Properties

Label 650.6.a.f.1.2
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.52080\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.04159 q^{3} +16.0000 q^{4} +36.1664 q^{6} -77.0416 q^{7} +64.0000 q^{8} -161.250 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +9.04159 q^{3} +16.0000 q^{4} +36.1664 q^{6} -77.0416 q^{7} +64.0000 q^{8} -161.250 q^{9} +463.248 q^{11} +144.666 q^{12} +169.000 q^{13} -308.166 q^{14} +256.000 q^{16} -1869.15 q^{17} -644.998 q^{18} -618.329 q^{19} -696.579 q^{21} +1852.99 q^{22} +1711.36 q^{23} +578.662 q^{24} +676.000 q^{26} -3655.06 q^{27} -1232.67 q^{28} -5862.49 q^{29} -545.331 q^{31} +1024.00 q^{32} +4188.50 q^{33} -7476.62 q^{34} -2579.99 q^{36} +12321.6 q^{37} -2473.32 q^{38} +1528.03 q^{39} -17708.6 q^{41} -2786.32 q^{42} -12622.2 q^{43} +7411.97 q^{44} +6845.46 q^{46} +15968.1 q^{47} +2314.65 q^{48} -10871.6 q^{49} -16900.1 q^{51} +2704.00 q^{52} +27930.3 q^{53} -14620.2 q^{54} -4930.66 q^{56} -5590.68 q^{57} -23449.9 q^{58} -22214.9 q^{59} +5542.43 q^{61} -2181.32 q^{62} +12422.9 q^{63} +4096.00 q^{64} +16754.0 q^{66} -59646.7 q^{67} -29906.5 q^{68} +15473.5 q^{69} -67225.5 q^{71} -10320.0 q^{72} -67383.3 q^{73} +49286.5 q^{74} -9893.27 q^{76} -35689.4 q^{77} +6112.12 q^{78} -49060.5 q^{79} +6136.07 q^{81} -70834.3 q^{82} -12542.6 q^{83} -11145.3 q^{84} -50488.9 q^{86} -53006.2 q^{87} +29647.9 q^{88} -1361.03 q^{89} -13020.0 q^{91} +27381.8 q^{92} -4930.66 q^{93} +63872.4 q^{94} +9258.59 q^{96} -58030.7 q^{97} -43486.4 q^{98} -74698.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 6 q^{3} + 32 q^{4} - 24 q^{6} - 130 q^{7} + 128 q^{8} - 178 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} - 6 q^{3} + 32 q^{4} - 24 q^{6} - 130 q^{7} + 128 q^{8} - 178 q^{9} + 204 q^{11} - 96 q^{12} + 338 q^{13} - 520 q^{14} + 512 q^{16} + 404 q^{17} - 712 q^{18} + 112 q^{19} + 100 q^{21} + 816 q^{22} - 262 q^{23} - 384 q^{24} + 1352 q^{26} + 252 q^{27} - 2080 q^{28} - 6812 q^{29} - 320 q^{31} + 2048 q^{32} + 8088 q^{33} + 1616 q^{34} - 2848 q^{36} + 13276 q^{37} + 448 q^{38} - 1014 q^{39} - 35080 q^{41} + 400 q^{42} - 2534 q^{43} + 3264 q^{44} - 1048 q^{46} + 22038 q^{47} - 1536 q^{48} - 24874 q^{49} - 51092 q^{51} + 5408 q^{52} + 44108 q^{53} + 1008 q^{54} - 8320 q^{56} - 16576 q^{57} - 27248 q^{58} - 21888 q^{59} - 41272 q^{61} - 1280 q^{62} + 13310 q^{63} + 8192 q^{64} + 32352 q^{66} - 103230 q^{67} + 6464 q^{68} + 45156 q^{69} - 15480 q^{71} - 11392 q^{72} - 54088 q^{73} + 53104 q^{74} + 1792 q^{76} - 21960 q^{77} - 4056 q^{78} + 27208 q^{79} - 48562 q^{81} - 140320 q^{82} - 42690 q^{83} + 1600 q^{84} - 10136 q^{86} - 38724 q^{87} + 13056 q^{88} - 68132 q^{89} - 21970 q^{91} - 4192 q^{92} - 8320 q^{93} + 88152 q^{94} - 6144 q^{96} - 209456 q^{97} - 99496 q^{98} - 70356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.04159 0.580019 0.290009 0.957024i \(-0.406342\pi\)
0.290009 + 0.957024i \(0.406342\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 36.1664 0.410135
\(7\) −77.0416 −0.594265 −0.297133 0.954836i \(-0.596030\pi\)
−0.297133 + 0.954836i \(0.596030\pi\)
\(8\) 64.0000 0.353553
\(9\) −161.250 −0.663578
\(10\) 0 0
\(11\) 463.248 1.15433 0.577167 0.816626i \(-0.304158\pi\)
0.577167 + 0.816626i \(0.304158\pi\)
\(12\) 144.666 0.290009
\(13\) 169.000 0.277350
\(14\) −308.166 −0.420209
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1869.15 −1.56864 −0.784319 0.620357i \(-0.786988\pi\)
−0.784319 + 0.620357i \(0.786988\pi\)
\(18\) −644.998 −0.469221
\(19\) −618.329 −0.392949 −0.196474 0.980509i \(-0.562949\pi\)
−0.196474 + 0.980509i \(0.562949\pi\)
\(20\) 0 0
\(21\) −696.579 −0.344685
\(22\) 1852.99 0.816238
\(23\) 1711.36 0.674563 0.337282 0.941404i \(-0.390493\pi\)
0.337282 + 0.941404i \(0.390493\pi\)
\(24\) 578.662 0.205068
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) −3655.06 −0.964906
\(28\) −1232.67 −0.297133
\(29\) −5862.49 −1.29445 −0.647227 0.762297i \(-0.724072\pi\)
−0.647227 + 0.762297i \(0.724072\pi\)
\(30\) 0 0
\(31\) −545.331 −0.101919 −0.0509596 0.998701i \(-0.516228\pi\)
−0.0509596 + 0.998701i \(0.516228\pi\)
\(32\) 1024.00 0.176777
\(33\) 4188.50 0.669535
\(34\) −7476.62 −1.10919
\(35\) 0 0
\(36\) −2579.99 −0.331789
\(37\) 12321.6 1.47967 0.739833 0.672790i \(-0.234904\pi\)
0.739833 + 0.672790i \(0.234904\pi\)
\(38\) −2473.32 −0.277857
\(39\) 1528.03 0.160868
\(40\) 0 0
\(41\) −17708.6 −1.64522 −0.822610 0.568606i \(-0.807483\pi\)
−0.822610 + 0.568606i \(0.807483\pi\)
\(42\) −2786.32 −0.243729
\(43\) −12622.2 −1.04103 −0.520517 0.853851i \(-0.674261\pi\)
−0.520517 + 0.853851i \(0.674261\pi\)
\(44\) 7411.97 0.577167
\(45\) 0 0
\(46\) 6845.46 0.476988
\(47\) 15968.1 1.05441 0.527204 0.849739i \(-0.323240\pi\)
0.527204 + 0.849739i \(0.323240\pi\)
\(48\) 2314.65 0.145005
\(49\) −10871.6 −0.646849
\(50\) 0 0
\(51\) −16900.1 −0.909839
\(52\) 2704.00 0.138675
\(53\) 27930.3 1.36580 0.682898 0.730514i \(-0.260719\pi\)
0.682898 + 0.730514i \(0.260719\pi\)
