Properties

Label 650.6.a.f.1.1
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.52080\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -15.0416 q^{3} +16.0000 q^{4} -60.1664 q^{6} -52.9584 q^{7} +64.0000 q^{8} -16.7504 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -15.0416 q^{3} +16.0000 q^{4} -60.1664 q^{6} -52.9584 q^{7} +64.0000 q^{8} -16.7504 q^{9} -259.248 q^{11} -240.666 q^{12} +169.000 q^{13} -211.834 q^{14} +256.000 q^{16} +2273.15 q^{17} -67.0017 q^{18} +730.329 q^{19} +796.579 q^{21} -1036.99 q^{22} -1973.36 q^{23} -962.662 q^{24} +676.000 q^{26} +3907.06 q^{27} -847.334 q^{28} -949.515 q^{29} +225.331 q^{31} +1024.00 q^{32} +3899.50 q^{33} +9092.62 q^{34} -268.007 q^{36} +954.367 q^{37} +2921.32 q^{38} -2542.03 q^{39} -17371.4 q^{41} +3186.32 q^{42} +10088.2 q^{43} -4147.97 q^{44} -7893.46 q^{46} +6069.90 q^{47} -3850.65 q^{48} -14002.4 q^{49} -34191.9 q^{51} +2704.00 q^{52} +16177.7 q^{53} +15628.2 q^{54} -3389.34 q^{56} -10985.3 q^{57} -3798.06 q^{58} +326.933 q^{59} -46814.4 q^{61} +901.324 q^{62} +887.076 q^{63} +4096.00 q^{64} +15598.0 q^{66} -43583.3 q^{67} +36370.5 q^{68} +29682.5 q^{69} +51745.5 q^{71} -1072.03 q^{72} +13295.3 q^{73} +3817.47 q^{74} +11685.3 q^{76} +13729.4 q^{77} -10168.1 q^{78} +76268.5 q^{79} -54698.1 q^{81} -69485.7 q^{82} -30147.4 q^{83} +12745.3 q^{84} +40352.9 q^{86} +14282.2 q^{87} -16591.9 q^{88} -66771.0 q^{89} -8949.97 q^{91} -31573.8 q^{92} -3389.34 q^{93} +24279.6 q^{94} -15402.6 q^{96} -151425. q^{97} -56009.6 q^{98} +4342.51 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} - 6 q^{3} + 32 q^{4} - 24 q^{6} - 130 q^{7} + 128 q^{8} - 178 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} - 6 q^{3} + 32 q^{4} - 24 q^{6} - 130 q^{7} + 128 q^{8} - 178 q^{9} + 204 q^{11} - 96 q^{12} + 338 q^{13} - 520 q^{14} + 512 q^{16} + 404 q^{17} - 712 q^{18} + 112 q^{19} + 100 q^{21} + 816 q^{22} - 262 q^{23} - 384 q^{24} + 1352 q^{26} + 252 q^{27} - 2080 q^{28} - 6812 q^{29} - 320 q^{31} + 2048 q^{32} + 8088 q^{33} + 1616 q^{34} - 2848 q^{36} + 13276 q^{37} + 448 q^{38} - 1014 q^{39} - 35080 q^{41} + 400 q^{42} - 2534 q^{43} + 3264 q^{44} - 1048 q^{46} + 22038 q^{47} - 1536 q^{48} - 24874 q^{49} - 51092 q^{51} + 5408 q^{52} + 44108 q^{53} + 1008 q^{54} - 8320 q^{56} - 16576 q^{57} - 27248 q^{58} - 21888 q^{59} - 41272 q^{61} - 1280 q^{62} + 13310 q^{63} + 8192 q^{64} + 32352 q^{66} - 103230 q^{67} + 6464 q^{68} + 45156 q^{69} - 15480 q^{71} - 11392 q^{72} - 54088 q^{73} + 53104 q^{74} + 1792 q^{76} - 21960 q^{77} - 4056 q^{78} + 27208 q^{79} - 48562 q^{81} - 140320 q^{82} - 42690 q^{83} + 1600 q^{84} - 10136 q^{86} - 38724 q^{87} + 13056 q^{88} - 68132 q^{89} - 21970 q^{91} - 4192 q^{92} - 8320 q^{93} + 88152 q^{94} - 6144 q^{96} - 209456 q^{97} - 99496 q^{98} - 70356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −15.0416 −0.964919 −0.482459 0.875918i \(-0.660256\pi\)
−0.482459 + 0.875918i \(0.660256\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −60.1664 −0.682301
\(7\) −52.9584 −0.408498 −0.204249 0.978919i \(-0.565475\pi\)
−0.204249 + 0.978919i \(0.565475\pi\)
\(8\) 64.0000 0.353553
\(9\) −16.7504 −0.0689318
\(10\) 0 0
\(11\) −259.248 −0.646001 −0.323001 0.946399i \(-0.604692\pi\)
−0.323001 + 0.946399i \(0.604692\pi\)
\(12\) −240.666 −0.482459
\(13\) 169.000 0.277350
\(14\) −211.834 −0.288852
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 2273.15 1.90768 0.953842 0.300308i \(-0.0970894\pi\)
0.953842 + 0.300308i \(0.0970894\pi\)
\(18\) −67.0017 −0.0487422
\(19\) 730.329 0.464125 0.232062 0.972701i \(-0.425453\pi\)
0.232062 + 0.972701i \(0.425453\pi\)
\(20\) 0 0
\(21\) 796.579 0.394167
\(22\) −1036.99 −0.456792
\(23\) −1973.36 −0.777835 −0.388918 0.921273i \(-0.627151\pi\)
−0.388918 + 0.921273i \(0.627151\pi\)
\(24\) −962.662 −0.341150
\(25\) 0 0
\(26\) 676.000 0.196116
\(27\) 3907.06 1.03143
\(28\) −847.334 −0.204249
\(29\) −949.515 −0.209656 −0.104828 0.994490i \(-0.533429\pi\)
−0.104828 + 0.994490i \(0.533429\pi\)
\(30\) 0 0
\(31\) 225.331 0.0421131 0.0210565 0.999778i \(-0.493297\pi\)
0.0210565 + 0.999778i \(0.493297\pi\)
\(32\) 1024.00 0.176777
\(33\) 3899.50 0.623339
\(34\) 9092.62 1.34894
\(35\) 0 0
\(36\) −268.007 −0.0344659
\(37\) 954.367 0.114607 0.0573035 0.998357i \(-0.481750\pi\)
0.0573035 + 0.998357i \(0.481750\pi\)
\(38\) 2921.32 0.328186
\(39\) −2542.03 −0.267620
\(40\) 0 0
\(41\) −17371.4 −1.61390 −0.806948 0.590622i \(-0.798882\pi\)
−0.806948 + 0.590622i \(0.798882\pi\)
\(42\) 3186.32 0.278718
\(43\) 10088.2 0.832039 0.416019 0.909356i \(-0.363425\pi\)
0.416019 + 0.909356i \(0.363425\pi\)
\(44\) −4147.97 −0.323001
\(45\) 0 0
\(46\) −7893.46 −0.550013
\(47\) 6069.90 0.400809 0.200404 0.979713i \(-0.435774\pi\)
0.200404 + 0.979713i \(0.435774\pi\)
\(48\) −3850.65 −0.241230
\(49\) −14002.4 −0.833129
\(50\) 0 0
\(51\) −34191.9 −1.84076
\(52\) 2704.00 0.138675
\(53\) 16177.7 0.791092 0.395546 0.918446i \(-0.370555\pi\)
0.395546 + 0.918446i \(0.370555\pi\)
