357
\(309\) 427791. 0.254880
\(310\) 0 0
\(311\) 881239. 0.516646 0.258323 0.966059i \(-0.416830\pi\)
0.258323 + 0.966059i \(0.416830\pi\)
\(312\) −149384. −0.0868795
\(313\) 916421. 0.528731 0.264365 0.964423i \(-0.414838\pi\)
0.264365 + 0.964423i \(0.414838\pi\)
\(314\) −240060. −0.137403
\(315\) 0 0
\(316\) −969586. −0.546221
\(317\) −2.01084e6 −1.12390 −0.561951 0.827170i \(-0.689949\pi\)
−0.561951 + 0.827170i \(0.689949\pi\)
\(318\) 1.36949e6 0.759435
\(319\) 3.67313e6 2.02097
\(320\) 0 0
\(321\) −1.34445e6 −0.728254
\(322\) −2.51531e6 −1.35192
\(323\) 13234.7 0.00705840
\(324\) −697980. −0.369386
\(325\) 0 0
\(326\) 1.46365e6 0.762770
\(327\) −230606. −0.119262
\(328\) 61319.7 0.0314714
\(329\) 4.60879e6 2.34745
\(330\) 0 0
\(331\) 2.47715e6 1.24275 0.621373 0.783515i \(-0.286575\pi\)
0.621373 + 0.783515i \(0.286575\pi\)
\(332\) 42471.3 0.0211471
\(333\) 397966. 0.196669
\(334\) −269568. −0.132222
\(335\) 0 0
\(336\) 753976. 0.364342
\(337\) −2.55550e6 −1.22575 −0.612873 0.790181i \(-0.709986\pi\)
−0.612873 + 0.790181i \(0.709986\pi\)
\(338\) 114244. 0.0543928
\(339\) 3.02963e6 1.43183
\(340\) 0 0
\(341\) −2.36947e6 −1.10348
\(342\) 17009.4 0.00786362
\(343\) −2.52902e6 −1.16069
\(344\) −10857.9 −0.00494709
\(345\) 0 0
\(346\) −2.07568e6 −0.932118
\(347\) 475000. 0.211773 0.105886 0.994378i \(-0.466232\pi\)
0.105886 + 0.994378i \(0.466232\pi\)
\(348\) −1.38212e6 −0.611783
\(349\) 615277. 0.270400 0.135200 0.990818i \(-0.456832\pi\)
0.135200 + 0.990818i \(0.456832\pi\)
\(350\) 0 0
\(351\) 689140. 0.298565
\(352\) 601380. 0.258697
\(353\) 4.37400e6 1.86828 0.934140 0.356908i \(-0.116169\pi\)
0.934140 + 0.356908i \(0.116169\pi\)
\(354\) −2.21586e6 −0.939796
\(355\) 0 0
\(356\) 131676. 0.0550659
\(357\) −478907. −0.198875
\(358\) −358914. −0.148007
\(359\) 4.59562e6 1.88195 0.940975 0.338476i \(-0.109911\pi\)
0.940975 + 0.338476i \(0.109911\pi\)
\(360\) 0 0
\(361\) −2.46947e6 −0.997325
\(362\) −1.50509e6 −0.603657
\(363\) −2.53926e6 −1.01144
\(364\) −576616. −0.228104
\(365\) 0 0
\(366\) 902879. 0.352312
\(367\) 4.59362e6 1.78029 0.890143 0.455681i \(-0.150604\pi\)
0.890143 + 0.455681i \(0.150604\pi\)
\(368\) 754904. 0.290584
\(369\) −50057.6 −0.0191383
\(370\) 0 0
\(371\) 5.28617e6 1.99391
\(372\) 891580. 0.334043
\(373\) −1.74314e6 −0.648724 −0.324362 0.945933i \(-0.605150\pi\)
−0.324362 + 0.945933i \(0.605150\pi\)
\(374\) −381982. −0.141209
\(375\) 0 0
\(376\) −1.38320e6 −0.504565
\(377\) 1.05700e6 0.383020
\(378\) −3.47825e6 −1.25208
\(379\) −4.42529e6 −1.58250 −0.791250 0.611493i \(-0.790569\pi\)
−0.791250 + 0.611493i \(0.790569\pi\)
\(380\) 0 0
\(381\) 2.19260e6 0.773833
\(382\) 826992. 0.289963
\(383\) −1.39773e6 −0.486884 −0.243442 0.969915i \(-0.578277\pi\)
−0.243442 + 0.969915i \(0.578277\pi\)
\(384\) −226286. −0.0783122
\(385\) 0 0
\(386\) 1.65235e6 0.564462
\(387\) 8863.71 0.00300842
\(388\) 861504. 0.290521
\(389\) 1.63535e6 0.547946 0.273973 0.961737i \(-0.411662\pi\)
0.273973 + 0.961737i \(0.411662\pi\)
\(390\) 0 0
\(391\) −479497. −0.158615
\(392\) 1.83467e6 0.603034
\(393\) −2.21764e6 −0.724286
\(394\) −2.15530e6 −0.699468
\(395\) 0 0
\(396\) −490928. −0.157319