\(54\) −14620.2 −0.682292
\(55\) 0 0
\(56\) −4930.66 −0.210104
\(57\) −5590.68 −0.227918
\(58\) −23449.9 −0.915318
\(59\) −22214.9 −0.830835 −0.415418 0.909631i \(-0.636365\pi\)
−0.415418 + 0.909631i \(0.636365\pi\)
\(60\) 0 0
\(61\) 5542.43 0.190711 0.0953554 0.995443i \(-0.469601\pi\)
0.0953554 + 0.995443i \(0.469601\pi\)
\(62\) −2181.32 −0.0720678
\(63\) 12422.9 0.394341
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 16754.0 0.473433
\(67\) −59646.7 −1.62330 −0.811652 0.584142i \(-0.801431\pi\)
−0.811652 + 0.584142i \(0.801431\pi\)
\(68\) −29906.5 −0.784319
\(69\) 15473.5 0.391259
\(70\) 0 0
\(71\) −67225.5 −1.58266 −0.791331 0.611388i \(-0.790611\pi\)
−0.791331 + 0.611388i \(0.790611\pi\)
\(72\) −10320.0 −0.234610
\(73\) −67383.3 −1.47994 −0.739972 0.672637i \(-0.765161\pi\)
−0.739972 + 0.672637i \(0.765161\pi\)
\(74\) 49286.5 1.04628
\(75\) 0 0
\(76\) −9893.27 −0.196474
\(77\) −35689.4 −0.685981
\(78\) 6112.12 0.113751
\(79\) −49060.5 −0.884431 −0.442215 0.896909i \(-0.645807\pi\)
−0.442215 + 0.896909i \(0.645807\pi\)
\(80\) 0 0
\(81\) 6136.07 0.103915
\(82\) −70834.3 −1.16335
\(83\) −12542.6 −0.199844 −0.0999222 0.994995i \(-0.531859\pi\)
−0.0999222 + 0.994995i \(0.531859\pi\)
\(84\) −11145.3 −0.172342
\(85\) 0 0
\(86\) −50488.9 −0.736122
\(87\) −53006.2 −0.750808
\(88\) 29647.9 0.408119
\(89\) −1361.03 −0.0182135 −0.00910673 0.999959i \(-0.502899\pi\)
−0.00910673 + 0.999959i \(0.502899\pi\)
\(90\) 0 0
\(91\) −13020.0 −0.164819
\(92\) 27381.8 0.337282
\(93\) −4930.66 −0.0591150
\(94\) 63872.4 0.745579
\(95\) 0 0
\(96\) 9258.59 0.102534
\(97\) −58030.7 −0.626222 −0.313111 0.949717i \(-0.601371\pi\)
−0.313111 + 0.949717i \(0.601371\pi\)
\(98\) −43486.4 −0.457391
\(99\) −74698.5 −0.765992
\(100\) 0 0
\(101\) 119042. 1.16118 0.580588 0.814197i \(-0.302823\pi\)
0.580588 + 0.814197i \(0.302823\pi\)
\(102\) −67600.5 −0.643354
\(103\) 120678. 1.12082 0.560408 0.828216i \(-0.310644\pi\)
0.560408 + 0.828216i \(0.310644\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) 111721. 0.965764
\(107\) 29154.6 0.246177 0.123089 0.992396i \(-0.460720\pi\)
0.123089 + 0.992396i \(0.460720\pi\)
\(108\) −58481.0 −0.482453
\(109\) 35710.9 0.287895 0.143948 0.989585i \(-0.454020\pi\)
0.143948 + 0.989585i \(0.454020\pi\)
\(110\) 0 0
\(111\) 111407. 0.858234
\(112\) −19722.6 −0.148566
\(113\) 194071. 1.42976 0.714882 0.699245i \(-0.246481\pi\)
0.714882 + 0.699245i \(0.246481\pi\)
\(114\) −22362.7 −0.161162
\(115\) 0 0
\(116\) −93799.8 −0.647227
\(117\) −27251.2 −0.184044
\(118\) −88859.7 −0.587489
\(119\) 144003. 0.932187
\(120\) 0 0
\(121\) 53547.6 0.332488
\(122\) 22169.7 0.134853
\(123\) −160114. −0.954259
\(124\) −8725.30 −0.0509596
\(125\) 0 0
\(126\) 49691.7 0.278842
\(127\) −113031. −0.621855 −0.310927 0.950434i \(-0.600640\pi\)
−0.310927 + 0.950434i \(0.600640\pi\)
\(128\) 16384.0 0.0883883
\(129\) −114125. −0.603819
\(130\) 0 0
\(131\) −358787. −1.82666 −0.913331 0.407217i \(-0.866499\pi\)
−0.913331 + 0.407217i \(0.866499\pi\)
\(132\) 67016.0 0.334768
\(133\) 47637.1 0.233516
\(134\) −238587. −1.14785
\(135\) 0 0
\(136\) −119626. −0.554597
\(137\) −389881. −1.77473 −0.887363 0.461072i \(-0.847465\pi\)
−0.887363 + 0.461072i \(0.847465\pi\)
\(138\) 61893.8 0.276662
\(139\) −143094. −0.628179 −0.314090 0.949393i \(-0.601699\pi\)
−0.314090 + 0.949393i \(0.601699\pi\)
\(140\) 0 0
\(141\) 144377. 0.611576
\(142\) −268902. −1.11911
\(143\) 78288.9 0.320155
\(144\) −41279.9 −0.165895
\(145\) 0 0
\(146\) −269533. −1.04648
\(147\) −98296.5 −0.375184
\(148\) 197146. 0.739833
\(149\) 57507.0 0.212205 0.106102 0.994355i \(-0.466163\pi\)
0.106102 + 0.994355i \(0.466163\pi\)
\(150\) 0 0
\(151\) −382788. −1.36621 −0.683103 0.730322i \(-0.739370\pi\)
−0.683103 + 0.730322i \(0.739370\pi\)
\(152\) −39573.1 −0.138928
\(153\) 301400. 1.04091
\(154\) −142757. −0.485062
\(155\) 0 0
\(156\) 24448.5 0.0804341
\(157\) 175379. 0.567844 0.283922 0.958847i \(-0.408364\pi\)
0.283922 + 0.958847i \(0.408364\pi\)
\(158\) −196242. −0.625387
\(159\) 252534. 0.792187
\(160\) 0 0
\(161\) −131846. −0.400869
\(162\) 24544.3 0.0734789
\(163\) 631372. 1.86130 0.930650 0.365909i \(-0.119242\pi\)
0.930650 + 0.365909i \(0.119242\pi\)
\(164\) −283337. −0.822610
\(165\) 0 0
\(166\) −50170.4 −0.141311
\(167\) 261161. 0.724631 0.362315 0.932056i \(-0.381986\pi\)
0.362315 + 0.932056i \(0.381986\pi\)
\(168\) −44581.0 −0.121864
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 99705.3 0.260752
\(172\) −201956. −0.520517
\(173\) 333245. 0.846541 0.423270 0.906003i \(-0.360882\pi\)
0.423270 + 0.906003i \(0.360882\pi\)
\(174\) −212025. −0.530901
\(175\) 0 0
\(176\) 118591. 0.288584
\(177\) −200858. −0.481900
\(178\) −5444.12 −0.0128789
\(179\) −607067. −1.41613 −0.708066 0.706146i \(-0.750432\pi\)
−0.708066 + 0.706146i \(0.750432\pi\)
\(180\) 0 0
\(181\) 145547. 0.330222 0.165111 0.986275i \(-0.447202\pi\)
0.165111 + 0.986275i \(0.447202\pi\)
\(182\) −52080.1 −0.116545
\(183\) 50112.4 0.110616