\(54\) 15628.2 0.729333
\(55\) 0 0
\(56\) −3389.34 −0.144426
\(57\) −10985.3 −0.447843
\(58\) −3798.06 −0.148249
\(59\) 326.933 0.0122272 0.00611362 0.999981i \(-0.498054\pi\)
0.00611362 + 0.999981i \(0.498054\pi\)
\(60\) 0 0
\(61\) −46814.4 −1.61085 −0.805425 0.592698i \(-0.798063\pi\)
−0.805425 + 0.592698i \(0.798063\pi\)
\(62\) 901.324 0.0297784
\(63\) 887.076 0.0281585
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 15598.0 0.440767
\(67\) −43583.3 −1.18613 −0.593066 0.805154i \(-0.702082\pi\)
−0.593066 + 0.805154i \(0.702082\pi\)
\(68\) 36370.5 0.953842
\(69\) 29682.5 0.750548
\(70\) 0 0
\(71\) 51745.5 1.21822 0.609111 0.793085i \(-0.291526\pi\)
0.609111 + 0.793085i \(0.291526\pi\)
\(72\) −1072.03 −0.0243711
\(73\) 13295.3 0.292006 0.146003 0.989284i \(-0.453359\pi\)
0.146003 + 0.989284i \(0.453359\pi\)
\(74\) 3817.47 0.0810394
\(75\) 0 0
\(76\) 11685.3 0.232062
\(77\) 13729.4 0.263890
\(78\) −10168.1 −0.189236
\(79\) 76268.5 1.37492 0.687460 0.726223i \(-0.258726\pi\)
0.687460 + 0.726223i \(0.258726\pi\)
\(80\) 0 0
\(81\) −54698.1 −0.926317
\(82\) −69485.7 −1.14120
\(83\) −30147.4 −0.480347 −0.240173 0.970730i \(-0.577204\pi\)
−0.240173 + 0.970730i \(0.577204\pi\)
\(84\) 12745.3 0.197084
\(85\) 0 0
\(86\) 40352.9 0.588340
\(87\) 14282.2 0.202301
\(88\) −16591.9 −0.228396
\(89\) −66771.0 −0.893537 −0.446769 0.894650i \(-0.647425\pi\)
−0.446769 + 0.894650i \(0.647425\pi\)
\(90\) 0 0
\(91\) −8949.97 −0.113297
\(92\) −31573.8 −0.388918
\(93\) −3389.34 −0.0406357
\(94\) 24279.6 0.283415
\(95\) 0 0
\(96\) −15402.6 −0.170575
\(97\) −151425. −1.63406 −0.817032 0.576592i \(-0.804382\pi\)
−0.817032 + 0.576592i \(0.804382\pi\)
\(98\) −56009.6 −0.589112
\(99\) 4342.51 0.0445300
\(100\) 0 0
\(101\) −145198. −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(102\) −136767. −1.30161
\(103\) 71524.1 0.664293 0.332146 0.943228i \(-0.392227\pi\)
0.332146 + 0.943228i \(0.392227\pi\)
\(104\) 10816.0 0.0980581
\(105\) 0 0
\(106\) 64710.8 0.559387
\(107\) −93356.6 −0.788289 −0.394145 0.919048i \(-0.628959\pi\)
−0.394145 + 0.919048i \(0.628959\pi\)
\(108\) 62513.0 0.515716
\(109\) 102373. 0.825315 0.412658 0.910886i \(-0.364601\pi\)
0.412658 + 0.910886i \(0.364601\pi\)
\(110\) 0 0
\(111\) −14355.2 −0.110586
\(112\) −13557.4 −0.102124
\(113\) −132979. −0.979685 −0.489843 0.871811i \(-0.662946\pi\)
−0.489843 + 0.871811i \(0.662946\pi\)
\(114\) −43941.3 −0.316673
\(115\) 0 0
\(116\) −15192.2 −0.104828
\(117\) −2830.82 −0.0191182
\(118\) 1307.73 0.00864596
\(119\) −120383. −0.779285
\(120\) 0 0
\(121\) −93841.6 −0.582682
\(122\) −187258. −1.13904
\(123\) 261294. 1.55728
\(124\) 3605.30 0.0210565
\(125\) 0 0
\(126\) 3548.30 0.0199111
\(127\) −53858.8 −0.296311 −0.148155 0.988964i \(-0.547334\pi\)
−0.148155 + 0.988964i \(0.547334\pi\)
\(128\) 16384.0 0.0883883
\(129\) −151743. −0.802850
\(130\) 0 0
\(131\) 125815. 0.640552 0.320276 0.947324i \(-0.396224\pi\)
0.320276 + 0.947324i \(0.396224\pi\)
\(132\) 62392.0 0.311669
\(133\) −38677.1 −0.189594
\(134\) −174333. −0.838721
\(135\) 0 0
\(136\) 145482. 0.674468
\(137\) 55609.4 0.253132 0.126566 0.991958i \(-0.459604\pi\)
0.126566 + 0.991958i \(0.459604\pi\)
\(138\) 118730. 0.530717
\(139\) −200026. −0.878113 −0.439056 0.898460i \(-0.644687\pi\)
−0.439056 + 0.898460i \(0.644687\pi\)
\(140\) 0 0
\(141\) −91301.0 −0.386748
\(142\) 206982. 0.861413
\(143\) −43812.9 −0.179169
\(144\) −4288.11 −0.0172330
\(145\) 0 0
\(146\) 53181.4 0.206480
\(147\) 210619. 0.803902
\(148\) 15269.9 0.0573035
\(149\) −126007. −0.464974 −0.232487 0.972599i \(-0.574686\pi\)
−0.232487 + 0.972599i \(0.574686\pi\)
\(150\) 0 0
\(151\) 13524.5 0.0482701 0.0241351 0.999709i \(-0.492317\pi\)
0.0241351 + 0.999709i \(0.492317\pi\)
\(152\) 46741.1 0.164093
\(153\) −38076.3 −0.131500
\(154\) 54917.4 0.186599
\(155\) 0 0
\(156\) −40672.5 −0.133810
\(157\) −422943. −1.36941 −0.684704 0.728821i \(-0.740069\pi\)
−0.684704 + 0.728821i \(0.740069\pi\)
\(158\) 305074. 0.972215
\(159\) −243338. −0.763340
\(160\) 0 0
\(161\) 104506. 0.317744
\(162\) −218792. −0.655005
\(163\) −668710. −1.97137 −0.985687 0.168585i \(-0.946080\pi\)
−0.985687 + 0.168585i \(0.946080\pi\)
\(164\) −277943. −0.806948
\(165\) 0 0
\(166\) −120590. −0.339656
\(167\) −328083. −0.910316 −0.455158 0.890411i \(-0.650417\pi\)
−0.455158 + 0.890411i \(0.650417\pi\)
\(168\) 50981.0 0.139359
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −12233.3 −0.0319930
\(172\) 161412. 0.416019
\(173\) −62008.7 −0.157520 −0.0787602 0.996894i \(-0.525096\pi\)
−0.0787602 + 0.996894i \(0.525096\pi\)
\(174\) 57128.9 0.143048
\(175\) 0 0
\(176\) −66367.4 −0.161500
\(177\) −4917.59 −0.0117983
\(178\) −267084. −0.631826
\(179\) 110227. 0.257131 0.128566 0.991701i \(-0.458963\pi\)
0.128566 + 0.991701i \(0.458963\pi\)
\(180\) 0 0
\(181\) −371375. −0.842589 −0.421295 0.906924i \(-0.638424\pi\)
−0.421295 + 0.906924i \(0.638424\pi\)
\(182\) −35799.9 −0.0801130
\(183\) 704164. 1.55434