\(397\) −4.90653e6 −1.56242 −0.781210 0.624268i \(-0.785397\pi\)
−0.781210 + 0.624268i \(0.785397\pi\)
\(398\) −589344. −0.186493
\(399\) −239715. −0.0753813
\(400\) 0 0
\(401\) −951184. −0.295395 −0.147698 0.989033i \(-0.547186\pi\)
−0.147698 + 0.989033i \(0.547186\pi\)
\(402\) 1.01443e6 0.313080
\(403\) −681851. −0.209135
\(404\) −2.68089e6 −0.817196
\(405\) 0 0
\(406\) −5.33492e6 −1.60625
\(407\) −4.47348e6 −1.33863
\(408\) 143731. 0.0427465
\(409\) 4.49464e6 1.32858 0.664289 0.747476i \(-0.268735\pi\)
0.664289 + 0.747476i \(0.268735\pi\)
\(410\) 0 0
\(411\) −4.08358e6 −1.19244
\(412\) −495581. −0.143837
\(413\) −8.55312e6 −2.46746
\(414\) −616256. −0.176710
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) −85597.0 −0.0241056
\(418\) −191200. −0.0535238
\(419\) −828906. −0.230659 −0.115329 0.993327i \(-0.536792\pi\)
−0.115329 + 0.993327i \(0.536792\pi\)
\(420\) 0 0
\(421\) 744813. 0.204806 0.102403 0.994743i \(-0.467347\pi\)
0.102403 + 0.994743i \(0.467347\pi\)
\(422\) −4.59686e6 −1.25655
\(423\) 1.12916e6 0.306835
\(424\) −1.58650e6 −0.428574
\(425\) 0 0
\(426\) 4.30065e6 1.14818
\(427\) 3.48508e6 0.925002
\(428\) 1.55750e6 0.410978
\(429\) −1.37080e6 −0.359608
\(430\) 0 0
\(431\) −3.89529e6 −1.01006 −0.505030 0.863102i \(-0.668519\pi\)
−0.505030 + 0.863102i \(0.668519\pi\)
\(432\) 1.04390e6 0.269123
\(433\) 5.88297e6 1.50792 0.753958 0.656923i \(-0.228142\pi\)
0.753958 + 0.656923i \(0.228142\pi\)
\(434\) 3.44146e6 0.877038
\(435\) 0 0
\(436\) 267149. 0.0673035
\(437\) −240011. −0.0601211
\(438\) −3.43242e6 −0.854899
\(439\) 1.73024e6 0.428495 0.214248 0.976779i \(-0.431270\pi\)
0.214248 + 0.976779i \(0.431270\pi\)
\(440\) 0 0
\(441\) −1.49771e6 −0.366716
\(442\) −109921. −0.0267624
\(443\) 106432. 0.0257670 0.0128835 0.999917i \(-0.495899\pi\)
0.0128835 + 0.999917i \(0.495899\pi\)
\(444\) 1.68327e6 0.405225
\(445\) 0 0
\(446\) 5.57721e6 1.32764
\(447\) 5.12449e6 1.21306
\(448\) −873454. −0.205610
\(449\) −4.89220e6 −1.14522 −0.572609 0.819828i \(-0.694069\pi\)
−0.572609 + 0.819828i \(0.694069\pi\)
\(450\) 0 0
\(451\) 562690. 0.130265
\(452\) −3.50972e6 −0.808027
\(453\) 7.02117e6 1.60755
\(454\) −5.61165e6 −1.27776
\(455\) 0 0
\(456\) 71944.2 0.0162026
\(457\) −177252. −0.0397008 −0.0198504 0.999803i \(-0.506319\pi\)
−0.0198504 + 0.999803i \(0.506319\pi\)
\(458\) −3.18651e6 −0.709824
\(459\) −663063. −0.146900
\(460\) 0 0
\(461\) 7.15676e6 1.56843 0.784213 0.620491i \(-0.213067\pi\)
0.784213 + 0.620491i \(0.213067\pi\)
\(462\) 6.91872e6 1.50807
\(463\) −3.44228e6 −0.746267 −0.373133 0.927778i \(-0.621717\pi\)
−0.373133 + 0.927778i \(0.621717\pi\)
\(464\) 1.60114e6 0.345249
\(465\) 0 0
\(466\) −4.63900e6 −0.989600
\(467\) 9.22486e6 1.95735 0.978673 0.205423i \(-0.0658571\pi\)
0.978673 + 0.205423i \(0.0658571\pi\)
\(468\) −141272. −0.0298155
\(469\) 3.91565e6 0.821999
\(470\) 0 0
\(471\) 828889. 0.172165
\(472\) 2.56699e6 0.530358
\(473\) −99635.7 −0.0204768
\(474\) 3.34783e6 0.684412
\(475\) 0 0
\(476\) 554797. 0.112232
\(477\) 1.29512e6 0.260624
\(478\) −2.75012e6 −0.550531
\(479\) 1.23331e6 0.245602 0.122801 0.992431i \(-0.460812\pi\)
0.122801 + 0.992431i \(0.460812\pi\)
