Properties

Label 650.6.a.c.1.2
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.74166\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +19.2250 q^{3} +16.0000 q^{4} -76.8999 q^{6} +51.1669 q^{7} -64.0000 q^{8} +126.600 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} +19.2250 q^{3} +16.0000 q^{4} -76.8999 q^{6} +51.1669 q^{7} -64.0000 q^{8} +126.600 q^{9} +494.607 q^{11} +307.600 q^{12} +169.000 q^{13} -204.667 q^{14} +256.000 q^{16} +2364.88 q^{17} -506.398 q^{18} -699.408 q^{19} +983.681 q^{21} -1978.43 q^{22} +3809.57 q^{23} -1230.40 q^{24} -676.000 q^{26} -2237.80 q^{27} +818.670 q^{28} +2263.52 q^{29} -9088.51 q^{31} -1024.00 q^{32} +9508.81 q^{33} -9459.52 q^{34} +2025.59 q^{36} +4487.29 q^{37} +2797.63 q^{38} +3249.02 q^{39} -12430.1 q^{41} -3934.73 q^{42} +12572.6 q^{43} +7913.71 q^{44} -15238.3 q^{46} -3601.31 q^{47} +4921.59 q^{48} -14189.0 q^{49} +45464.8 q^{51} +2704.00 q^{52} -7547.01 q^{53} +8951.18 q^{54} -3274.68 q^{56} -13446.1 q^{57} -9054.09 q^{58} +50069.9 q^{59} -24756.7 q^{61} +36354.0 q^{62} +6477.70 q^{63} +4096.00 q^{64} -38035.2 q^{66} -43724.6 q^{67} +37838.1 q^{68} +73238.8 q^{69} +7603.34 q^{71} -8102.37 q^{72} +21623.2 q^{73} -17949.2 q^{74} -11190.5 q^{76} +25307.5 q^{77} -12996.1 q^{78} +103537. q^{79} -73785.2 q^{81} +49720.3 q^{82} +80394.0 q^{83} +15738.9 q^{84} -50290.4 q^{86} +43516.1 q^{87} -31654.9 q^{88} +59301.0 q^{89} +8647.20 q^{91} +60953.1 q^{92} -174726. q^{93} +14405.2 q^{94} -19686.4 q^{96} +73477.5 q^{97} +56755.8 q^{98} +62617.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 16 q^{3} + 32 q^{4} - 64 q^{6} + 252 q^{7} - 128 q^{8} - 106 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 16 q^{3} + 32 q^{4} - 64 q^{6} + 252 q^{7} - 128 q^{8} - 106 q^{9} - 36 q^{11} + 256 q^{12} + 338 q^{13} - 1008 q^{14} + 512 q^{16} + 2380 q^{17} + 424 q^{18} - 1092 q^{19} + 336 q^{21} + 144 q^{22} + 1176 q^{23} - 1024 q^{24} - 1352 q^{26} - 704 q^{27} + 4032 q^{28} - 4872 q^{29} - 2260 q^{31} - 2048 q^{32} + 11220 q^{33} - 9520 q^{34} - 1696 q^{36} + 17760 q^{37} + 4368 q^{38} + 2704 q^{39} - 9220 q^{41} - 1344 q^{42} + 23656 q^{43} - 576 q^{44} - 4704 q^{46} - 12860 q^{47} + 4096 q^{48} + 9338 q^{49} + 45416 q^{51} + 5408 q^{52} - 11068 q^{53} + 2816 q^{54} - 16128 q^{56} - 12180 q^{57} + 19488 q^{58} + 90404 q^{59} - 69000 q^{61} + 9040 q^{62} - 40236 q^{63} + 8192 q^{64} - 44880 q^{66} - 50796 q^{67} + 38080 q^{68} + 81732 q^{69} - 28668 q^{71} + 6784 q^{72} + 62688 q^{73} - 71040 q^{74} - 17472 q^{76} - 81256 q^{77} - 10816 q^{78} + 84064 q^{79} - 22210 q^{81} + 36880 q^{82} + 12828 q^{83} + 5376 q^{84} - 94624 q^{86} + 66528 q^{87} + 2304 q^{88} + 92620 q^{89} + 42588 q^{91} + 18816 q^{92} - 196748 q^{93} + 51440 q^{94} - 16384 q^{96} + 75684 q^{97} - 37352 q^{98} + 186036 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 19.2250 1.23328 0.616641 0.787244i \(-0.288493\pi\)