\(184\) −126295. −0.275006
\(185\) 0 0
\(186\) −13557.4 −0.0287338
\(187\) −589310. −1.23237
\(188\) 97118.5 0.200404
\(189\) −206912. −0.421338
\(190\) 0 0
\(191\) −973641. −1.93115 −0.965573 0.260131i \(-0.916234\pi\)
−0.965573 + 0.260131i \(0.916234\pi\)
\(192\) −61610.4 −0.120615
\(193\) 17937.3 0.0346628 0.0173314 0.999850i \(-0.494483\pi\)
0.0173314 + 0.999850i \(0.494483\pi\)
\(194\) −605701. −1.15546
\(195\) 0 0
\(196\) −224039. −0.416565
\(197\) −396284. −0.727514 −0.363757 0.931494i \(-0.618506\pi\)
−0.363757 + 0.931494i \(0.618506\pi\)
\(198\) 17370.1 0.0314875
\(199\) −374690. −0.670718 −0.335359 0.942090i \(-0.608858\pi\)
−0.335359 + 0.942090i \(0.608858\pi\)
\(200\) 0 0
\(201\) 655562. 1.14452
\(202\) −580794. −1.00148
\(203\) 50284.8 0.0856439
\(204\) −547070. −0.920380
\(205\) 0 0
\(206\) 286096. 0.469726
\(207\) 33054.7 0.0536176
\(208\) 43264.0 0.0693375
\(209\) −189336. −0.299825
\(210\) 0 0
\(211\) 666091. 1.02998 0.514988 0.857197i \(-0.327796\pi\)
0.514988 + 0.857197i \(0.327796\pi\)
\(212\) 258843. 0.395546
\(213\) −778334. −1.17549
\(214\) −373426. −0.557405
\(215\) 0 0
\(216\) 250052. 0.364666
\(217\) −11933.2 −0.0172031
\(218\) 409493. 0.583586
\(219\) −199983. −0.281762
\(220\) 0 0
\(221\) 384163. 0.529097
\(222\) −57420.8 −0.0781964
\(223\) 840415. 1.13170 0.565851 0.824508i \(-0.308548\pi\)
0.565851 + 0.824508i \(0.308548\pi\)
\(224\) −54229.4 −0.0722129
\(225\) 0 0
\(226\) −531915. −0.692742
\(227\) 880953. 1.13472 0.567359 0.823470i \(-0.307965\pi\)
0.567359 + 0.823470i \(0.307965\pi\)
\(228\) −175765. −0.223921
\(229\) −622076. −0.783889 −0.391945 0.919989i \(-0.628198\pi\)
−0.391945 + 0.919989i \(0.628198\pi\)
\(230\) 0 0
\(231\) −206511. −0.254633
\(232\) −60768.9 −0.0741245
\(233\) 1.09326e6 1.31927 0.659633 0.751588i \(-0.270712\pi\)
0.659633 + 0.751588i \(0.270712\pi\)
\(234\) −11323.3 −0.0135186
\(235\) 0 0
\(236\) 5230.92 0.00611362
\(237\) −1.14720e6 −1.32669
\(238\) −481531. −0.551038
\(239\) 153202. 0.173488 0.0867442 0.996231i \(-0.472354\pi\)
0.0867442 + 0.996231i \(0.472354\pi\)
\(240\) 0 0
\(241\) 1.24027e6 1.37554 0.687771 0.725927i \(-0.258589\pi\)
0.687771 + 0.725927i \(0.258589\pi\)
\(242\) −375366. −0.412019
\(243\) −126670. −0.137612
\(244\) −749031. −0.805425
\(245\) 0 0
\(246\) 1.04518e6 1.10116
\(247\) 123426. 0.128725
\(248\) 14421.2 0.0148892
\(249\) 453465. 0.463495
\(250\) 0 0
\(251\) −1.52653e6 −1.52940 −0.764702 0.644384i \(-0.777114\pi\)
−0.764702 + 0.644384i \(0.777114\pi\)
\(252\) 14193.2 0.0140793
\(253\) 511590. 0.502483
\(254\) −215435. −0.209523
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.27524e6 −1.20436 −0.602182 0.798359i \(-0.705702\pi\)
−0.602182 + 0.798359i \(0.705702\pi\)
\(258\) −606972. −0.567701
\(259\) −50541.8 −0.0468167
\(260\) 0 0
\(261\) 15904.8 0.0144520
\(262\) 503260. 0.452938
\(263\) −942046. −0.839813 −0.419907 0.907567i \(-0.637937\pi\)
−0.419907 + 0.907567i \(0.637937\pi\)
\(264\) 249568. 0.220384
\(265\) 0 0
\(266\) −154708. −0.134063
\(267\) 1.00434e6 0.862191
\(268\) −697332. −0.593066
\(269\) 806087. 0.679205 0.339603 0.940569i \(-0.389707\pi\)
0.339603 + 0.940569i \(0.389707\pi\)
\(270\) 0 0
\(271\) 600088. 0.496354 0.248177 0.968715i \(-0.420169\pi\)
0.248177 + 0.968715i \(0.420169\pi\)
\(272\) 581927. 0.476921
\(273\) 134622. 0.109322
\(274\) 222438. 0.178991
\(275\) 0 0
\(276\) 474921. 0.375274
\(277\) −1.62719e6 −1.27421 −0.637103 0.770779i \(-0.719867\pi\)
−0.637103 + 0.770779i \(0.719867\pi\)
\(278\) −800105. −0.620919
\(279\) −3774.39 −0.00290293
\(280\) 0 0
\(281\) −228378. −0.172539 −0.0862697 0.996272i \(-0.527495\pi\)
−0.0862697 + 0.996272i \(0.527495\pi\)
\(282\) −365204. −0.273472
\(283\) 1.27404e6 0.945619 0.472809 0.881165i \(-0.343240\pi\)
0.472809 + 0.881165i \(0.343240\pi\)
\(284\) 827928. 0.609111
\(285\) 0 0
\(286\) −175252. −0.126691
\(287\) 919963. 0.659273
\(288\) −17152.4 −0.0121855
\(289\) 3.74737e6 2.63926
\(290\) 0 0
\(291\) 2.27768e6 1.57674
\(292\) 212725. 0.146003
\(293\) 2.84127e6 1.93350 0.966749 0.255725i \(-0.0823143\pi\)
0.966749 + 0.255725i \(0.0823143\pi\)
\(294\) 842474. 0.568445
\(295\) 0 0
\(296\) 61079.5 0.0405197
\(297\) −1.01290e6 −0.666307
\(298\) −504028. −0.328786
\(299\) −333499. −0.215733
\(300\) 0 0
\(301\) −534256. −0.339886
\(302\) 54097.9 0.0341321
\(303\) 2.18402e6 1.36662
\(304\) 186964. 0.116031
\(305\) 0 0
\(306\) −152305. −0.0929847
\(307\) 452866. 0.274235 0.137118 0.990555i \(-0.456216\pi\)
0.137118 + 0.990555i \(0.456216\pi\)
\(308\) 219670. 0.131945
\(309\) −1.07584e6 −0.640988
\(310\) 0 0
\(311\) −1.43388e6 −0.840645 −0.420323 0.907375i \(-0.638083\pi\)
−0.420323 + 0.907375i \(0.638083\pi\)
\(312\) −162690. −0.0946181
\(313\) 165281. 0.0953588 0.0476794 0.998863i \(-0.484817\pi\)
0.0476794 + 0.998863i \(0.484817\pi\)
\(314\) −1.69177e6 −0.968318
\(315\) 0 0
\(316\) 1.22030e6 0.687460
\(317\) 1.53580e6 0.858395 0.429198 0.903211i \(-0.358796\pi\)
0.429198 + 0.903211i \(0.358796\pi\)