\(480\) 0 0
\(481\) −1.28731e6 −0.253700
\(482\) −1.56538e6 −0.306904
\(483\) 8.68498e6 1.69395
\(484\) 2.94164e6 0.570789
\(485\) 0 0
\(486\) −1.55356e6 −0.298357
\(487\) 6.21276e6 1.18703 0.593516 0.804823i \(-0.297740\pi\)
0.593516 + 0.804823i \(0.297740\pi\)
\(488\) −1.04595e6 −0.198821
\(489\) −5.05376e6 −0.955747
\(490\) 0 0
\(491\) −7.05221e6 −1.32014 −0.660072 0.751202i \(-0.729474\pi\)
−0.660072 + 0.751202i \(0.729474\pi\)
\(492\) −211728. −0.0394335
\(493\) −1.01700e6 −0.188454
\(494\) −55020.6 −0.0101440
\(495\) 0 0
\(496\) −1.03286e6 −0.188512
\(497\) 1.66003e7 3.01457
\(498\) −146647. −0.0264972
\(499\) 5.63009e6 1.01220 0.506098 0.862476i \(-0.331088\pi\)
0.506098 + 0.862476i \(0.331088\pi\)
\(500\) 0 0
\(501\) 930778. 0.165673
\(502\) 3.77889e6 0.669276
\(503\) −9.65803e6 −1.70204 −0.851018 0.525137i \(-0.824014\pi\)
−0.851018 + 0.525137i \(0.824014\pi\)
\(504\) 713032. 0.125035
\(505\) 0 0
\(506\) 6.92724e6 1.20277
\(507\) −394467. −0.0681539
\(508\) −2.54005e6 −0.436700
\(509\) −4.39209e6 −0.751409 −0.375705 0.926739i \(-0.622599\pi\)
−0.375705 + 0.926739i \(0.622599\pi\)
\(510\) 0 0
\(511\) −1.32490e7 −2.24456
\(512\) 262144. 0.0441942
\(513\) −331894. −0.0556809
\(514\) −1.18888e6 −0.198486
\(515\) 0 0
\(516\) 37490.7 0.00619868
\(517\) −1.26927e7 −2.08847
\(518\) 6.49735e6 1.06393
\(519\) 7.16702e6 1.16794
\(520\) 0 0
\(521\) −8.38443e6 −1.35325 −0.676627 0.736326i \(-0.736559\pi\)
−0.676627 + 0.736326i \(0.736559\pi\)
\(522\) −1.30707e6 −0.209953
\(523\) −2.54489e6 −0.406831 −0.203416 0.979092i \(-0.565204\pi\)
−0.203416 + 0.979092i \(0.565204\pi\)
\(524\) 2.56906e6 0.408739
\(525\) 0 0
\(526\) 6.12389e6 0.965080
\(527\) 656050. 0.102899
\(528\) −2.07647e6 −0.324146
\(529\) 2.25933e6 0.351028
\(530\) 0 0
\(531\) −2.09553e6 −0.322521
\(532\) 277702. 0.0425402
\(533\) 161922. 0.0246882
\(534\) −454658. −0.0689973
\(535\) 0 0
\(536\) −1.17518e6 −0.176682
\(537\) 1.23928e6 0.185452
\(538\) −4.03512e6 −0.601036
\(539\) 1.68355e7 2.49605
\(540\) 0 0
\(541\) −3.83465e6 −0.563290 −0.281645 0.959519i \(-0.590880\pi\)
−0.281645 + 0.959519i \(0.590880\pi\)
\(542\) 8.76490e6 1.28159
\(543\) 5.19684e6 0.756379
\(544\) −166508. −0.0241233
\(545\) 0 0
\(546\) 1.99097e6 0.285813
\(547\) 2.61787e6 0.374093 0.187047 0.982351i \(-0.440108\pi\)
0.187047 + 0.982351i \(0.440108\pi\)
\(548\) 4.73068e6 0.672934
\(549\) 853850. 0.120907
\(550\) 0 0
\(551\) −509057. −0.0714312
\(552\) −2.60657e6 −0.364101
\(553\) 1.29225e7 1.79694
\(554\) 71695.9 0.00992476
\(555\) 0 0
\(556\) 99161.1 0.0136036
\(557\) −5.40419e6 −0.738061 −0.369031 0.929417i \(-0.620310\pi\)
−0.369031 + 0.929417i \(0.620310\pi\)
\(558\) 843164. 0.114638
\(559\) −28671.7 −0.00388082
\(560\) 0 0
\(561\) 1.31892e6 0.176935
\(562\) −9.62654e6 −1.28567
\(563\) −904604. −0.120278 −0.0601392 0.998190i \(-0.519154\pi\)
−0.0601392 + 0.998190i \(0.519154\pi\)
\(564\) 4.77599e6 0.632217
\(565\) 0 0
\(566\) 5.47683e6 0.718602
\(567\) 9.30257e6 1.21519
\(568\) −4.98215e6 −0.647956
\(569\) −6.69355e6 −0.866714 −0.433357 0.901222i \(-0.642671\pi\)
−0.433357 + 0.901222i \(0.642671\pi\)
\(570\) 0 0