\(184\) 109527. 0.238494
\(185\) 0 0
\(186\) −19722.6 −0.0418006
\(187\) −865882. −1.81073
\(188\) 255490. 0.527204
\(189\) 281592. 0.573410
\(190\) 0 0
\(191\) 16804.6 0.0333308 0.0166654 0.999861i \(-0.494695\pi\)
0.0166654 + 0.999861i \(0.494695\pi\)
\(192\) 37034.4 0.0725023
\(193\) −517817. −1.00065 −0.500326 0.865837i \(-0.666787\pi\)
−0.500326 + 0.865837i \(0.666787\pi\)
\(194\) −232123. −0.442806
\(195\) 0 0
\(196\) −173945. −0.323425
\(197\) −244368. −0.448619 −0.224310 0.974518i \(-0.572013\pi\)
−0.224310 + 0.974518i \(0.572013\pi\)
\(198\) −298794. −0.541638
\(199\) 238178. 0.426354 0.213177 0.977014i \(-0.431619\pi\)
0.213177 + 0.977014i \(0.431619\pi\)
\(200\) 0 0
\(201\) −539302. −0.941546
\(202\) 476170. 0.821076
\(203\) 451655. 0.769249
\(204\) −270402. −0.454920
\(205\) 0 0
\(206\) 482712. 0.792537
\(207\) −275957. −0.447626
\(208\) 43264.0 0.0693375
\(209\) −286440. −0.453594
\(210\) 0 0
\(211\) 853217. 1.31933 0.659665 0.751560i \(-0.270698\pi\)
0.659665 + 0.751560i \(0.270698\pi\)
\(212\) 446885. 0.682898
\(213\) −607826. −0.917973
\(214\) 116618. 0.174073
\(215\) 0 0
\(216\) −233924. −0.341146
\(217\) 42013.2 0.0605670
\(218\) 142843. 0.203573
\(219\) −609253. −0.858395
\(220\) 0 0
\(221\) −315887. −0.435062
\(222\) 445629. 0.606863
\(223\) 86442.8 0.116404 0.0582018 0.998305i \(-0.481463\pi\)
0.0582018 + 0.998305i \(0.481463\pi\)
\(224\) −78890.6 −0.105052
\(225\) 0 0
\(226\) 776283. 1.01100
\(227\) −622295. −0.801552 −0.400776 0.916176i \(-0.631259\pi\)
−0.400776 + 0.916176i \(0.631259\pi\)
\(228\) −89450.9 −0.113959
\(229\) 582324. 0.733797 0.366899 0.930261i \(-0.380420\pi\)
0.366899 + 0.930261i \(0.380420\pi\)
\(230\) 0 0
\(231\) −322689. −0.397881
\(232\) −375199. −0.457659
\(233\) −865669. −1.04463 −0.522315 0.852753i \(-0.674931\pi\)
−0.522315 + 0.852753i \(0.674931\pi\)
\(234\) −109005. −0.130138
\(235\) 0 0
\(236\) −355439. −0.415418
\(237\) −443585. −0.512986
\(238\) 576011. 0.659156
\(239\) −754782. −0.854726 −0.427363 0.904080i \(-0.640557\pi\)
−0.427363 + 0.904080i \(0.640557\pi\)
\(240\) 0 0
\(241\) −211415. −0.234473 −0.117237 0.993104i \(-0.537404\pi\)
−0.117237 + 0.993104i \(0.537404\pi\)
\(242\) 214190. 0.235105
\(243\) 943660. 1.02518
\(244\) 88678.8 0.0953554
\(245\) 0 0
\(246\) −640455. −0.674763
\(247\) −104498. −0.108984
\(248\) −34901.2 −0.0360339
\(249\) −113405. −0.115914
\(250\) 0 0
\(251\) 1.60703e6 1.61005 0.805024 0.593243i \(-0.202153\pi\)
0.805024 + 0.593243i \(0.202153\pi\)
\(252\) 198767. 0.197171
\(253\) 792786. 0.778672
\(254\) −452125. −0.439718
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.29242e6 1.22059 0.610295 0.792174i \(-0.291051\pi\)
0.610295 + 0.792174i \(0.291051\pi\)
\(258\) −456500. −0.426964
\(259\) −949278. −0.879314
\(260\) 0 0
\(261\) 945323. 0.858972
\(262\) −1.43515e6 −1.29165
\(263\) −787600. −0.702128 −0.351064 0.936351i \(-0.614180\pi\)
−0.351064 + 0.936351i \(0.614180\pi\)
\(264\) 268064. 0.236717
\(265\) 0 0
\(266\) 190548. 0.165120
\(267\) −12305.9 −0.0105641
\(268\) −954348. −0.811652
\(269\) −1.13160e6 −0.953480 −0.476740 0.879044i \(-0.658182\pi\)
−0.476740 + 0.879044i \(0.658182\pi\)
\(270\) 0 0
\(271\) 1.50590e6 1.24559 0.622794 0.782386i \(-0.285998\pi\)
0.622794 + 0.782386i \(0.285998\pi\)
\(272\) −478503. −0.392160
\(273\) −117722. −0.0955983
\(274\) −1.55953e6 −1.25492
\(275\) 0 0
\(276\) 247575. 0.195630
\(277\) −789483. −0.618221 −0.309110 0.951026i \(-0.600031\pi\)
−0.309110 + 0.951026i \(0.600031\pi\)
\(278\) −572375. −0.444190
\(279\) 87934.4 0.0676314
\(280\) 0 0
\(281\) −815478. −0.616093 −0.308047 0.951371i \(-0.599675\pi\)
−0.308047 + 0.951371i \(0.599675\pi\)
\(282\) 577508. 0.432449
\(283\) 326725. 0.242502 0.121251 0.992622i \(-0.461309\pi\)
0.121251 + 0.992622i \(0.461309\pi\)
\(284\) −1.07561e6 −0.791331
\(285\) 0 0
\(286\) 313156. 0.226384
\(287\) 1.36430e6 0.977697
\(288\) −165120. −0.117305
\(289\) 2.07388e6 1.46063
\(290\) 0 0
\(291\) −524690. −0.363220
\(292\) −1.07813e6 −0.739972
\(293\) −1.32473e6 −0.901487 −0.450743 0.892654i \(-0.648841\pi\)
−0.450743 + 0.892654i \(0.648841\pi\)
\(294\) −393186. −0.265295
\(295\) 0 0
\(296\) 788584. 0.523141
\(297\) −1.69320e6 −1.11382
\(298\) 230028. 0.150051
\(299\) 289221. 0.187090
\(300\) 0 0
\(301\) 972436. 0.618650
\(302\) −1.53115e6 −0.966054
\(303\) 1.07633e6 0.673504
\(304\) −158292. −0.0982372
\(305\) 0 0
\(306\) 1.20560e6 0.736038
\(307\) −550416. −0.333307 −0.166654 0.986015i \(-0.553296\pi\)
−0.166654 + 0.986015i \(0.553296\pi\)
\(308\) −571030. −0.342990
\(309\) 1.09112e6 0.650095
\(310\) 0 0
\(311\) −3.35779e6 −1.96858 −0.984290 0.176561i \(-0.943503\pi\)
−0.984290 + 0.176561i \(0.943503\pi\)
\(312\) 97793.9 0.0568755
\(313\) 2.61647e6 1.50957 0.754787 0.655970i \(-0.227740\pi\)
0.754787 + 0.655970i \(0.227740\pi\)
\(314\) 701518. 0.401527
\(315\) 0 0
\(316\) −784967. −0.442215
\(317\) −1.33414e6 −0.745683 −0.372841 0.927895i \(-0.621616\pi\)
−0.372841 + 0.927895i \(0.621616\pi\)