0.616641 + 0.787244i \(0.288493\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −76.8999 −0.872062
\(7\) 51.1669 0.394679 0.197339 0.980335i \(-0.436770\pi\)
0.197339 + 0.980335i \(0.436770\pi\)
\(8\) −64.0000 −0.353553
\(9\) 126.600 0.520986
\(10\) 0 0
\(11\) 494.607 1.23248 0.616238 0.787560i \(-0.288656\pi\)
0.616238 + 0.787560i \(0.288656\pi\)
\(12\) 307.600 0.616641
\(13\) 169.000 0.277350
\(14\) −204.667 −0.279080
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 2364.88 1.98466 0.992332 0.123603i \(-0.0394449\pi\)
0.992332 + 0.123603i \(0.0394449\pi\)
\(18\) −506.398 −0.368393
\(19\) −699.408 −0.444474 −0.222237 0.974993i \(-0.571336\pi\)
−0.222237 + 0.974993i \(0.571336\pi\)
\(20\) 0 0
\(21\) 983.681 0.486750
\(22\) −1978.43 −0.871492
\(23\) 3809.57 1.50161 0.750803 0.660526i \(-0.229667\pi\)
0.750803 + 0.660526i \(0.229667\pi\)
\(24\) −1230.40 −0.436031
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) −2237.80 −0.590760
\(28\) 818.670 0.197339
\(29\) 2263.52 0.499792 0.249896 0.968273i \(-0.419603\pi\)
0.249896 + 0.968273i \(0.419603\pi\)
\(30\) 0 0
\(31\) −9088.51 −1.69859 −0.849294 0.527920i \(-0.822972\pi\)
−0.849294 + 0.527920i \(0.822972\pi\)
\(32\) −1024.00 −0.176777
\(33\) 9508.81 1.51999
\(34\) −9459.52 −1.40337
\(35\) 0 0
\(36\) 2025.59 0.260493
\(37\) 4487.29 0.538865 0.269433 0.963019i \(-0.413164\pi\)
0.269433 + 0.963019i \(0.413164\pi\)
\(38\) 2797.63 0.314291
\(39\) 3249.02 0.342051
\(40\) 0 0
\(41\) −12430.1 −1.15482 −0.577409 0.816455i \(-0.695936\pi\)
−0.577409 + 0.816455i \(0.695936\pi\)
\(42\) −3934.73 −0.344184
\(43\) 12572.6 1.03694 0.518470 0.855096i \(-0.326502\pi\)
0.518470 + 0.855096i \(0.326502\pi\)
\(44\) 7913.71 0.616238
\(45\) 0 0
\(46\) −15238.3 −1.06180
\(47\) −3601.31 −0.237802 −0.118901 0.992906i \(-0.537937\pi\)
−0.118901 + 0.992906i \(0.537937\pi\)
\(48\) 4921.59 0.308321
\(49\) −14189.0 −0.844229
\(50\) 0 0
\(51\) 45464.8 2.44765
\(52\) 2704.00 0.138675
\(53\) −7547.01 −0.369050 −0.184525 0.982828i \(-0.559075\pi\)
−0.184525 + 0.982828i \(0.559075\pi\)
\(54\) 8951.18 0.417730
\(55\) 0 0
\(56\) −3274.68 −0.139540
\(57\) −13446.1 −0.548162
\(58\) −9054.09 −0.353407
\(59\) 50069.9 1.87261 0.936304 0.351192i \(-0.114223\pi\)
0.936304 + 0.351192i \(0.114223\pi\)
\(60\) 0 0
\(61\) −24756.7 −0.851861 −0.425930 0.904756i \(-0.640053\pi\)
−0.425930 + 0.904756i \(0.640053\pi\)
\(62\) 36354.0 1.20108
\(63\) 6477.70 0.205622