\(571\) 8.22981e6 1.05633 0.528165 0.849142i \(-0.322880\pi\)
0.528165 + 0.849142i \(0.322880\pi\)
\(572\) 1.58802e6 0.202939
\(573\) −2.85548e6 −0.363322
\(574\) −817260. −0.103533
\(575\) 0 0
\(576\) −213998. −0.0268753
\(577\) −3.07720e6 −0.384783 −0.192391 0.981318i \(-0.561624\pi\)
−0.192391 + 0.981318i \(0.561624\pi\)
\(578\) −5.57367e6 −0.693939
\(579\) −5.70532e6 −0.707267
\(580\) 0 0
\(581\) −566051. −0.0695689
\(582\) −2.97464e6 −0.364021
\(583\) −1.45583e7 −1.77394
\(584\) 3.97633e6 0.482448
\(585\) 0 0
\(586\) 1.56260e6 0.187976
\(587\) −2.64175e6 −0.316443 −0.158222 0.987404i \(-0.550576\pi\)
−0.158222 + 0.987404i \(0.550576\pi\)
\(588\) −6.33482e6 −0.755599
\(589\) 328384. 0.0390026
\(590\) 0 0
\(591\) 7.44193e6 0.876429
\(592\) −1.95001e6 −0.228682
\(593\) 5.06641e6 0.591649 0.295824 0.955242i \(-0.404406\pi\)
0.295824 + 0.955242i \(0.404406\pi\)
\(594\) 9.57920e6 1.11394
\(595\) 0 0
\(596\) −5.93654e6 −0.684569
\(597\) 2.03492e6 0.233674
\(598\) 1.99342e6 0.227953
\(599\) 1.31136e7 1.49332 0.746662 0.665204i \(-0.231655\pi\)
0.746662 + 0.665204i \(0.231655\pi\)
\(600\) 0 0
\(601\) 7.53425e6 0.850852 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(602\) 144713. 0.0162748
\(603\) 959341. 0.107443
\(604\) −8.13378e6 −0.907193
\(605\) 0 0
\(606\) 9.25672e6 1.02394
\(607\) −8.76101e6 −0.965123 −0.482561 0.875862i \(-0.660293\pi\)
−0.482561 + 0.875862i \(0.660293\pi\)
\(608\) −83344.8 −0.00914365
\(609\) 1.84207e7 2.01262
\(610\) 0 0
\(611\) −3.65253e6 −0.395813
\(612\) 135926. 0.0146698
\(613\) 469316. 0.0504445 0.0252223 0.999682i \(-0.491971\pi\)
0.0252223 + 0.999682i \(0.491971\pi\)
\(614\) −2.26618e6 −0.242591
\(615\) 0 0
\(616\) −8.01509e6 −0.851054
\(617\) 4.14114e6 0.437933 0.218966 0.975732i \(-0.429732\pi\)
0.218966 + 0.975732i \(0.429732\pi\)
\(618\) 1.71116e6 0.180227
\(619\) −1.31422e7 −1.37861 −0.689304 0.724472i \(-0.742084\pi\)
−0.689304 + 0.724472i \(0.742084\pi\)
\(620\) 0 0
\(621\) 1.20246e7 1.25125
\(622\) 3.52496e6 0.365324
\(623\) −1.75496e6 −0.181154
\(624\) −597536. −0.0614331
\(625\) 0 0
\(626\) 3.66569e6 0.373869
\(627\) 660184. 0.0670650
\(628\) −960239. −0.0971583
\(629\) 1.23860e6 0.124826
\(630\) 0 0
\(631\) 9.79229e6 0.979063 0.489532 0.871986i \(-0.337168\pi\)
0.489532 + 0.871986i \(0.337168\pi\)
\(632\) −3.87834e6 −0.386237
\(633\) 1.58722e7 1.57445
\(634\) −8.04335e6 −0.794719
\(635\) 0 0
\(636\) 5.47795e6 0.537001
\(637\) 4.84467e6 0.473059
\(638\) 1.46925e7 1.42904
\(639\) 4.06711e6 0.394034
\(640\) 0 0
\(641\) 3.38154e6 0.325064 0.162532 0.986703i \(-0.448034\pi\)
0.162532 + 0.986703i \(0.448034\pi\)
\(642\) −5.37781e6 −0.514953
\(643\) 3.04366e6 0.290314 0.145157 0.989409i \(-0.453631\pi\)
0.145157 + 0.989409i \(0.453631\pi\)
\(644\) −1.00612e7 −0.955954
\(645\) 0 0
\(646\) 52938.6 0.00499104
\(647\) −8.51735e6 −0.799915 −0.399957 0.916534i \(-0.630975\pi\)
−0.399957 + 0.916534i \(0.630975\pi\)
\(648\) −2.79192e6 −0.261195
\(649\) 2.35555e7 2.19524
\(650\) 0 0
\(651\) −1.18828e7 −1.09892
\(652\) 5.85461e6 0.539360
\(653\) 8.83998e6 0.811275 0.405638 0.914034i \(-0.367050\pi\)
0.405638 + 0.914034i \(0.367050\pi\)
\(654\) −922425. −0.0843309