\(318\) −973354. −0.539763
\(319\) 246160. 0.135438
\(320\) 0 0
\(321\) 1.40423e6 0.760635
\(322\) 418025. 0.224679
\(323\) 1.66015e6 0.885404
\(324\) −875169. −0.463158
\(325\) 0 0
\(326\) −2.67484e6 −1.39397
\(327\) −1.53986e6 −0.796362
\(328\) −1.11177e6 −0.570599
\(329\) −321452. −0.163730
\(330\) 0 0
\(331\) −1.57759e6 −0.791449 −0.395725 0.918369i \(-0.629507\pi\)
−0.395725 + 0.918369i \(0.629507\pi\)
\(332\) −482358. −0.240173
\(333\) −15986.1 −0.00790007
\(334\) −1.31233e6 −0.643691
\(335\) 0 0
\(336\) 203924. 0.0985418
\(337\) 303917. 0.145774 0.0728869 0.997340i \(-0.476779\pi\)
0.0728869 + 0.997340i \(0.476779\pi\)
\(338\) 114244. 0.0543928
\(339\) 2.00021e6 0.945316
\(340\) 0 0
\(341\) −58416.6 −0.0272051
\(342\) −48933.3 −0.0226224
\(343\) 1.63162e6 0.748829
\(344\) 645646. 0.294170
\(345\) 0 0
\(346\) −248035. −0.111384
\(347\) 3.29844e6 1.47057 0.735283 0.677760i \(-0.237049\pi\)
0.735283 + 0.677760i \(0.237049\pi\)
\(348\) 228515. 0.101150
\(349\) −356002. −0.156455 −0.0782273 0.996936i \(-0.524926\pi\)
−0.0782273 + 0.996936i \(0.524926\pi\)
\(350\) 0 0
\(351\) 660293. 0.286068
\(352\) −265470. −0.114198
\(353\) −3.72901e6 −1.59279 −0.796393 0.604780i \(-0.793261\pi\)
−0.796393 + 0.604780i \(0.793261\pi\)
\(354\) −19670.3 −0.00834265
\(355\) 0 0
\(356\) −1.06834e6 −0.446769
\(357\) 1.81075e6 0.751947
\(358\) 440907. 0.181819
\(359\) −2.27503e6 −0.931647 −0.465824 0.884878i \(-0.654242\pi\)
−0.465824 + 0.884878i \(0.654242\pi\)
\(360\) 0 0
\(361\) −1.94272e6 −0.784588
\(362\) −1.48550e6 −0.595801
\(363\) 1.41153e6 0.562241
\(364\) −143200. −0.0566485
\(365\) 0 0
\(366\) 2.81665e6 1.09908
\(367\) −1.21410e6 −0.470534 −0.235267 0.971931i \(-0.575596\pi\)
−0.235267 + 0.971931i \(0.575596\pi\)
\(368\) −505181. −0.194459
\(369\) 290979. 0.111249
\(370\) 0 0
\(371\) −856745. −0.323160
\(372\) −54229.4 −0.0203178
\(373\) 1.56733e6 0.583294 0.291647 0.956526i \(-0.405797\pi\)
0.291647 + 0.956526i \(0.405797\pi\)
\(374\) −2.35724e6 −0.871415
\(375\) 0 0
\(376\) 388474. 0.141707
\(377\) −160468. −0.0581480
\(378\) −827647. −0.297931
\(379\) 4.40321e6 1.57461 0.787303 0.616567i \(-0.211477\pi\)
0.787303 + 0.616567i \(0.211477\pi\)
\(380\) 0 0
\(381\) 810122. 0.285916
\(382\) −3.89456e6 −1.36553
\(383\) 3.45596e6 1.20385 0.601924 0.798554i \(-0.294401\pi\)
0.601924 + 0.798554i \(0.294401\pi\)
\(384\) −246441. −0.0852876
\(385\) 0 0
\(386\) 71749.3 0.0245103
\(387\) −168982. −0.0573539
\(388\) −2.42280e6 −0.817032
\(389\) 556620. 0.186503 0.0932513 0.995643i \(-0.470274\pi\)
0.0932513 + 0.995643i \(0.470274\pi\)
\(390\) 0 0
\(391\) −4.48576e6 −1.48386
\(392\) −896154. −0.294556
\(393\) −1.89246e6 −0.618080
\(394\) −1.58514e6 −0.514430
\(395\) 0 0
\(396\) 69480.2 0.0222650
\(397\) 225504. 0.0718089 0.0359045 0.999355i \(-0.488569\pi\)
0.0359045 + 0.999355i \(0.488569\pi\)
\(398\) −1.49876e6 −0.474269
\(399\) 581765. 0.182943
\(400\) 0 0
\(401\) 898293. 0.278970 0.139485 0.990224i \(-0.455455\pi\)
0.139485 + 0.990224i \(0.455455\pi\)
\(402\) 2.62225e6 0.809298
\(403\) 38080.9 0.0116801
\(404\) −2.32317e6 −0.708155
\(405\) 0 0
\(406\) 201139. 0.0605594
\(407\) −247418. −0.0740363
\(408\) −2.18828e6 −0.650807
\(409\) −1.77186e6 −0.523746 −0.261873 0.965102i \(-0.584340\pi\)
−0.261873 + 0.965102i \(0.584340\pi\)
\(410\) 0 0
\(411\) −836454. −0.244252
\(412\) 1.14439e6 0.332146
\(413\) −17313.8 −0.00499480
\(414\) 132219. 0.0379134
\(415\) 0 0
\(416\) 173056. 0.0490290
\(417\) 3.00871e6 0.847307
\(418\) −757345. −0.212008
\(419\) 617010. 0.171695 0.0858474 0.996308i \(-0.472640\pi\)
0.0858474 + 0.996308i \(0.472640\pi\)
\(420\) 0 0
\(421\) −6.27988e6 −1.72682 −0.863409 0.504505i \(-0.831675\pi\)
−0.863409 + 0.504505i \(0.831675\pi\)
\(422\) 2.66436e6 0.728303
\(423\) −101674. −0.0276285
\(424\) 1.03537e6 0.279693
\(425\) 0 0
\(426\) −3.11334e6 −0.831194
\(427\) 2.47922e6 0.658029
\(428\) −1.49371e6 −0.394145
\(429\) 659016. 0.172883
\(430\) 0 0
\(431\) 2.03052e6 0.526519 0.263259 0.964725i \(-0.415202\pi\)
0.263259 + 0.964725i \(0.415202\pi\)
\(432\) 1.00021e6 0.257858
\(433\) 1.29410e6 0.331702 0.165851 0.986151i \(-0.446963\pi\)
0.165851 + 0.986151i \(0.446963\pi\)
\(434\) −47732.7 −0.0121644
\(435\) 0 0
\(436\) 1.63797e6 0.412658
\(437\) −1.44121e6 −0.361013
\(438\) −799933. −0.199236
\(439\) −2.53819e6 −0.628584 −0.314292 0.949326i \(-0.601767\pi\)
−0.314292 + 0.949326i \(0.601767\pi\)
\(440\) 0 0
\(441\) 234546. 0.0574291
\(442\) 1.53665e6 0.374128
\(443\) −6.27678e6 −1.51959 −0.759797 0.650160i \(-0.774702\pi\)
−0.759797 + 0.650160i \(0.774702\pi\)
\(444\) −229683. −0.0552932
\(445\) 0 0
\(446\) 3.36166e6 0.800234
\(447\) 1.89535e6 0.448662
\(448\) −216918. −0.0510622
\(449\) −1.91186e6 −0.447549 −0.223775 0.974641i \(-0.571838\pi\)
−0.223775 + 0.974641i \(0.571838\pi\)
\(450\) 0 0
\(451\) 4.50350e6 1.04258
\(452\) −2.12766e6 −0.489843
\(453\) −203430. −0.0465767
\(454\) 3.52381e6 0.802367
\(455\) 0 0
\(456\) −703060. −0.158336