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −38035.2 −1.07480
\(67\) −43724.6 −1.18998 −0.594989 0.803734i \(-0.702844\pi\)
−0.594989 + 0.803734i \(0.702844\pi\)
\(68\) 37838.1 0.992332
\(69\) 73238.8 1.85190
\(70\) 0 0
\(71\) 7603.34 0.179002 0.0895011 0.995987i \(-0.471473\pi\)
0.0895011 + 0.995987i \(0.471473\pi\)
\(72\) −8102.37 −0.184196
\(73\) 21623.2 0.474911 0.237456 0.971398i \(-0.423687\pi\)
0.237456 + 0.971398i \(0.423687\pi\)
\(74\) −17949.2 −0.381035
\(75\) 0 0
\(76\) −11190.5 −0.222237
\(77\) 25307.5 0.486432
\(78\) −12996.1 −0.241867
\(79\) 103537. 1.86651 0.933253 0.359220i \(-0.116957\pi\)
0.933253 + 0.359220i \(0.116957\pi\)
\(80\) 0 0
\(81\) −73785.2 −1.24956
\(82\) 49720.3 0.816580
\(83\) 80394.0 1.28094 0.640470 0.767983i \(-0.278740\pi\)
0.640470 + 0.767983i \(0.278740\pi\)
\(84\) 15738.9 0.243375
\(85\) 0 0
\(86\) −50290.4 −0.733227
\(87\) 43516.1 0.616385
\(88\) −31654.9 −0.435746
\(89\) 59301.0 0.793574 0.396787 0.917911i \(-0.370125\pi\)
0.396787 + 0.917911i \(0.370125\pi\)
\(90\) 0 0
\(91\) 8647.20 0.109464
\(92\) 60953.1 0.750803
\(93\) −174726. −2.09484
\(94\) 14405.2 0.168151
\(95\) 0 0
\(96\) −19686.4 −0.218016
\(97\) 73477.5 0.792913 0.396456 0.918054i \(-0.370240\pi\)
0.396456 + 0.918054i \(0.370240\pi\)
\(98\) 56755.8 0.596960
\(99\) 62617.0 0.642103
\(100\) 0 0
\(101\) 97567.8 0.951707 0.475853 0.879525i \(-0.342139\pi\)
0.475853 + 0.879525i \(0.342139\pi\)
\(102\) −181859. −1.73075
\(103\) −30991.0 −0.287835 −0.143917 0.989590i \(-0.545970\pi\)
−0.143917 + 0.989590i \(0.545970\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) 30188.0 0.260958
\(107\) −202039. −1.70599 −0.852993 0.521923i \(-0.825215\pi\)
−0.852993 + 0.521923i \(0.825215\pi\)
\(108\) −35804.7 −0.295380
\(109\) −171150. −1.37978 −0.689890 0.723914i \(-0.742341\pi\)
−0.689890 + 0.723914i \(0.742341\pi\)
\(110\) 0 0
\(111\) 86268.1 0.664573
\(112\) 13098.7 0.0986697
\(113\) 138118. 1.01755 0.508774 0.860900i \(-0.330099\pi\)
0.508774 + 0.860900i \(0.330099\pi\)
\(114\) 53784.4 0.387609
\(115\) 0 0
\(116\) 36216.3 0.249896
\(117\) 21395.3 0.144495
\(118\) −200280. −1.32413
\(119\) 121003. 0.783304
\(120\) 0 0
\(121\) 83585.1 0.518998
\(122\) 99026.9 0.602356
\(123\) −238968. −1.42422
\(124\) −145416. −0.849294
\(125\) 0 0
\(126\) −25910.8 −0.145397
\(127\) −86030.1 −0.473305 −0.236653 0.971594i \(-0.576050\pi\)
−0.236653 + 0.971594i \(0.576050\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 241708. 1.27884
\(130\) 0 0
\(131\) −297647. −1.51538 −0.757692 0.652612i \(-0.773673\pi\)
−0.757692 + 0.652612i \(0.773673\pi\)
\(132\) 152141. 0.759996
\(133\) −35786.5 −0.175424