\(655\) 0 0
\(656\) 245279. 0.0222536
\(657\) −3.24603e6 −0.293386
\(658\) 1.84351e7 1.65990
\(659\) −2.97807e6 −0.267129 −0.133564 0.991040i \(-0.542642\pi\)
−0.133564 + 0.991040i \(0.542642\pi\)
\(660\) 0 0
\(661\) −7.90309e6 −0.703548 −0.351774 0.936085i \(-0.614421\pi\)
−0.351774 + 0.936085i \(0.614421\pi\)
\(662\) 9.90860e6 0.878754
\(663\) 379540. 0.0335331
\(664\) 169885. 0.0149532
\(665\) 0 0
\(666\) 1.59186e6 0.139066
\(667\) 1.84433e7 1.60519
\(668\) −1.07827e6 −0.0934948
\(669\) −1.92572e7 −1.66352
\(670\) 0 0
\(671\) −9.59800e6 −0.822952
\(672\) 3.01590e6 0.257629
\(673\) −1.82522e7 −1.55338 −0.776688 0.629885i \(-0.783102\pi\)
−0.776688 + 0.629885i \(0.783102\pi\)
\(674\) −1.02220e7 −0.866734
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −5.39380e6 −0.452296 −0.226148 0.974093i \(-0.572613\pi\)
−0.226148 + 0.974093i \(0.572613\pi\)
\(678\) 1.21185e7 1.01245
\(679\) −1.14820e7 −0.955746
\(680\) 0 0
\(681\) 1.93762e7 1.60103
\(682\) −9.47789e6 −0.780280
\(683\) −2.30171e7 −1.88799 −0.943994 0.329963i \(-0.892964\pi\)
−0.943994 + 0.329963i \(0.892964\pi\)
\(684\) 68037.4 0.00556042
\(685\) 0 0
\(686\) −1.01161e7 −0.820733
\(687\) 1.10025e7 0.889406
\(688\) −43431.6 −0.00349812
\(689\) −4.18936e6 −0.336201
\(690\) 0 0
\(691\) 4.87910e6 0.388727 0.194364 0.980930i \(-0.437736\pi\)
0.194364 + 0.980930i \(0.437736\pi\)
\(692\) −8.30274e6 −0.659107
\(693\) 6.54302e6 0.517541
\(694\) 1.90000e6 0.149746
\(695\) 0 0
\(696\) −5.52847e6 −0.432596
\(697\) −155795. −0.0121471
\(698\) 2.46111e6 0.191202
\(699\) 1.60178e7 1.23996
\(700\) 0 0
\(701\) 1.47820e7 1.13615 0.568077 0.822976i \(-0.307688\pi\)
0.568077 + 0.822976i \(0.307688\pi\)
\(702\) 2.75656e6 0.211118
\(703\) 619976. 0.0473137
\(704\) 2.40552e6 0.182927
\(705\) 0 0
\(706\) 1.74960e7 1.32107
\(707\) 3.57305e7 2.68838
\(708\) −8.86343e6 −0.664536
\(709\) −2.75364e6 −0.205727 −0.102863 0.994695i \(-0.532800\pi\)
−0.102863 + 0.994695i \(0.532800\pi\)
\(710\) 0 0
\(711\) 3.16603e6 0.234878
\(712\) 526705. 0.0389375
\(713\) −1.18975e7 −0.876457
\(714\) −1.91563e6 −0.140626
\(715\) 0 0
\(716\) −1.43566e6 −0.104657
\(717\) 9.49574e6 0.689812
\(718\) 1.83825e7 1.33074
\(719\) −2.10250e7 −1.51675 −0.758373 0.651820i \(-0.774006\pi\)
−0.758373 + 0.651820i \(0.774006\pi\)
\(720\) 0 0
\(721\) 6.60502e6 0.473191
\(722\) −9.87790e6 −0.705215
\(723\) 5.40502e6 0.384549
\(724\) −6.02035e6 −0.426850
\(725\) 0 0
\(726\) −1.01570e7 −0.715196
\(727\) −2.21381e7 −1.55347 −0.776737 0.629825i \(-0.783127\pi\)
−0.776737 + 0.629825i \(0.783127\pi\)
\(728\) −2.30646e6 −0.161294
\(729\) 1.59648e7 1.11261
\(730\) 0 0
\(731\) 27586.7 0.00190944
\(732\) 3.61152e6 0.249122
\(733\) −1.23177e7 −0.846775 −0.423388 0.905949i \(-0.639159\pi\)
−0.423388 + 0.905949i \(0.639159\pi\)
\(734\) 1.83745e7 1.25885
\(735\) 0 0
\(736\) 3.01962e6 0.205474
\(737\) −1.07838e7 −0.731313
\(738\) −200230. −0.0135328
\(739\) −1.79039e7 −1.20597 −0.602986 0.797752i \(-0.706023\pi\)
−0.602986 + 0.797752i \(0.706023\pi\)
\(740\) 0 0
\(741\) 189978. 0.0127103
\(742\) 2.11447e7 1.40991
\(743\) 9.82085e6 0.652645 0.326323 0.945258i \(-0.394190\pi\)