\(318\) 1.01014e6 0.560161
\(319\) −2.71578e6 −1.49423
\(320\) 0 0
\(321\) 263604. 0.142787
\(322\) −527385. −0.283458
\(323\) 1.15575e6 0.616394
\(324\) 98177.1 0.0519574
\(325\) 0 0
\(326\) 2.52549e6 1.31614
\(327\) 322883. 0.166984
\(328\) −1.13335e6 −0.581673
\(329\) −1.23021e6 −0.626597
\(330\) 0 0
\(331\) −716034. −0.359223 −0.179611 0.983738i \(-0.557484\pi\)
−0.179611 + 0.983738i \(0.557484\pi\)
\(332\) −200682. −0.0999222
\(333\) −1.98686e6 −0.981875
\(334\) 1.04464e6 0.512391
\(335\) 0 0
\(336\) −178324. −0.0861712
\(337\) 3.87372e6 1.85803 0.929016 0.370038i \(-0.120655\pi\)
0.929016 + 0.370038i \(0.120655\pi\)
\(338\) 114244. 0.0543928
\(339\) 1.75471e6 0.829289
\(340\) 0 0
\(341\) −252623. −0.117649
\(342\) 398821. 0.184380
\(343\) 2.13240e6 0.978665
\(344\) −807822. −0.368061
\(345\) 0 0
\(346\) 1.33298e6 0.598595
\(347\) −41926.2 −0.0186923 −0.00934613 0.999956i \(-0.502975\pi\)
−0.00934613 + 0.999956i \(0.502975\pi\)
\(348\) −848099. −0.375404
\(349\) 2.08136e6 0.914711 0.457356 0.889284i \(-0.348797\pi\)
0.457356 + 0.889284i \(0.348797\pi\)
\(350\) 0 0
\(351\) −617705. −0.267617
\(352\) 474366. 0.204059
\(353\) 4.19749e6 1.79289 0.896443 0.443160i \(-0.146143\pi\)
0.896443 + 0.443160i \(0.146143\pi\)
\(354\) −803434. −0.340755
\(355\) 0 0
\(356\) −21776.5 −0.00910673
\(357\) 1.30201e6 0.540686
\(358\) −2.42827e6 −1.00136
\(359\) 1.58526e6 0.649179 0.324590 0.945855i \(-0.394774\pi\)
0.324590 + 0.945855i \(0.394774\pi\)
\(360\) 0 0
\(361\) −2.09377e6 −0.845591
\(362\) 582187. 0.233502
\(363\) 484155. 0.192849
\(364\) −208320. −0.0824097
\(365\) 0 0
\(366\) 200449. 0.0782172
\(367\) 693454. 0.268752 0.134376 0.990930i \(-0.457097\pi\)
0.134376 + 0.990930i \(0.457097\pi\)
\(368\) 438109. 0.168641
\(369\) 2.85550e6 1.09173
\(370\) 0 0
\(371\) −2.15179e6 −0.811645
\(372\) −78890.6 −0.0295575
\(373\) −3.74196e6 −1.39260 −0.696300 0.717751i \(-0.745172\pi\)
−0.696300 + 0.717751i \(0.745172\pi\)
\(374\) −3.46353e6 −1.28038
\(375\) 0 0
\(376\) 1.02196e6 0.372789
\(377\) −990760. −0.359017
\(378\) 1.12637e6 0.405462
\(379\) 32595.4 0.0116562 0.00582812 0.999983i \(-0.498145\pi\)
0.00582812 + 0.999983i \(0.498145\pi\)
\(380\) 0 0
\(381\) −1.02198e6 −0.360687
\(382\) 67218.5 0.0235684
\(383\) 4.99326e6 1.73935 0.869676 0.493624i \(-0.164328\pi\)
0.869676 + 0.493624i \(0.164328\pi\)
\(384\) 148137. 0.0512669
\(385\) 0 0
\(386\) −2.07127e6 −0.707568
\(387\) 2.03533e6 0.690807
\(388\) −928491. −0.313111
\(389\) −3.19780e6 −1.07146 −0.535732 0.844388i \(-0.679964\pi\)
−0.535732 + 0.844388i \(0.679964\pi\)
\(390\) 0 0
\(391\) −3.19880e6 −1.05815
\(392\) −695782. −0.228696
\(393\) −3.24401e6 −1.05950
\(394\) −977470. −0.317222
\(395\) 0 0
\(396\) −1.19518e6 −0.382996
\(397\) 1.12978e6 0.359764 0.179882 0.983688i \(-0.442428\pi\)
0.179882 + 0.983688i \(0.442428\pi\)
\(398\) 952714. 0.301477
\(399\) 430715. 0.135443
\(400\) 0 0
\(401\) −560089. −0.173939 −0.0869693 0.996211i \(-0.527718\pi\)
−0.0869693 + 0.996211i \(0.527718\pi\)
\(402\) −2.15721e6 −0.665774
\(403\) −92160.9 −0.0282673
\(404\) 1.90468e6 0.580588
\(405\) 0 0
\(406\) 1.80662e6 0.543941
\(407\) 5.70797e6 1.70803
\(408\) −1.08161e6 −0.321677
\(409\) 4.95376e6 1.46429 0.732144 0.681150i \(-0.238520\pi\)
0.732144 + 0.681150i \(0.238520\pi\)
\(410\) 0 0
\(411\) −3.52515e6 −1.02937
\(412\) 1.93085e6 0.560408
\(413\) 1.71147e6 0.493736
\(414\) −1.10383e6 −0.316519
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) −1.29379e6 −0.364355
\(418\) −1.14576e6 −0.320740
\(419\) 3.76102e6 1.04658 0.523288 0.852156i \(-0.324705\pi\)
0.523288 + 0.852156i \(0.324705\pi\)
\(420\) 0 0
\(421\) 1.47722e6 0.406199 0.203099 0.979158i \(-0.434899\pi\)
0.203099 + 0.979158i \(0.434899\pi\)
\(422\) 3.41287e6 0.932907
\(423\) −2.57485e6 −0.699682
\(424\) 1.78754e6 0.482882
\(425\) 0 0
\(426\) −2.43130e6 −0.649105
\(427\) −426997. −0.113333
\(428\) 466473. 0.123089
\(429\) 707856. 0.185696
\(430\) 0 0
\(431\) 7.00591e6 1.81665 0.908326 0.418264i \(-0.137361\pi\)
0.908326 + 0.418264i \(0.137361\pi\)
\(432\) −935696. −0.241227
\(433\) 771976. 0.197872 0.0989360 0.995094i \(-0.468456\pi\)
0.0989360 + 0.995094i \(0.468456\pi\)
\(434\) 168053. 0.0428273
\(435\) 0 0
\(436\) 571374. 0.143948
\(437\) −1.05819e6 −0.265069
\(438\) −2.43701e6 −0.606977
\(439\) −3.79177e6 −0.939032 −0.469516 0.882924i \(-0.655572\pi\)
−0.469516 + 0.882924i \(0.655572\pi\)
\(440\) 0 0
\(441\) 1.75304e6 0.429235
\(442\) −1.26355e6 −0.307635
\(443\) −153363. −0.0371289 −0.0185644 0.999828i \(-0.505910\pi\)
−0.0185644 + 0.999828i \(0.505910\pi\)
\(444\) 1.78252e6 0.429117
\(445\) 0 0
\(446\) 345771. 0.0823098
\(447\) 519955. 0.123083
\(448\) −315562. −0.0742831
\(449\) 6.79802e6 1.59135 0.795676 0.605722i \(-0.207116\pi\)
0.795676 + 0.605722i \(0.207116\pi\)
\(450\) 0 0
\(451\) −8.20346e6 −1.89914
\(452\) 3.10513e6 0.714882
\(453\) −3.46102e6 −0.792425
\(454\) −2.48918e6 −0.566783
\(455\) 0 0
\(456\) −357804. −0.0805810