\(457\) −7.83658e6 −1.75524 −0.877619 0.479360i \(-0.840869\pi\)
−0.877619 + 0.479360i \(0.840869\pi\)
\(458\) −2.48830e6 −0.554294
\(459\) 8.88135e6 1.96765
\(460\) 0 0
\(461\) −3.95695e6 −0.867178 −0.433589 0.901111i \(-0.642753\pi\)
−0.433589 + 0.901111i \(0.642753\pi\)
\(462\) −826045. −0.180052
\(463\) −2.70615e6 −0.586677 −0.293338 0.956009i \(-0.594766\pi\)
−0.293338 + 0.956009i \(0.594766\pi\)
\(464\) −243076. −0.0524139
\(465\) 0 0
\(466\) 4.37303e6 0.932862
\(467\) 5.13059e6 1.08862 0.544308 0.838885i \(-0.316792\pi\)
0.544308 + 0.838885i \(0.316792\pi\)
\(468\) −45293.2 −0.00955912
\(469\) 2.30810e6 0.484532
\(470\) 0 0
\(471\) 6.36174e6 1.32137
\(472\) 20923.7 0.00432298
\(473\) −2.61535e6 −0.537498
\(474\) −4.58880e6 −0.938108
\(475\) 0 0
\(476\) −1.92612e6 −0.389643
\(477\) −270984. −0.0545314
\(478\) 612809. 0.122675
\(479\) 2.22034e6 0.442162 0.221081 0.975255i \(-0.429042\pi\)
0.221081 + 0.975255i \(0.429042\pi\)
\(480\) 0 0
\(481\) 161288. 0.0317863
\(482\) 4.96108e6 0.972656
\(483\) −1.57194e6 −0.306597
\(484\) −1.50146e6 −0.291341
\(485\) 0 0
\(486\) −506678. −0.0973065
\(487\) 5.01311e6 0.957822 0.478911 0.877863i \(-0.341032\pi\)
0.478911 + 0.877863i \(0.341032\pi\)
\(488\) −2.99612e6 −0.569522
\(489\) 1.00585e7 1.90222
\(490\) 0 0
\(491\) −3.79096e6 −0.709652 −0.354826 0.934932i \(-0.615460\pi\)
−0.354826 + 0.934932i \(0.615460\pi\)
\(492\) 4.18070e6 0.778639
\(493\) −2.15839e6 −0.399957
\(494\) 493703. 0.0910224
\(495\) 0 0
\(496\) 57684.7 0.0105283
\(497\) −2.74036e6 −0.497641
\(498\) 1.81386e6 0.327741
\(499\) 7.59448e6 1.36536 0.682679 0.730718i \(-0.260815\pi\)
0.682679 + 0.730718i \(0.260815\pi\)
\(500\) 0 0
\(501\) 4.93489e6 0.878381
\(502\) −6.10614e6 −1.08145
\(503\) −2.64250e6 −0.465688 −0.232844 0.972514i \(-0.574803\pi\)
−0.232844 + 0.972514i \(0.574803\pi\)
\(504\) 56772.9 0.00995553
\(505\) 0 0
\(506\) 2.04636e6 0.355309
\(507\) −429603. −0.0742245
\(508\) −861741. −0.148155
\(509\) 9.84097e6 1.68362 0.841809 0.539776i \(-0.181491\pi\)
0.841809 + 0.539776i \(0.181491\pi\)
\(510\) 0 0
\(511\) −704100. −0.119284
\(512\) 262144. 0.0441942
\(513\) 2.85344e6 0.478713
\(514\) −5.10095e6 −0.851614
\(515\) 0 0
\(516\) −2.42789e6 −0.401425
\(517\) −1.57361e6 −0.258923
\(518\) −202167. −0.0331044
\(519\) 932709. 0.151994
\(520\) 0 0
\(521\) 994770. 0.160557 0.0802783 0.996772i \(-0.474419\pi\)
0.0802783 + 0.996772i \(0.474419\pi\)
\(522\) 63619.1 0.0102191
\(523\) −5.82741e6 −0.931582 −0.465791 0.884895i \(-0.654230\pi\)
−0.465791 + 0.884895i \(0.654230\pi\)
\(524\) 2.01304e6 0.320276
\(525\) 0 0
\(526\) −3.76818e6 −0.593838
\(527\) 512212. 0.0803384
\(528\) 998272. 0.155835
\(529\) −2.54218e6 −0.394972
\(530\) 0 0
\(531\) −5476.26 −0.000842845 0
\(532\) −618833. −0.0947970
\(533\) −2.93577e6 −0.447614
\(534\) 4.01737e6 0.609661
\(535\) 0 0
\(536\) −2.78933e6 −0.419361
\(537\) −1.65799e6 −0.248111
\(538\) 3.22435e6 0.480271
\(539\) 3.63009e6 0.538203
\(540\) 0 0
\(541\) −4.57878e6 −0.672599 −0.336300 0.941755i \(-0.609175\pi\)
−0.336300 + 0.941755i \(0.609175\pi\)
\(542\) 2.40035e6 0.350975
\(543\) 5.58607e6 0.813030
\(544\) 2.32771e6 0.337234
\(545\) 0 0
\(546\) 538487. 0.0773026
\(547\) 7.15998e6 1.02316 0.511580 0.859236i \(-0.329060\pi\)
0.511580 + 0.859236i \(0.329060\pi\)
\(548\) 889751. 0.126566
\(549\) 784162. 0.111039
\(550\) 0 0
\(551\) −693458. −0.0973064
\(552\) 1.89968e6 0.265359
\(553\) −4.03906e6 −0.561652
\(554\) −6.50877e6 −0.901000
\(555\) 0 0
\(556\) −3.20042e6 −0.439056
\(557\) 2.24322e6 0.306361 0.153180 0.988198i \(-0.451048\pi\)
0.153180 + 0.988198i \(0.451048\pi\)
\(558\) −15097.6 −0.00205268
\(559\) 1.70491e6 0.230766
\(560\) 0 0
\(561\) 8.86417e6 1.18913
\(562\) −913512. −0.122004
\(563\) −9.93603e6 −1.32112 −0.660560 0.750774i \(-0.729681\pi\)
−0.660560 + 0.750774i \(0.729681\pi\)
\(564\) −1.46082e6 −0.193374
\(565\) 0 0
\(566\) 5.09615e6 0.668653
\(567\) 2.89672e6 0.378398
\(568\) 3.31171e6 0.430707
\(569\) −1.17630e7 −1.52313 −0.761567 0.648086i \(-0.775570\pi\)
−0.761567 + 0.648086i \(0.775570\pi\)
\(570\) 0 0
\(571\) −9.88308e6 −1.26853 −0.634267 0.773114i \(-0.718698\pi\)
−0.634267 + 0.773114i \(0.718698\pi\)
\(572\) −701006. −0.0895843
\(573\) 1.46451e7 1.86340
\(574\) 3.67985e6 0.466177
\(575\) 0 0
\(576\) −68609.8 −0.00861648
\(577\) 6.86460e6 0.858372 0.429186 0.903216i \(-0.358800\pi\)
0.429186 + 0.903216i \(0.358800\pi\)
\(578\) 1.49895e7 1.86624
\(579\) −269806. −0.0334468
\(580\) 0 0
\(581\) 1.59656e6 0.196221
\(582\) 9.11071e6 1.11492
\(583\) −4.19403e6 −0.511047
\(584\) 850902. 0.103240
\(585\) 0 0
\(586\) 1.13651e7 1.36719
\(587\) 3.09692e6 0.370966 0.185483 0.982647i \(-0.440615\pi\)
0.185483 + 0.982647i \(0.440615\pi\)
\(588\) 3.36990e6 0.401951
\(589\) 164566. 0.0195457
\(590\) 0 0
\(591\) 5.96075e6 0.701992
\(592\) 244318. 0.0286518
\(593\) 5.60192e6 0.654184 0.327092 0.944992i \(-0.393931\pi\)
0.327092 + 0.944992i \(0.393931\pi\)
\(594\) −4.05159e6 −0.471150
\(595\) 0 0