0.326323 + 0.945258i \(0.394190\pi\)
\(744\) 3.56632e6 0.236204
\(745\) 0 0
\(746\) −6.97256e6 −0.458717
\(747\) −138684. −0.00909334
\(748\) −1.52793e6 −0.0998501
\(749\) −2.07581e7 −1.35202
\(750\) 0 0
\(751\) 1.04747e7 0.677705 0.338852 0.940840i \(-0.389961\pi\)
0.338852 + 0.940840i \(0.389961\pi\)
\(752\) −5.53282e6 −0.356781
\(753\) −1.30479e7 −0.838599
\(754\) 4.22800e6 0.270836
\(755\) 0 0
\(756\) −1.39130e7 −0.885352
\(757\) −2.20487e7 −1.39844 −0.699219 0.714908i \(-0.746469\pi\)
−0.699219 + 0.714908i \(0.746469\pi\)
\(758\) −1.77012e7 −1.11900
\(759\) −2.39187e7 −1.50707
\(760\) 0 0
\(761\) −2.75293e7 −1.72319 −0.861596 0.507594i \(-0.830535\pi\)
−0.861596 + 0.507594i \(0.830535\pi\)
\(762\) 8.77040e6 0.547182
\(763\) −3.56052e6 −0.221413
\(764\) 3.30797e6 0.205035
\(765\) 0 0
\(766\) −5.59091e6 −0.344279
\(767\) 6.77846e6 0.416047
\(768\) −905143. −0.0553751
\(769\) 1.50464e7 0.917525 0.458763 0.888559i \(-0.348293\pi\)
0.458763 + 0.888559i \(0.348293\pi\)
\(770\) 0 0
\(771\) 4.10501e6 0.248701
\(772\) 6.60941e6 0.399135
\(773\) −2.28606e6 −0.137606 −0.0688031 0.997630i \(-0.521918\pi\)
−0.0688031 + 0.997630i \(0.521918\pi\)
\(774\) 35454.8 0.00212727
\(775\) 0 0
\(776\) 3.44601e6 0.205430
\(777\) −2.24344e7 −1.33310
\(778\) 6.54142e6 0.387456
\(779\) −77982.8 −0.00460421
\(780\) 0 0
\(781\) −4.57178e7 −2.68199
\(782\) −1.91799e6 −0.112158
\(783\) 2.55040e7 1.48663
\(784\) 7.33867e6 0.426410
\(785\) 0 0
\(786\) −8.87056e6 −0.512147
\(787\) −9.89052e6 −0.569223 −0.284611 0.958643i \(-0.591865\pi\)
−0.284611 + 0.958643i \(0.591865\pi\)
\(788\) −8.62121e6 −0.494598
\(789\) −2.11449e7 −1.20924
\(790\) 0 0
\(791\) 4.67770e7 2.65822
\(792\) −1.96371e6 −0.111241
\(793\) −2.76197e6 −0.155968
\(794\) −1.96261e7 −1.10480
\(795\) 0 0
\(796\) −2.35738e6 −0.131870
\(797\) −2.93049e7 −1.63416 −0.817080 0.576525i \(-0.804408\pi\)
−0.817080 + 0.576525i \(0.804408\pi\)
\(798\) −958862. −0.0533026
\(799\) 3.51431e6 0.194748
\(800\) 0 0
\(801\) −429969. −0.0236786
\(802\) −3.80474e6 −0.208876
\(803\) 3.64881e7 1.99693
\(804\) 4.05771e6 0.221381
\(805\) 0 0
\(806\) −2.72741e6 −0.147881
\(807\) 1.39327e7 0.753095
\(808\) −1.07236e7 −0.577845
\(809\) 1.02027e7 0.548078 0.274039 0.961719i \(-0.411640\pi\)
0.274039 + 0.961719i \(0.411640\pi\)
\(810\) 0 0
\(811\) −1.26432e7 −0.675001 −0.337501 0.941325i \(-0.609582\pi\)
−0.337501 + 0.941325i \(0.609582\pi\)
\(812\) −2.13397e7 −1.13579
\(813\) −3.02639e7 −1.60582
\(814\) −1.78939e7 −0.946551
\(815\) 0 0
\(816\) 574925. 0.0302264
\(817\) 13808.4 0.000723752 0
\(818\) 1.79786e7 0.939446
\(819\) 1.88285e6 0.0980858
\(820\) 0 0
\(821\) −1.56881e7 −0.812294 −0.406147 0.913808i \(-0.633128\pi\)
−0.406147 + 0.913808i \(0.633128\pi\)
\(822\) −1.63343e7 −0.843183
\(823\) −2.45799e7 −1.26497 −0.632487 0.774571i \(-0.717966\pi\)
−0.632487 + 0.774571i \(0.717966\pi\)
\(824\) −1.98232e6 −0.101708
\(825\) 0 0
\(826\) −3.42125e7 −1.74475
\(827\) −3.62365e7 −1.84239 −0.921197 0.389098i \(-0.872787\pi\)
−0.921197 + 0.389098i \(0.872787\pi\)
\(828\) −2.46502e6 −0.124953
\(829\) −2.81815e7 −1.42422 −0.712110 0.702068i \(-0.752260\pi\)
−0.712110 + 0.702068i \(0.752260\pi\)