\(457\) −5.30770e6 −1.18882 −0.594409 0.804163i \(-0.702614\pi\)
−0.594409 + 0.804163i \(0.702614\pi\)
\(458\) 2.32930e6 0.518873
\(459\) 6.83187e6 1.51359
\(460\) 0 0
\(461\) −2.92325e6 −0.640640 −0.320320 0.947309i \(-0.603790\pi\)
−0.320320 + 0.947309i \(0.603790\pi\)
\(462\) −1.29075e6 −0.281345
\(463\) −5.67529e6 −1.23037 −0.615185 0.788383i \(-0.710919\pi\)
−0.615185 + 0.788383i \(0.710919\pi\)
\(464\) −1.50080e6 −0.323614
\(465\) 0 0
\(466\) −3.46268e6 −0.738664
\(467\) 1.97672e6 0.419425 0.209712 0.977763i \(-0.432747\pi\)
0.209712 + 0.977763i \(0.432747\pi\)
\(468\) −436019. −0.0920218
\(469\) 4.59528e6 0.964672
\(470\) 0 0
\(471\) 1.58571e6 0.329360
\(472\) −1.42176e6 −0.293745
\(473\) −5.84722e6 −1.20170
\(474\) −1.77434e6 −0.362736
\(475\) 0 0
\(476\) 2.30404e6 0.466093
\(477\) −4.50375e6 −0.906313
\(478\) −3.01913e6 −0.604383
\(479\) 7.52380e6 1.49830 0.749149 0.662401i \(-0.230463\pi\)
0.749149 + 0.662401i \(0.230463\pi\)
\(480\) 0 0
\(481\) 2.08236e6 0.410386
\(482\) −845661. −0.165798
\(483\) −1.19210e6 −0.232512
\(484\) 856761. 0.166244
\(485\) 0 0
\(486\) 3.77464e6 0.724911
\(487\) 4.51302e6 0.862274 0.431137 0.902287i \(-0.358113\pi\)
0.431137 + 0.902287i \(0.358113\pi\)
\(488\) 354715. 0.0674265
\(489\) 5.70861e6 1.07959
\(490\) 0 0
\(491\) 1.48957e6 0.278841 0.139421 0.990233i \(-0.455476\pi\)
0.139421 + 0.990233i \(0.455476\pi\)
\(492\) −2.56182e6 −0.477129
\(493\) 1.09579e7 2.03053
\(494\) −417991. −0.0770636
\(495\) 0 0
\(496\) −139605. −0.0254798
\(497\) 5.17916e6 0.940520
\(498\) −453620. −0.0819632
\(499\) −3.27484e6 −0.588761 −0.294380 0.955688i \(-0.595113\pi\)
−0.294380 + 0.955688i \(0.595113\pi\)
\(500\) 0 0
\(501\) 2.36131e6 0.420299
\(502\) 6.42810e6 1.13848
\(503\) 3.30838e6 0.583037 0.291518 0.956565i \(-0.405840\pi\)
0.291518 + 0.956565i \(0.405840\pi\)
\(504\) 795067. 0.139421
\(505\) 0 0
\(506\) 3.17114e6 0.550604
\(507\) 258237. 0.0446168
\(508\) −1.80850e6 −0.310927
\(509\) 6.58728e6 1.12697 0.563484 0.826127i \(-0.309461\pi\)
0.563484 + 0.826127i \(0.309461\pi\)
\(510\) 0 0
\(511\) 5.19132e6 0.879479
\(512\) 262144. 0.0441942
\(513\) 2.26003e6 0.379159
\(514\) 5.16967e6 0.863087
\(515\) 0 0
\(516\) −1.82600e6 −0.301909
\(517\) 7.39719e6 1.21714
\(518\) −3.79711e6 −0.621769
\(519\) 3.01306e6 0.491009
\(520\) 0 0
\(521\) −2.79881e6 −0.451731 −0.225865 0.974159i \(-0.572521\pi\)
−0.225865 + 0.974159i \(0.572521\pi\)
\(522\) 3.78129e6 0.607385
\(523\) −1.07586e6 −0.171990 −0.0859950 0.996296i \(-0.527407\pi\)
−0.0859950 + 0.996296i \(0.527407\pi\)
\(524\) −5.74059e6 −0.913331
\(525\) 0 0
\(526\) −3.15040e6 −0.496480
\(527\) 1.01931e6 0.159874
\(528\) 1.07226e6 0.167384
\(529\) −3.50758e6 −0.544964
\(530\) 0 0
\(531\) 3.58215e6 0.551324
\(532\) 762193. 0.116758
\(533\) −2.99275e6 −0.456302
\(534\) −49223.5 −0.00746998
\(535\) 0 0
\(536\) −3.81739e6 −0.573924
\(537\) −5.48885e6 −0.821383
\(538\) −4.52639e6 −0.674212
\(539\) −5.03624e6 −0.746680
\(540\) 0 0
\(541\) 7.54330e6 1.10807 0.554037 0.832492i \(-0.313087\pi\)
0.554037 + 0.832492i \(0.313087\pi\)
\(542\) 6.02362e6 0.880763
\(543\) 1.31598e6 0.191535
\(544\) −1.91401e6 −0.277299
\(545\) 0 0
\(546\) −470887. −0.0675982
\(547\) −8.04405e6 −1.14949 −0.574747 0.818331i \(-0.694899\pi\)
−0.574747 + 0.818331i \(0.694899\pi\)
\(548\) −6.23810e6 −0.887363
\(549\) −893714. −0.126552
\(550\) 0 0
\(551\) 3.62495e6 0.508654
\(552\) 990301. 0.138331
\(553\) 3.77970e6 0.525586
\(554\) −3.15793e6 −0.437148
\(555\) 0 0
\(556\) −2.28950e6 −0.314090
\(557\) 1.90075e6 0.259590 0.129795 0.991541i \(-0.458568\pi\)
0.129795 + 0.991541i \(0.458568\pi\)
\(558\) 351738. 0.0478226
\(559\) −2.13316e6 −0.288731
\(560\) 0 0
\(561\) −7.82895e6 −1.05026
\(562\) −3.26191e6 −0.435644
\(563\) −6.26708e6 −0.833286 −0.416643 0.909070i \(-0.636793\pi\)
−0.416643 + 0.909070i \(0.636793\pi\)
\(564\) 2.31003e6 0.305788
\(565\) 0 0
\(566\) 1.30690e6 0.171475
\(567\) −472732. −0.0617530
\(568\) −4.30243e6 −0.559555
\(569\) 6.91884e6 0.895885 0.447943 0.894062i \(-0.352157\pi\)
0.447943 + 0.894062i \(0.352157\pi\)
\(570\) 0 0
\(571\) −5.72155e6 −0.734385 −0.367192 0.930145i \(-0.619681\pi\)
−0.367192 + 0.930145i \(0.619681\pi\)
\(572\) 1.25262e6 0.160077
\(573\) 151941. 0.0193325
\(574\) 5.45719e6 0.691336
\(575\) 0 0
\(576\) −660478. −0.0829473
\(577\) 1.23874e7 1.54896 0.774481 0.632597i \(-0.218011\pi\)
0.774481 + 0.632597i \(0.218011\pi\)
\(578\) 8.29552e6 1.03282
\(579\) −4.68189e6 −0.580397
\(580\) 0 0
\(581\) 966301. 0.118761
\(582\) −2.09876e6 −0.256836
\(583\) 1.29387e7 1.57659
\(584\) −4.31253e6 −0.523239
\(585\) 0 0
\(586\) −5.29893e6 −0.637447
\(587\) −3.70271e6 −0.443531 −0.221766 0.975100i \(-0.571182\pi\)
−0.221766 + 0.975100i \(0.571182\pi\)
\(588\) −1.57274e6 −0.187592
\(589\) 337194. 0.0400490
\(590\) 0 0
\(591\) −2.20947e6 −0.260208
\(592\) 3.15434e6 0.369917
\(593\) −4.98645e6 −0.582310 −0.291155 0.956676i \(-0.594040\pi\)
−0.291155 + 0.956676i \(0.594040\pi\)
\(594\) −6.77280e6 −0.787593