\(596\) −2.01611e6 −0.232487
\(597\) 5.63594e6 0.647188
\(598\) −1.33399e6 −0.152546
\(599\) 1.17534e7 1.33843 0.669214 0.743070i \(-0.266631\pi\)
0.669214 + 0.743070i \(0.266631\pi\)
\(600\) 0 0
\(601\) −8.93997e6 −1.00960 −0.504800 0.863236i \(-0.668434\pi\)
−0.504800 + 0.863236i \(0.668434\pi\)
\(602\) −2.13702e6 −0.240336
\(603\) 730038. 0.0817622
\(604\) 216392. 0.0241351
\(605\) 0 0
\(606\) 8.73606e6 0.966349
\(607\) 1.73574e7 1.91211 0.956053 0.293194i \(-0.0947183\pi\)
0.956053 + 0.293194i \(0.0947183\pi\)
\(608\) 747857. 0.0820464
\(609\) −756363. −0.0826394
\(610\) 0 0
\(611\) 1.02581e6 0.111164
\(612\) −609221. −0.0657501
\(613\) 1.63664e7 1.75915 0.879575 0.475760i \(-0.157827\pi\)
0.879575 + 0.475760i \(0.157827\pi\)
\(614\) 1.81146e6 0.193914
\(615\) 0 0
\(616\) 878679. 0.0932993
\(617\) 6.81573e6 0.720775 0.360387 0.932803i \(-0.382645\pi\)
0.360387 + 0.932803i \(0.382645\pi\)
\(618\) −4.30335e6 −0.453247
\(619\) −3.32032e6 −0.348300 −0.174150 0.984719i \(-0.555718\pi\)
−0.174150 + 0.984719i \(0.555718\pi\)
\(620\) 0 0
\(621\) −7.71005e6 −0.802284
\(622\) −5.73553e6 −0.594426
\(623\) 3.53608e6 0.365008
\(624\) −650760. −0.0669051
\(625\) 0 0
\(626\) 661122. 0.0674289
\(627\) 2.84792e6 0.289307
\(628\) −6.76709e6 −0.684704
\(629\) 2.16942e6 0.218634
\(630\) 0 0
\(631\) −1.25729e7 −1.25708 −0.628541 0.777777i \(-0.716347\pi\)
−0.628541 + 0.777777i \(0.716347\pi\)
\(632\) 4.88118e6 0.486107
\(633\) −1.00191e7 −0.993844
\(634\) 6.14321e6 0.606977
\(635\) 0 0
\(636\) −3.89341e6 −0.381670
\(637\) −2.36641e6 −0.231069
\(638\) 984639. 0.0957690
\(639\) −866759. −0.0839743
\(640\) 0 0
\(641\) 5.56432e6 0.534893 0.267446 0.963573i \(-0.413820\pi\)
0.267446 + 0.963573i \(0.413820\pi\)
\(642\) 5.61693e6 0.537850
\(643\) 1.05294e7 1.00433 0.502165 0.864772i \(-0.332537\pi\)
0.502165 + 0.864772i \(0.332537\pi\)
\(644\) 1.67210e6 0.158872
\(645\) 0 0
\(646\) 6.64060e6 0.626075
\(647\) −1.29138e7 −1.21281 −0.606406 0.795155i \(-0.707389\pi\)
−0.606406 + 0.795155i \(0.707389\pi\)
\(648\) −3.50068e6 −0.327502
\(649\) −84756.6 −0.00789881
\(650\) 0 0
\(651\) 179494. 0.0165996
\(652\) −1.06994e7 −0.985687
\(653\) 1.36537e7 1.25305 0.626523 0.779403i \(-0.284477\pi\)
0.626523 + 0.779403i \(0.284477\pi\)
\(654\) −6.15942e6 −0.563113
\(655\) 0 0
\(656\) −4.44708e6 −0.403474
\(657\) −222703. −0.0201285
\(658\) −1.28581e6 −0.115774
\(659\) −612348. −0.0549268 −0.0274634 0.999623i \(-0.508743\pi\)
−0.0274634 + 0.999623i \(0.508743\pi\)
\(660\) 0 0
\(661\) 1.10774e7 0.986129 0.493064 0.869993i \(-0.335877\pi\)
0.493064 + 0.869993i \(0.335877\pi\)
\(662\) −6.31034e6 −0.559639
\(663\) −5.77843e6 −0.510535
\(664\) −1.92943e6 −0.169828
\(665\) 0 0
\(666\) −63944.3 −0.00558619
\(667\) 1.87374e6 0.163078
\(668\) −5.24932e6 −0.455158
\(669\) −1.26412e7 −1.09200
\(670\) 0 0
\(671\) 1.21365e7 1.04061
\(672\) 815697. 0.0696796
\(673\) −1.39729e6 −0.118918 −0.0594590 0.998231i \(-0.518938\pi\)
−0.0594590 + 0.998231i \(0.518938\pi\)
\(674\) 1.21567e6 0.103078
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) −1.49879e7 −1.25681 −0.628406 0.777886i \(-0.716292\pi\)
−0.628406 + 0.777886i \(0.716292\pi\)
\(678\) 8.00086e6 0.668440
\(679\) 8.01924e6 0.667512
\(680\) 0 0
\(681\) −1.32509e7 −1.09491
\(682\) −233666. −0.0192369
\(683\) 5.44672e6 0.446769 0.223384 0.974730i \(-0.428289\pi\)
0.223384 + 0.974730i \(0.428289\pi\)
\(684\) −195733. −0.0159965
\(685\) 0 0
\(686\) 6.52647e6 0.529502
\(687\) 9.35702e6 0.756390
\(688\) 2.58259e6 0.208010
\(689\) 2.73403e6 0.219410
\(690\) 0 0
\(691\) 1.20363e7 0.958951 0.479475 0.877555i \(-0.340827\pi\)
0.479475 + 0.877555i \(0.340827\pi\)
\(692\) −992138. −0.0787602
\(693\) −229973. −0.0181904
\(694\) 1.31937e7 1.03985
\(695\) 0 0
\(696\) 914062. 0.0715241
\(697\) −3.94879e7 −3.07881
\(698\) −1.42401e6 −0.110630
\(699\) −1.64443e7 −1.27299
\(700\) 0 0
\(701\) 793102. 0.0609585 0.0304792 0.999535i \(-0.490297\pi\)
0.0304792 + 0.999535i \(0.490297\pi\)
\(702\) 2.64117e6 0.202281
\(703\) 697002. 0.0531920
\(704\) −1.06188e6 −0.0807502
\(705\) 0 0
\(706\) −1.49161e7 −1.12627
\(707\) 7.68947e6 0.578560
\(708\) −78681.4 −0.00589914
\(709\) −1.94248e7 −1.45125 −0.725623 0.688092i \(-0.758448\pi\)
−0.725623 + 0.688092i \(0.758448\pi\)
\(710\) 0 0
\(711\) −1.27753e6 −0.0947757
\(712\) −4.27334e6 −0.315913
\(713\) −444660. −0.0327570
\(714\) 7.24299e6 0.531707
\(715\) 0 0
\(716\) 1.76363e6 0.128566
\(717\) −2.30441e6 −0.167402
\(718\) −9.10013e6 −0.658774
\(719\) −5.30618e6 −0.382789 −0.191395 0.981513i \(-0.561301\pi\)
−0.191395 + 0.981513i \(0.561301\pi\)
\(720\) 0 0
\(721\) −3.78780e6 −0.271362
\(722\) −7.77087e6 −0.554788
\(723\) −1.86557e7 −1.32729
\(724\) −5.94200e6 −0.421295
\(725\) 0 0
\(726\) 5.64611e6 0.397564
\(727\) 2.30593e7 1.61812 0.809059 0.587728i \(-0.199977\pi\)
0.809059 + 0.587728i \(0.199977\pi\)
\(728\) −572798. −0.0400565
\(729\) 1.51969e7 1.05910
\(730\) 0 0
\(731\) 2.29321e7 1.58727
\(732\) 1.12666e7 0.777170