\(830\) 0 0
\(831\) −247555. −0.0124357
\(832\) 692224. 0.0346688
\(833\) −4.66134e6 −0.232755
\(834\) −342388. −0.0170453
\(835\) 0 0
\(836\) −764799. −0.0378470
\(837\) −1.64522e7 −0.811727
\(838\) −3.31562e6 −0.163100
\(839\) −8.42806e6 −0.413354 −0.206677 0.978409i \(-0.566265\pi\)
−0.206677 + 0.978409i \(0.566265\pi\)
\(840\) 0 0
\(841\) 1.86068e7 0.907155
\(842\) 2.97925e6 0.144820
\(843\) 3.32390e7 1.61094
\(844\) −1.83874e7 −0.888515
\(845\) 0 0
\(846\) 4.51664e6 0.216965
\(847\) −3.92057e7 −1.87776
\(848\) −6.34601e6 −0.303048
\(849\) −1.89107e7 −0.900404
\(850\) 0 0
\(851\) −2.24620e7 −1.06322
\(852\) 1.72026e7 0.811886
\(853\) 3.10763e7 1.46237 0.731184 0.682180i \(-0.238968\pi\)
0.731184 + 0.682180i \(0.238968\pi\)
\(854\) 1.39403e7 0.654075
\(855\) 0 0
\(856\) 6.23000e6 0.290605
\(857\) 5.72064e6 0.266068 0.133034 0.991111i \(-0.457528\pi\)
0.133034 + 0.991111i \(0.457528\pi\)
\(858\) −5.48318e6 −0.254281
\(859\) −6.04140e6 −0.279354 −0.139677 0.990197i \(-0.544606\pi\)
−0.139677 + 0.990197i \(0.544606\pi\)
\(860\) 0 0
\(861\) 2.82187e6 0.129727
\(862\) −1.55812e7 −0.714220
\(863\) −2.09227e7 −0.956292 −0.478146 0.878280i \(-0.658691\pi\)
−0.478146 + 0.878280i \(0.658691\pi\)
\(864\) 4.17562e6 0.190299
\(865\) 0 0
\(866\) 2.35319e7 1.06626
\(867\) 1.92450e7 0.869502
\(868\) 1.37658e7 0.620160
\(869\) −3.55889e7 −1.59869
\(870\) 0 0
\(871\) −3.10320e6 −0.138601
\(872\) 1.06860e6 0.0475908
\(873\) −2.81311e6 −0.124925
\(874\) −960042. −0.0425120
\(875\) 0 0
\(876\) −1.37297e7 −0.604505
\(877\) 5.01539e6 0.220194 0.110097 0.993921i \(-0.464884\pi\)
0.110097 + 0.993921i \(0.464884\pi\)
\(878\) 6.92097e6 0.302992
\(879\) −5.39541e6 −0.235533
\(880\) 0 0
\(881\) −2.14791e7 −0.932346 −0.466173 0.884694i \(-0.654368\pi\)
−0.466173 + 0.884694i \(0.654368\pi\)
\(882\) −5.99082e6 −0.259307
\(883\) −996549. −0.0430127 −0.0215064 0.999769i \(-0.506846\pi\)
−0.0215064 + 0.999769i \(0.506846\pi\)
\(884\) −439684. −0.0189239
\(885\) 0 0
\(886\) 425728. 0.0182200
\(887\) −4.67336e6 −0.199444 −0.0997219 0.995015i \(-0.531795\pi\)
−0.0997219 + 0.995015i \(0.531795\pi\)
\(888\) 6.73308e6 0.286537
\(889\) 3.38534e7 1.43664
\(890\) 0 0
\(891\) −2.56196e7 −1.08113
\(892\) 2.23088e7 0.938782
\(893\) 1.75908e6 0.0738170
\(894\) 2.04980e7 0.857762
\(895\) 0 0
\(896\) −3.49382e6 −0.145388
\(897\) −6.88297e6 −0.285624
\(898\) −1.95688e7 −0.809792
\(899\) −2.52343e7 −1.04134
\(900\) 0 0
\(901\) 4.03083e6 0.165418
\(902\) 2.25076e6 0.0921112
\(903\) −499670. −0.0203922
\(904\) −1.40389e7 −0.571362
\(905\) 0 0
\(906\) 2.80847e7 1.13671
\(907\) −1.18130e7 −0.476807 −0.238403 0.971166i \(-0.576624\pi\)
−0.238403 + 0.971166i \(0.576624\pi\)
\(908\) −2.24466e7 −0.903515
\(909\) 8.75405e6 0.351398
\(910\) 0 0
\(911\) 3.55560e7 1.41944 0.709721 0.704483i \(-0.248821\pi\)
0.709721 + 0.704483i \(0.248821\pi\)
\(912\) 287777. 0.0114569
\(913\) 1.55892e6 0.0618938
\(914\) −709006. −0.0280727
\(915\) 0 0
\(916\) −1.27460e7 −0.501922
\(917\) −3.42400e7 −1.34465
\(918\) −2.65225e6 −0.103874
\(919\) 2.66902e7 1.04247 0.521235 0.853413i \(-0.325472\pi\)
0.521235 + 0.853413i \(0.325472\pi\)
\(920\) 0 0