\(595\) 0 0
\(596\) 920111. 0.106102
\(597\) 2.15351e6 0.247293
\(598\) 1.15688e6 0.132293
\(599\) −3.30712e6 −0.376602 −0.188301 0.982111i \(-0.560298\pi\)
−0.188301 + 0.982111i \(0.560298\pi\)
\(600\) 0 0
\(601\) 5.21917e6 0.589407 0.294703 0.955589i \(-0.404779\pi\)
0.294703 + 0.955589i \(0.404779\pi\)
\(602\) 3.88974e6 0.437451
\(603\) 9.61801e6 1.07719
\(604\) −6.12462e6 −0.683103
\(605\) 0 0
\(606\) 4.30533e6 0.476239
\(607\) −4.57734e6 −0.504245 −0.252123 0.967695i \(-0.581129\pi\)
−0.252123 + 0.967695i \(0.581129\pi\)
\(608\) −633169. −0.0694642
\(609\) 4.08368e6 0.446179
\(610\) 0 0
\(611\) 2.69861e6 0.292440
\(612\) 4.82241e6 0.520457
\(613\) −5.04824e6 −0.542611 −0.271306 0.962493i \(-0.587455\pi\)
−0.271306 + 0.962493i \(0.587455\pi\)
\(614\) −2.20166e6 −0.235684
\(615\) 0 0
\(616\) −2.28412e6 −0.242531
\(617\) 1.31376e7 1.38932 0.694662 0.719336i \(-0.255554\pi\)
0.694662 + 0.719336i \(0.255554\pi\)
\(618\) 4.36448e6 0.459686
\(619\) 1.12291e7 1.17793 0.588964 0.808159i \(-0.299536\pi\)
0.588964 + 0.808159i \(0.299536\pi\)
\(620\) 0 0
\(621\) −6.25514e6 −0.650891
\(622\) −1.34312e7 −1.39200
\(623\) 104856. 0.0108236
\(624\) 391176. 0.0402171
\(625\) 0 0
\(626\) 1.04659e7 1.06743
\(627\) −2.58987e6 −0.263093
\(628\) 2.80607e6 0.283922
\(629\) −2.30310e7 −2.32106
\(630\) 0 0
\(631\) 5.42646e6 0.542554 0.271277 0.962501i \(-0.412554\pi\)
0.271277 + 0.962501i \(0.412554\pi\)
\(632\) −3.13987e6 −0.312694
\(633\) 7.71444e6 0.765236
\(634\) −5.33657e6 −0.527277
\(635\) 0 0
\(636\) 4.04055e6 0.396094
\(637\) −1.83730e6 −0.179404
\(638\) −1.08631e7 −1.05658
\(639\) 1.08401e7 1.05022
\(640\) 0 0
\(641\) 1.64890e7 1.58507 0.792536 0.609826i \(-0.208761\pi\)
0.792536 + 0.609826i \(0.208761\pi\)
\(642\) 1.05442e6 0.100966
\(643\) −3.20604e6 −0.305803 −0.152901 0.988241i \(-0.548862\pi\)
−0.152901 + 0.988241i \(0.548862\pi\)
\(644\) −2.10954e6 −0.200435
\(645\) 0 0
\(646\) 4.62301e6 0.435857
\(647\) 1.26054e7 1.18385 0.591923 0.805994i \(-0.298369\pi\)
0.591923 + 0.805994i \(0.298369\pi\)
\(648\) 392708. 0.0367394
\(649\) −1.02910e7 −0.959062
\(650\) 0 0
\(651\) 379866. 0.0351300
\(652\) 1.01020e7 0.930650
\(653\) −1.20010e7 −1.10137 −0.550685 0.834713i \(-0.685634\pi\)
−0.550685 + 0.834713i \(0.685634\pi\)
\(654\) 1.29153e6 0.118076
\(655\) 0 0
\(656\) −4.53340e6 −0.411305
\(657\) 1.08655e7 0.982059
\(658\) −4.92083e6 −0.443071
\(659\) −5.28381e6 −0.473951 −0.236976 0.971516i \(-0.576156\pi\)
−0.236976 + 0.971516i \(0.576156\pi\)
\(660\) 0 0
\(661\) 866979. 0.0771801 0.0385900 0.999255i \(-0.487713\pi\)
0.0385900 + 0.999255i \(0.487713\pi\)
\(662\) −2.86414e6 −0.254009
\(663\) −2.85612e6 −0.252344
\(664\) −802726. −0.0706557
\(665\) 0 0
\(666\) −7.94743e6 −0.694291
\(667\) −1.00328e7 −0.873192
\(668\) 4.17857e6 0.362315
\(669\) 781581. 0.0675163
\(670\) 0 0
\(671\) 2.56752e6 0.220144
\(672\) −713297. −0.0609322
\(673\) 1.14870e7 0.977620 0.488810 0.872390i \(-0.337431\pi\)
0.488810 + 0.872390i \(0.337431\pi\)
\(674\) 1.54949e7 1.31383
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 4.22852e6 0.354582 0.177291 0.984158i \(-0.443267\pi\)
0.177291 + 0.984158i \(0.443267\pi\)
\(678\) 7.01884e6 0.586396
\(679\) 4.47078e6 0.372142
\(680\) 0 0
\(681\) −5.62654e6 −0.464915
\(682\) −1.01049e6 −0.0831903
\(683\) −7.70437e6 −0.631954 −0.315977 0.948767i \(-0.602332\pi\)
−0.315977 + 0.948767i \(0.602332\pi\)
\(684\) 1.59529e6 0.130376
\(685\) 0 0
\(686\) 8.52961e6 0.692021
\(687\) 5.26514e6 0.425616
\(688\) −3.23129e6 −0.260258
\(689\) 4.72022e6 0.378804
\(690\) 0 0
\(691\) −1.44971e6 −0.115501 −0.0577504 0.998331i \(-0.518393\pi\)
−0.0577504 + 0.998331i \(0.518393\pi\)
\(692\) 5.33191e6 0.423270
\(693\) 5.75489e6 0.455202
\(694\) −167705. −0.0132174
\(695\) 0 0
\(696\) −3.39240e6 −0.265451
\(697\) 3.31001e7 2.58076
\(698\) 8.32545e6 0.646798
\(699\) −7.82703e6 −0.605904
\(700\) 0 0
\(701\) −3.04812e6 −0.234281 −0.117140 0.993115i \(-0.537373\pi\)
−0.117140 + 0.993115i \(0.537373\pi\)
\(702\) −2.47082e6 −0.189234
\(703\) −7.61883e6 −0.581433
\(704\) 1.89746e6 0.144292
\(705\) 0 0
\(706\) 1.67899e7 1.26776
\(707\) −9.17121e6 −0.690046
\(708\) −3.21373e6 −0.240950
\(709\) −7.81300e6 −0.583717 −0.291858 0.956462i \(-0.594274\pi\)
−0.291858 + 0.956462i \(0.594274\pi\)
\(710\) 0 0
\(711\) 7.91098e6 0.586889
\(712\) −87105.9 −0.00643943
\(713\) −933260. −0.0687510
\(714\) 5.20805e6 0.382323
\(715\) 0 0
\(716\) −9.71307e6 −0.708066
\(717\) −6.82443e6 −0.495757
\(718\) 6.34104e6 0.459039
\(719\) −1.82691e7 −1.31794 −0.658969 0.752170i \(-0.729007\pi\)
−0.658969 + 0.752170i \(0.729007\pi\)
\(720\) 0 0
\(721\) −9.29722e6 −0.666062
\(722\) −8.37507e6 −0.597923
\(723\) −1.91153e6 −0.135999
\(724\) 2.32875e6 0.165111
\(725\) 0 0
\(726\) 1.93662e6 0.136365
\(727\) −2.73815e6 −0.192142 −0.0960708 0.995374i \(-0.530628\pi\)
−0.0960708 + 0.995374i \(0.530628\pi\)
\(728\) −833282. −0.0582725
\(729\) 7.04112e6 0.490708
\(730\) 0 0
\(731\) 2.35929e7 1.63301
\(732\) 801798. 0.0553079