\(733\) −1.84481e7 −1.26821 −0.634104 0.773248i \(-0.718631\pi\)
−0.634104 + 0.773248i \(0.718631\pi\)
\(734\) −4.85641e6 −0.332717
\(735\) 0 0
\(736\) −2.02072e6 −0.137503
\(737\) 1.12989e7 0.766242
\(738\) 1.16392e6 0.0786648
\(739\) −6.14417e6 −0.413859 −0.206929 0.978356i \(-0.566347\pi\)
−0.206929 + 0.978356i \(0.566347\pi\)
\(740\) 0 0
\(741\) −1.85652e6 −0.124209
\(742\) −3.42698e6 −0.228508
\(743\) 1.18784e7 0.789383 0.394691 0.918814i \(-0.370852\pi\)
0.394691 + 0.918814i \(0.370852\pi\)
\(744\) −216918. −0.0143669
\(745\) 0 0
\(746\) 6.26931e6 0.412451
\(747\) 504982. 0.0331112
\(748\) −9.42897e6 −0.616183
\(749\) 4.94402e6 0.322014
\(750\) 0 0
\(751\) −3.38234e6 −0.218835 −0.109418 0.993996i \(-0.534899\pi\)
−0.109418 + 0.993996i \(0.534899\pi\)
\(752\) 1.55390e6 0.100202
\(753\) 2.29615e7 1.47575
\(754\) −641872. −0.0411169
\(755\) 0 0
\(756\) −3.31059e6 −0.210669
\(757\) 2.42823e6 0.154010 0.0770052 0.997031i \(-0.475464\pi\)
0.0770052 + 0.997031i \(0.475464\pi\)
\(758\) 1.76129e7 1.11341
\(759\) −7.69513e6 −0.484855
\(760\) 0 0
\(761\) −2.18931e7 −1.37040 −0.685199 0.728356i \(-0.740285\pi\)
−0.685199 + 0.728356i \(0.740285\pi\)
\(762\) 3.24049e6 0.202173
\(763\) −5.42152e6 −0.337139
\(764\) −1.55782e7 −0.965573
\(765\) 0 0
\(766\) 1.38238e7 0.851249
\(767\) 55251.6 0.00339122
\(768\) −985766. −0.0603074
\(769\) −1.96376e7 −1.19749 −0.598747 0.800939i \(-0.704334\pi\)
−0.598747 + 0.800939i \(0.704334\pi\)
\(770\) 0 0
\(771\) 1.91816e7 1.16211
\(772\) 286997. 0.0173314
\(773\) −1.21015e7 −0.728433 −0.364216 0.931314i \(-0.618663\pi\)
−0.364216 + 0.931314i \(0.618663\pi\)
\(774\) −675928. −0.0405554
\(775\) 0 0
\(776\) −9.69122e6 −0.577729
\(777\) 760229. 0.0451743
\(778\) 2.22648e6 0.131877
\(779\) −1.26869e7 −0.749049
\(780\) 0 0
\(781\) −1.34149e7 −0.786973
\(782\) −1.79430e7 −1.04925
\(783\) −3.70981e6 −0.216246
\(784\) −3.58462e6 −0.208282
\(785\) 0 0
\(786\) −7.56983e6 −0.437049
\(787\) −2.30778e7 −1.32818 −0.664092 0.747651i \(-0.731182\pi\)
−0.664092 + 0.747651i \(0.731182\pi\)
\(788\) −6.34055e6 −0.363757
\(789\) 1.41699e7 0.810351
\(790\) 0 0
\(791\) 7.04235e6 0.400199
\(792\) 277921. 0.0157438
\(793\) −7.91164e6 −0.446769
\(794\) 902017. 0.0507766
\(795\) 0 0
\(796\) −5.99505e6 −0.335359
\(797\) −8.88351e6 −0.495380 −0.247690 0.968839i \(-0.579672\pi\)
−0.247690 + 0.968839i \(0.579672\pi\)
\(798\) 2.32706e6 0.129360
\(799\) 1.37978e7 0.764617
\(800\) 0 0
\(801\) 1.11844e6 0.0615932
\(802\) 3.59317e6 0.197261
\(803\) −3.44679e6 −0.188637
\(804\) 1.04890e7 0.572260
\(805\) 0 0
\(806\) 152324. 0.00825905
\(807\) −1.21248e7 −0.655378
\(808\) −9.29270e6 −0.500741
\(809\) −1.27959e7 −0.687382 −0.343691 0.939083i \(-0.611677\pi\)
−0.343691 + 0.939083i \(0.611677\pi\)
\(810\) 0 0
\(811\) 3.55180e6 0.189626 0.0948128 0.995495i \(-0.469775\pi\)
0.0948128 + 0.995495i \(0.469775\pi\)
\(812\) 804557. 0.0428220
\(813\) −9.02627e6 −0.478941
\(814\) −989671. −0.0523516
\(815\) 0 0
\(816\) −8.75312e6 −0.460190
\(817\) 7.36773e6 0.386170
\(818\) −7.08744e6 −0.370345
\(819\) 149916. 0.00780976
\(820\) 0 0
\(821\) −4.71136e6 −0.243943 −0.121971 0.992534i \(-0.538922\pi\)
−0.121971 + 0.992534i \(0.538922\pi\)
\(822\) −3.34582e6 −0.172712
\(823\) 4.15156e6 0.213654 0.106827 0.994278i \(-0.465931\pi\)
0.106827 + 0.994278i \(0.465931\pi\)
\(824\) 4.57754e6 0.234863
\(825\) 0 0
\(826\) −69255.3 −0.00353186
\(827\) −2.57396e7 −1.30869 −0.654346 0.756195i \(-0.727056\pi\)
−0.654346 + 0.756195i \(0.727056\pi\)
\(828\) 528875. 0.0268088
\(829\) −1.95125e7 −0.986114 −0.493057 0.869997i \(-0.664121\pi\)
−0.493057 + 0.869997i \(0.664121\pi\)
\(830\) 0 0
\(831\) 2.44756e7 1.22951
\(832\) 692224. 0.0346688
\(833\) −3.18296e7 −1.58935
\(834\) 1.20349e7 0.599137
\(835\) 0 0
\(836\) −3.02938e6 −0.149913
\(837\) 880382. 0.0434368
\(838\) 2.46804e6 0.121407
\(839\) −1.56844e7 −0.769243 −0.384621 0.923074i \(-0.625668\pi\)
−0.384621 + 0.923074i \(0.625668\pi\)
\(840\) 0 0
\(841\) −1.96096e7 −0.956044
\(842\) −2.51195e7 −1.22104
\(843\) 3.43517e6 0.166487
\(844\) 1.06575e7 0.514988
\(845\) 0 0
\(846\) −406694. −0.0195363
\(847\) 4.96970e6 0.238024
\(848\) 4.14149e6 0.197773
\(849\) −1.91635e7 −0.912445
\(850\) 0 0
\(851\) −1.88331e6 −0.0891454
\(852\) −1.24534e7 −0.587743
\(853\) 2.35674e7 1.10902 0.554510 0.832177i \(-0.312906\pi\)
0.554510 + 0.832177i \(0.312906\pi\)
\(854\) 9.91687e6 0.465297
\(855\) 0 0
\(856\) −5.97482e6 −0.278702
\(857\) −4.23900e6 −0.197157 −0.0985783 0.995129i \(-0.531429\pi\)
−0.0985783 + 0.995129i \(0.531429\pi\)
\(858\) 2.63606e6 0.122247
\(859\) 1.30196e7 0.602026 0.301013 0.953620i \(-0.402675\pi\)
0.301013 + 0.953620i \(0.402675\pi\)
\(860\) 0 0
\(861\) −1.38377e7 −0.636145
\(862\) 8.12208e6 0.372305
\(863\) −3.41837e7 −1.56240 −0.781200 0.624280i \(-0.785392\pi\)
−0.781200 + 0.624280i \(0.785392\pi\)
\(864\) 4.00083e6 0.182333
\(865\) 0 0
\(866\) 5.17640e6 0.234549
\(867\) −5.63665e7 −2.54667
\(868\) −190931. −0.00860155