\(921\) 7.82478e6 0.303965
\(922\) 2.86270e7 1.10905
\(923\) −1.31560e7 −0.508299
\(924\) 2.76749e7 1.06637
\(925\) 0 0
\(926\) −1.37691e7 −0.527690
\(927\) 1.61824e6 0.0618507
\(928\) 6.40454e6 0.244128
\(929\) −3.08229e7 −1.17175 −0.585874 0.810402i \(-0.699249\pi\)
−0.585874 + 0.810402i \(0.699249\pi\)
\(930\) 0 0
\(931\) −2.33322e6 −0.0882230
\(932\) −1.85560e7 −0.699753
\(933\) −1.21711e7 −0.457749
\(934\) 3.68994e7 1.38405
\(935\) 0 0
\(936\) −565088. −0.0210827
\(937\) −2.78462e7 −1.03613 −0.518067 0.855340i \(-0.673348\pi\)
−0.518067 + 0.855340i \(0.673348\pi\)
\(938\) 1.56626e7 0.581241
\(939\) −1.26571e7 −0.468456
\(940\) 0 0
\(941\) 2.80836e7 1.03390 0.516950 0.856016i \(-0.327067\pi\)
0.516950 + 0.856016i \(0.327067\pi\)
\(942\) 3.31556e6 0.121739
\(943\) 2.82535e6 0.103465
\(944\) 1.02680e7 0.375020
\(945\) 0 0
\(946\) −398543. −0.0144793
\(947\) 4.49006e7 1.62696 0.813481 0.581592i \(-0.197570\pi\)
0.813481 + 0.581592i \(0.197570\pi\)
\(948\) 1.33913e7 0.483953
\(949\) 1.05000e7 0.378463
\(950\) 0 0
\(951\) 2.77724e7 0.995779
\(952\) 2.21919e6 0.0793600
\(953\) 1.13992e7 0.406577 0.203289 0.979119i \(-0.434837\pi\)
0.203289 + 0.979119i \(0.434837\pi\)
\(954\) 5.18048e6 0.184289
\(955\) 0 0
\(956\) −1.10005e7 −0.389284
\(957\) −5.07311e7 −1.79058
\(958\) 4.93322e6 0.173667
\(959\) −6.30498e7 −2.21380
\(960\) 0 0
\(961\) −1.23510e7 −0.431412
\(962\) −5.14924e6 −0.179393
\(963\) −5.08578e6 −0.176722
\(964\) −6.26152e6 −0.217014
\(965\) 0 0
\(966\) 3.47399e7 1.19781
\(967\) 5.54751e7 1.90780 0.953898 0.300130i \(-0.0970300\pi\)
0.953898 + 0.300130i \(0.0970300\pi\)
\(968\) 1.17665e7 0.403609
\(969\) −182789. −0.00625375
\(970\) 0 0
\(971\) −2.45562e6 −0.0835819 −0.0417910 0.999126i \(-0.513306\pi\)
−0.0417910 + 0.999126i \(0.513306\pi\)
\(972\) −6.21423e6 −0.210970
\(973\) −1.32160e6 −0.0447527
\(974\) 2.48510e7 0.839358
\(975\) 0 0
\(976\) −4.18381e6 −0.140588
\(977\) −3.31344e7 −1.11056 −0.555280 0.831663i \(-0.687389\pi\)
−0.555280 + 0.831663i \(0.687389\pi\)
\(978\) −2.02151e7 −0.675815
\(979\) 4.83322e6 0.161168
\(980\) 0 0
\(981\) −872335. −0.0289408
\(982\) −2.82088e7 −0.933483
\(983\) 4.46461e7 1.47367 0.736834 0.676073i \(-0.236320\pi\)
0.736834 + 0.676073i \(0.236320\pi\)
\(984\) −846911. −0.0278837
\(985\) 0 0
\(986\) −4.06801e6 −0.133257
\(987\) −6.36537e7 −2.07985
\(988\) −220082. −0.00717287
\(989\) −500285. −0.0162640
\(990\) 0 0
\(991\) 4.99797e7 1.61662 0.808312 0.588754i \(-0.200381\pi\)
0.808312 + 0.588754i \(0.200381\pi\)
\(992\) −4.13145e6 −0.133298
\(993\) −3.42129e7 −1.10107
\(994\) 6.64013e7 2.13162
\(995\) 0 0
\(996\) −586588. −0.0187363
\(997\) 1.25647e7 0.400326 0.200163 0.979763i \(-0.435853\pi\)
0.200163 + 0.979763i \(0.435853\pi\)
\(998\) 2.25204e7 0.715730
\(999\) −3.10611e7 −0.984699
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.h.1.1 2
5.2 odd 4 650.6.b.g.599.4 4
5.3 odd 4 650.6.b.g.599.1 4
5.4 even 2 130.6.a.a.1.2 2
20.19 odd 2 1040.6.a.e.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.a.1.2 2 5.4 even 2
650.6.a.h.1.1 2 1.1 even 1 trivial
650.6.b.g.599.1 4 5.3 odd 4
650.6.b.g.599.4 4 5.2 odd 4
1040.6.a.e.1.1 2 20.19 odd 2