\(733\) 1.19371e6 0.0820614 0.0410307 0.999158i \(-0.486936\pi\)
0.0410307 + 0.999158i \(0.486936\pi\)
\(734\) 2.77381e6 0.190037
\(735\) 0 0
\(736\) 1.75244e6 0.119247
\(737\) −2.76312e7 −1.87384
\(738\) 1.14220e7 0.771972
\(739\) −6.31824e6 −0.425584 −0.212792 0.977098i \(-0.568256\pi\)
−0.212792 + 0.977098i \(0.568256\pi\)
\(740\) 0 0
\(741\) −944825. −0.0632129
\(742\) −8.60718e6 −0.573920
\(743\) 268541. 0.0178459 0.00892296 0.999960i \(-0.497160\pi\)
0.00892296 + 0.999960i \(0.497160\pi\)
\(744\) −315562. −0.0209003
\(745\) 0 0
\(746\) −1.49678e7 −0.984717
\(747\) 2.02249e6 0.132612
\(748\) −1.38541e7 −0.905367
\(749\) −2.24612e6 −0.146294
\(750\) 0 0
\(751\) −604825. −0.0391318 −0.0195659 0.999809i \(-0.506228\pi\)
−0.0195659 + 0.999809i \(0.506228\pi\)
\(752\) 4.08783e6 0.263602
\(753\) 1.45301e7 0.933857
\(754\) −3.96304e6 −0.253863
\(755\) 0 0
\(756\) 4.50547e6 0.286705
\(757\) −2.65907e7 −1.68651 −0.843256 0.537512i \(-0.819364\pi\)
−0.843256 + 0.537512i \(0.819364\pi\)
\(758\) 130382. 0.00824221
\(759\) 7.16805e6 0.451644
\(760\) 0 0
\(761\) −2.32242e7 −1.45371 −0.726856 0.686789i \(-0.759019\pi\)
−0.726856 + 0.686789i \(0.759019\pi\)
\(762\) −4.08793e6 −0.255044
\(763\) −2.75122e6 −0.171086
\(764\) 268874. 0.0166654
\(765\) 0 0
\(766\) 1.99730e7 1.22991
\(767\) −3.75432e6 −0.230432
\(768\) 592550. 0.0362512
\(769\) 1.05706e7 0.644590 0.322295 0.946639i \(-0.395546\pi\)
0.322295 + 0.946639i \(0.395546\pi\)
\(770\) 0 0
\(771\) 1.16855e7 0.707965
\(772\) −8.28508e6 −0.500326
\(773\) −1.87286e6 −0.112734 −0.0563671 0.998410i \(-0.517952\pi\)
−0.0563671 + 0.998410i \(0.517952\pi\)
\(774\) 8.14131e6 0.488475
\(775\) 0 0
\(776\) −3.71396e6 −0.221403
\(777\) −8.58299e6 −0.510019
\(778\) −1.27912e7 −0.757640
\(779\) 1.09497e7 0.646487
\(780\) 0 0
\(781\) −3.11421e7 −1.82692
\(782\) −1.27952e7 −0.748222
\(783\) 2.14277e7 1.24903
\(784\) −2.78313e6 −0.161712
\(785\) 0 0
\(786\) −1.29760e7 −0.749179
\(787\) 1.36103e6 0.0783303 0.0391651 0.999233i \(-0.487530\pi\)
0.0391651 + 0.999233i \(0.487530\pi\)
\(788\) −3.90988e6 −0.224310
\(789\) −7.12116e6 −0.407247
\(790\) 0 0
\(791\) −1.49515e7 −0.849658
\(792\) −4.78070e6 −0.270819
\(793\) 936670. 0.0528937
\(794\) 4.51912e6 0.254391
\(795\) 0 0
\(796\) 3.81086e6 0.213177
\(797\) −1.70704e7 −0.951917 −0.475958 0.879468i \(-0.657899\pi\)
−0.475958 + 0.879468i \(0.657899\pi\)
\(798\) 1.72286e6 0.0957730
\(799\) −2.98468e7 −1.65398
\(800\) 0 0
\(801\) 219465. 0.0120861
\(802\) −2.24036e6 −0.122993
\(803\) −3.12152e7 −1.70835
\(804\) −8.62883e6 −0.470773
\(805\) 0 0
\(806\) −368644. −0.0199880
\(807\) −1.02315e7 −0.553036
\(808\) 7.61871e6 0.410538
\(809\) −2.60220e7 −1.39788 −0.698938 0.715182i \(-0.746344\pi\)
−0.698938 + 0.715182i \(0.746344\pi\)
\(810\) 0 0
\(811\) −2.10104e7 −1.12171 −0.560857 0.827913i \(-0.689528\pi\)
−0.560857 + 0.827913i \(0.689528\pi\)
\(812\) 7.22648e6 0.384624
\(813\) 1.36158e7 0.722464
\(814\) 2.28319e7 1.20776
\(815\) 0 0
\(816\) −4.32643e6 −0.227460
\(817\) 7.80469e6 0.409073
\(818\) 1.98150e7 1.03541
\(819\) 2.09947e6 0.109371
\(820\) 0 0
\(821\) 8.52765e6 0.441542 0.220771 0.975326i \(-0.429143\pi\)
0.220771 + 0.975326i \(0.429143\pi\)
\(822\) −1.41006e7 −0.727877
\(823\) −1.68012e7 −0.864650 −0.432325 0.901718i \(-0.642307\pi\)
−0.432325 + 0.901718i \(0.642307\pi\)
\(824\) 7.72339e6 0.396269
\(825\) 0 0
\(826\) 6.84590e6 0.349124
\(827\) −2.18393e7 −1.11039 −0.555195 0.831720i \(-0.687356\pi\)
−0.555195 + 0.831720i \(0.687356\pi\)
\(828\) −4.41531e6 −0.223813
\(829\) 1.58155e7 0.799277 0.399639 0.916673i \(-0.369136\pi\)
0.399639 + 0.916673i \(0.369136\pi\)
\(830\) 0 0
\(831\) −7.13819e6 −0.358579
\(832\) 692224. 0.0346688
\(833\) 2.03207e7 1.01467
\(834\) −5.17518e6 −0.257638
\(835\) 0 0
\(836\) −4.58304e6 −0.226797
\(837\) 1.99322e6 0.0983425
\(838\) 1.50441e7 0.740041
\(839\) −2.88093e7 −1.41295 −0.706477 0.707736i \(-0.749717\pi\)
−0.706477 + 0.707736i \(0.749717\pi\)
\(840\) 0 0
\(841\) 1.38576e7 0.675612
\(842\) 5.90886e6 0.287226
\(843\) −7.37322e6 −0.357346
\(844\) 1.36515e7 0.659665
\(845\) 0 0
\(846\) −1.02994e7 −0.494750
\(847\) −4.12539e6 −0.197586
\(848\) 7.15016e6 0.341449
\(849\) 2.95411e6 0.140656
\(850\) 0 0
\(851\) 2.10868e7 0.998129
\(852\) −9.72521e6 −0.458987
\(853\) −1.92928e7 −0.907867 −0.453933 0.891036i \(-0.649980\pi\)
−0.453933 + 0.891036i \(0.649980\pi\)
\(854\) −1.70799e6 −0.0801384
\(855\) 0 0
\(856\) 1.86589e6 0.0870367
\(857\) −3.80802e7 −1.77112 −0.885559 0.464528i \(-0.846224\pi\)
−0.885559 + 0.464528i \(0.846224\pi\)
\(858\) 2.83143e6 0.131307
\(859\) −2.73638e6 −0.126530 −0.0632651 0.997997i \(-0.520151\pi\)
−0.0632651 + 0.997997i \(0.520151\pi\)
\(860\) 0 0
\(861\) 1.23354e7 0.567082
\(862\) 2.80237e7 1.28457
\(863\) −1.00854e7 −0.460962 −0.230481 0.973077i \(-0.574030\pi\)
−0.230481 + 0.973077i \(0.574030\pi\)
\(864\) −3.74278e6 −0.170573
\(865\) 0 0
\(866\) 3.08790e6 0.139917
\(867\) 1.87512e7 0.847190
\(868\) 672211. 0.0302835