\(869\) −1.97724e7 −0.888200
\(870\) 0 0
\(871\) −7.36557e6 −0.328974
\(872\) 6.55188e6 0.291793
\(873\) 2.53644e6 0.112639
\(874\) −5.76482e6 −0.255274
\(875\) 0 0
\(876\) −3.19973e6 −0.140881
\(877\) −3.07617e7 −1.35055 −0.675275 0.737566i \(-0.735975\pi\)
−0.675275 + 0.737566i \(0.735975\pi\)
\(878\) −1.01528e7 −0.444476
\(879\) −4.27373e7 −1.86567
\(880\) 0 0
\(881\) 8.83910e6 0.383679 0.191840 0.981426i \(-0.438555\pi\)
0.191840 + 0.981426i \(0.438555\pi\)
\(882\) 938186. 0.0406085
\(883\) 2.09708e7 0.905136 0.452568 0.891730i \(-0.350508\pi\)
0.452568 + 0.891730i \(0.350508\pi\)
\(884\) 6.14661e6 0.264548
\(885\) 0 0
\(886\) −2.51071e7 −1.07452
\(887\) −3.98177e7 −1.69929 −0.849644 0.527357i \(-0.823183\pi\)
−0.849644 + 0.527357i \(0.823183\pi\)
\(888\) −918733. −0.0390982
\(889\) 2.85228e6 0.121042
\(890\) 0 0
\(891\) 1.41804e7 0.598402
\(892\) 1.34466e7 0.565851
\(893\) 4.43303e6 0.186025
\(894\) 7.58138e6 0.317252
\(895\) 0 0
\(896\) −867671. −0.0361065
\(897\) 5.01635e6 0.208165
\(898\) −7.64745e6 −0.316465
\(899\) −213955. −0.00882924
\(900\) 0 0
\(901\) 3.67744e7 1.50915
\(902\) 1.80140e7 0.737215
\(903\) 8.03607e6 0.327962
\(904\) −8.51065e6 −0.346371
\(905\) 0 0
\(906\) −813719. −0.0329347
\(907\) −3.42787e6 −0.138358 −0.0691792 0.997604i \(-0.522038\pi\)
−0.0691792 + 0.997604i \(0.522038\pi\)
\(908\) 1.40953e7 0.567359
\(909\) 2.43214e6 0.0976288
\(910\) 0 0
\(911\) −3.60531e7 −1.43929 −0.719643 0.694344i \(-0.755695\pi\)
−0.719643 + 0.694344i \(0.755695\pi\)
\(912\) −2.81224e6 −0.111961
\(913\) 7.81565e6 0.310305
\(914\) −3.13463e7 −1.24114
\(915\) 0 0
\(916\) −9.95322e6 −0.391945
\(917\) −6.66296e6 −0.261664
\(918\) 3.55254e7 1.39134
\(919\) −2.96521e7 −1.15816 −0.579078 0.815272i \(-0.696587\pi\)
−0.579078 + 0.815272i \(0.696587\pi\)
\(920\) 0 0
\(921\) −6.81182e6 −0.264615
\(922\) −1.58278e7 −0.613187
\(923\) 8.74499e6 0.337874
\(924\) −3.30418e6 −0.127316
\(925\) 0 0
\(926\) −1.08246e7 −0.414843
\(927\) −1.19806e6 −0.0457909
\(928\) −972303. −0.0370622
\(929\) −1.01663e7 −0.386478 −0.193239 0.981152i \(-0.561899\pi\)
−0.193239 + 0.981152i \(0.561899\pi\)
\(930\) 0 0
\(931\) −1.02264e7 −0.386676
\(932\) 1.74921e7 0.659633
\(933\) 2.15679e7 0.811154
\(934\) 2.05223e7 0.769768
\(935\) 0 0
\(936\) −181173. −0.00675932
\(937\) 3.22787e7 1.20107 0.600534 0.799599i \(-0.294955\pi\)
0.600534 + 0.799599i \(0.294955\pi\)
\(938\) 9.23240e6 0.342616
\(939\) −2.48608e6 −0.0920135
\(940\) 0 0
\(941\) 2.53184e7 0.932100 0.466050 0.884758i \(-0.345677\pi\)
0.466050 + 0.884758i \(0.345677\pi\)
\(942\) 2.54470e7 0.934348
\(943\) 3.42801e7 1.25535
\(944\) 83694.7 0.00305681
\(945\) 0 0
\(946\) −1.04614e7 −0.380069
\(947\) −4.70863e7 −1.70616 −0.853080 0.521780i \(-0.825268\pi\)
−0.853080 + 0.521780i \(0.825268\pi\)
\(948\) −1.83552e7 −0.663343
\(949\) 2.24691e6 0.0809880
\(950\) 0 0
\(951\) −2.31009e7 −0.828282
\(952\) −7.70449e6 −0.275519
\(953\) −6.95299e6 −0.247993 −0.123997 0.992283i \(-0.539571\pi\)
−0.123997 + 0.992283i \(0.539571\pi\)
\(954\) −1.08393e6 −0.0385595
\(955\) 0 0
\(956\) 2.45124e6 0.0867442
\(957\) −3.70263e6 −0.130687
\(958\) 8.88137e6 0.312656
\(959\) −2.94499e6 −0.103404
\(960\) 0 0
\(961\) −2.85784e7 −0.998226
\(962\) 645152. 0.0224763
\(963\) 1.56376e6 0.0543382
\(964\) 1.98443e7 0.687771
\(965\) 0 0
\(966\) −6.28776e6 −0.216797
\(967\) 4.00072e7 1.37585 0.687927 0.725780i \(-0.258521\pi\)
0.687927 + 0.725780i \(0.258521\pi\)
\(968\) −6.00586e6 −0.206009
\(969\) −2.49713e7 −0.854343
\(970\) 0 0
\(971\) 5.12102e7 1.74305 0.871523 0.490355i \(-0.163133\pi\)
0.871523 + 0.490355i \(0.163133\pi\)
\(972\) −2.02671e6 −0.0688061
\(973\) 1.05931e7 0.358707
\(974\) 2.00524e7 0.677283
\(975\) 0 0
\(976\) −1.19845e7 −0.402713
\(977\) −7.74195e6 −0.259486 −0.129743 0.991548i \(-0.541415\pi\)
−0.129743 + 0.991548i \(0.541415\pi\)
\(978\) 4.02339e7 1.34507
\(979\) 1.73102e7 0.577226
\(980\) 0 0
\(981\) −1.71479e6 −0.0568905
\(982\) −1.51638e7 −0.501800
\(983\) −2.28293e7 −0.753544 −0.376772 0.926306i \(-0.622966\pi\)
−0.376772 + 0.926306i \(0.622966\pi\)
\(984\) 1.67228e7 0.550581
\(985\) 0 0
\(986\) −8.63357e6 −0.282812
\(987\) 4.83516e6 0.157986
\(988\) 1.97481e6 0.0643625
\(989\) −1.99077e7 −0.647189
\(990\) 0 0
\(991\) 3.12601e7 1.01113 0.505564 0.862789i \(-0.331284\pi\)
0.505564 + 0.862789i \(0.331284\pi\)
\(992\) 230739. 0.00744461
\(993\) 2.37294e7 0.763684
\(994\) −1.09614e7 −0.351885
\(995\) 0 0
\(996\) 7.25544e6 0.231748
\(997\) −1.09102e7 −0.347611 −0.173805 0.984780i \(-0.555606\pi\)
−0.173805 + 0.984780i \(0.555606\pi\)
\(998\) 3.03779e7 0.965454
\(999\) 3.72877e6 0.118209
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.f.1.1 2
5.2 odd 4 650.6.b.f.599.4 4
5.3 odd 4 650.6.b.f.599.1 4
5.4 even 2 130.6.a.c.1.2 2
20.19 odd 2 1040.6.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.c.1.2 2 5.4 even 2
650.6.a.f.1.1 2 1.1 even 1 trivial
650.6.b.f.599.1 4 5.3 odd 4
650.6.b.f.599.4 4 5.2 odd 4
1040.6.a.c.1.1 2 20.19 odd 2