\(869\) −2.27272e7 −1.02093
\(870\) 0 0
\(871\) −1.00803e7 −0.450223
\(872\) 2.28550e6 0.101786
\(873\) 9.35742e6 0.415548
\(874\) −4.23275e6 −0.187432
\(875\) 0 0
\(876\) −9.74805e6 −0.429198
\(877\) −1.31876e7 −0.578984 −0.289492 0.957180i \(-0.593486\pi\)
−0.289492 + 0.957180i \(0.593486\pi\)
\(878\) −1.51671e7 −0.663996
\(879\) −1.19777e7 −0.522879
\(880\) 0 0
\(881\) −1.21216e7 −0.526163 −0.263082 0.964774i \(-0.584739\pi\)
−0.263082 + 0.964774i \(0.584739\pi\)
\(882\) 7.01216e6 0.303515
\(883\) 1.70890e7 0.737591 0.368795 0.929511i \(-0.379770\pi\)
0.368795 + 0.929511i \(0.379770\pi\)
\(884\) −5.05419e6 −0.217531
\(885\) 0 0
\(886\) −613452. −0.0262541
\(887\) −3.63465e6 −0.155115 −0.0775574 0.996988i \(-0.524712\pi\)
−0.0775574 + 0.996988i \(0.524712\pi\)
\(888\) 7.13006e6 0.303432
\(889\) 8.70810e6 0.369547
\(890\) 0 0
\(891\) 2.84252e6 0.119952
\(892\) 1.38308e6 0.0582018
\(893\) −9.87354e6 −0.414328
\(894\) 2.07982e6 0.0870325
\(895\) 0 0
\(896\) −1.26225e6 −0.0525261
\(897\) 2.61501e6 0.108516
\(898\) 2.71921e7 1.12526
\(899\) 3.19700e6 0.131930
\(900\) 0 0
\(901\) −5.22060e7 −2.14244
\(902\) −3.28138e7 −1.34289
\(903\) 8.79237e6 0.358828
\(904\) 1.24205e7 0.505498
\(905\) 0 0
\(906\) −1.38441e7 −0.560329
\(907\) 2.76573e6 0.111633 0.0558163 0.998441i \(-0.482224\pi\)
0.0558163 + 0.998441i \(0.482224\pi\)
\(908\) −9.95672e6 −0.400776
\(909\) −1.91955e7 −0.770532
\(910\) 0 0
\(911\) 3.42270e7 1.36639 0.683193 0.730238i \(-0.260591\pi\)
0.683193 + 0.730238i \(0.260591\pi\)
\(912\) −1.43121e6 −0.0569794
\(913\) −5.81033e6 −0.230687
\(914\) −2.12308e7 −0.840622
\(915\) 0 0
\(916\) 9.31719e6 0.366899
\(917\) 2.76415e7 1.08552
\(918\) 2.73275e7 1.07027
\(919\) −1.47495e7 −0.576086 −0.288043 0.957618i \(-0.593005\pi\)
−0.288043 + 0.957618i \(0.593005\pi\)
\(920\) 0 0
\(921\) −4.97664e6 −0.193324
\(922\) −1.16930e7 −0.453001
\(923\) −1.13611e7 −0.438951
\(924\) −5.16302e6 −0.198941
\(925\) 0 0
\(926\) −2.27012e7 −0.870003
\(927\) −1.94593e7 −0.743750
\(928\) −6.00318e6 −0.228829
\(929\) 2.35885e7 0.896729 0.448365 0.893851i \(-0.352007\pi\)
0.448365 + 0.893851i \(0.352007\pi\)
\(930\) 0 0
\(931\) 6.72222e6 0.254178
\(932\) −1.38507e7 −0.522315
\(933\) −3.03598e7 −1.14181
\(934\) 7.90690e6 0.296578
\(935\) 0 0
\(936\) −1.74408e6 −0.0650692
\(937\) −5.87866e6 −0.218741 −0.109370 0.994001i \(-0.534883\pi\)
−0.109370 + 0.994001i \(0.534883\pi\)
\(938\) 1.83811e7 0.682126
\(939\) 2.36570e7 0.875581
\(940\) 0 0
\(941\) 1.78458e7 0.656996 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(942\) 6.34284e6 0.232893
\(943\) −3.03058e7 −1.10981
\(944\) −5.68702e6 −0.207709
\(945\) 0 0
\(946\) −2.33889e7 −0.849731
\(947\) 8.73411e6 0.316478 0.158239 0.987401i \(-0.449418\pi\)
0.158239 + 0.987401i \(0.449418\pi\)
\(948\) −7.09736e6 −0.256493
\(949\) −1.13878e7 −0.410463
\(950\) 0 0
\(951\) −1.20628e7 −0.432510
\(952\) 9.21617e6 0.329578
\(953\) 2.03640e6 0.0726323 0.0363162 0.999340i \(-0.488438\pi\)
0.0363162 + 0.999340i \(0.488438\pi\)
\(954\) −1.80150e7 −0.640860
\(955\) 0 0
\(956\) −1.20765e7 −0.427363
\(957\) −2.45550e7 −0.866683
\(958\) 3.00952e7 1.05946
\(959\) 3.00371e7 1.05466
\(960\) 0 0
\(961\) −2.83318e7 −0.989612
\(962\) 8.32942e6 0.290187
\(963\) −4.70117e6 −0.163358
\(964\) −3.38264e6 −0.117237
\(965\) 0 0
\(966\) −4.76840e6 −0.164411
\(967\) 2.25922e7 0.776948 0.388474 0.921460i \(-0.373002\pi\)
0.388474 + 0.921460i \(0.373002\pi\)
\(968\) 3.42704e6 0.117552
\(969\) 1.04498e7 0.357520
\(970\) 0 0
\(971\) 4.94414e7 1.68284 0.841420 0.540382i \(-0.181720\pi\)
0.841420 + 0.540382i \(0.181720\pi\)
\(972\) 1.50986e7 0.512589
\(973\) 1.10242e7 0.373305
\(974\) 1.80521e7 0.609720
\(975\) 0 0
\(976\) 1.41886e6 0.0476777
\(977\) −3.59351e7 −1.20443 −0.602217 0.798333i \(-0.705716\pi\)
−0.602217 + 0.798333i \(0.705716\pi\)
\(978\) 2.28345e7 0.763385
\(979\) −630494. −0.0210244
\(980\) 0 0
\(981\) −5.75836e6 −0.191041
\(982\) 5.95828e6 0.197171
\(983\) 3.51635e7 1.16067 0.580335 0.814378i \(-0.302922\pi\)
0.580335 + 0.814378i \(0.302922\pi\)
\(984\) −1.02473e7 −0.337381
\(985\) 0 0
\(986\) 4.38316e7 1.43580
\(987\) −1.11230e7 −0.363438
\(988\) −1.67196e6 −0.0544922
\(989\) −2.16012e7 −0.702243
\(990\) 0 0
\(991\) −3.90004e7 −1.26149 −0.630747 0.775989i \(-0.717251\pi\)
−0.630747 + 0.775989i \(0.717251\pi\)
\(992\) −558419. −0.0180169
\(993\) −6.47409e6 −0.208356
\(994\) 2.07166e7 0.665048
\(995\) 0 0
\(996\) −1.81448e6 −0.0579568
\(997\) 868537. 0.0276726 0.0138363 0.999904i \(-0.495596\pi\)
0.0138363 + 0.999904i \(0.495596\pi\)
\(998\) −1.30994e7 −0.416317
\(999\) −4.50363e7 −1.42774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.f.1.2 2
5.2 odd 4 650.6.b.f.599.3 4
5.3 odd 4 650.6.b.f.599.2 4
5.4 even 2 130.6.a.c.1.1 2
20.19 odd 2 1040.6.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.c.1.1 2 5.4 even 2
650.6.a.f.1.2 2 1.1 even 1 trivial
650.6.b.f.599.2 4 5.3 odd 4
650.6.b.f.599.3 4 5.2 odd 4
1040.6.a.c.1.2 2 20.19 odd 2