\(134\) 174899. 0.841442
\(135\) 0 0
\(136\) −151352. −0.701685
\(137\) 75631.0 0.344269 0.172135 0.985073i \(-0.444934\pi\)
0.172135 + 0.985073i \(0.444934\pi\)
\(138\) −292955. −1.30949
\(139\) 58569.2 0.257118 0.128559 0.991702i \(-0.458965\pi\)
0.128559 + 0.991702i \(0.458965\pi\)
\(140\) 0 0
\(141\) −69235.0 −0.293277
\(142\) −30413.3 −0.126574
\(143\) 83588.6 0.341827
\(144\) 32409.5 0.130246
\(145\) 0 0
\(146\) −86492.7 −0.335813
\(147\) −272782. −1.04117
\(148\) 71796.7 0.269433
\(149\) −344984. −1.27301 −0.636507 0.771271i \(-0.719621\pi\)
−0.636507 + 0.771271i \(0.719621\pi\)
\(150\) 0 0
\(151\) 12433.7 0.0443770 0.0221885 0.999754i \(-0.492937\pi\)
0.0221885 + 0.999754i \(0.492937\pi\)
\(152\) 44762.1 0.157145
\(153\) 299393. 1.03398
\(154\) −101230. −0.343959
\(155\) 0 0
\(156\) 51984.3 0.171026
\(157\) 416674. 1.34911 0.674555 0.738225i \(-0.264336\pi\)
0.674555 + 0.738225i \(0.264336\pi\)
\(158\) −414149. −1.31982
\(159\) −145091. −0.455143
\(160\) 0 0
\(161\) 194924. 0.592652
\(162\) 295141. 0.883572
\(163\) 225121. 0.663661 0.331831 0.943339i \(-0.392334\pi\)
0.331831 + 0.943339i \(0.392334\pi\)
\(164\) −198881. −0.577409
\(165\) 0 0
\(166\) −321576. −0.905761
\(167\) 94547.0 0.262335 0.131168 0.991360i \(-0.458127\pi\)
0.131168 + 0.991360i \(0.458127\pi\)
\(168\) −62955.6 −0.172092
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −88544.7 −0.231565
\(172\) 201161. 0.518470
\(173\) 92745.6 0.235602 0.117801 0.993037i \(-0.462416\pi\)
0.117801 + 0.993037i \(0.462416\pi\)
\(174\) −174065. −0.435850
\(175\) 0 0
\(176\) 126619. 0.308119
\(177\) 962592. 2.30945
\(178\) −237204. −0.561141
\(179\) 226852. 0.529187 0.264594 0.964360i \(-0.414762\pi\)
0.264594 + 0.964360i \(0.414762\pi\)
\(180\) 0 0
\(181\) 691487. 1.56887 0.784436 0.620210i \(-0.212953\pi\)
0.784436 + 0.620210i \(0.212953\pi\)
\(182\) −34588.8 −0.0774028
\(183\) −475947. −1.05058
\(184\) −243812. −0.530898
\(185\) 0 0
\(186\) 698905. 1.48128
\(187\) 1.16969e6 2.44605
\(188\) −57620.9 −0.118901
\(189\) −114501. −0.233160
\(190\) 0 0
\(191\) −340612. −0.675579 −0.337790 0.941222i \(-0.609679\pi\)
−0.337790 + 0.941222i \(0.609679\pi\)
\(192\) 78745.5 0.154160
\(193\) 479839. 0.927262 0.463631 0.886028i \(-0.346546\pi\)
0.463631 + 0.886028i \(0.346546\pi\)
\(194\) −293910. −0.560674
\(195\) 0 0
\(196\) −227023. −0.422114
\(197\) −775437. −1.42358 −0.711789 0.702394i \(-0.752115\pi\)
−0.711789 + 0.702394i \(0.752115\pi\)
\(198\) −250468. −0.454035
\(199\) 960804. 1.71990 0.859948 0.510382i \(-0.170496\pi\)
0.859948 + 0.510382i \(0.170496\pi\)
\(200\) 0 0
\(201\) −840605. −1.46758
\(202\) −390271. −0.672958
\(203\) 115817. 0.197257
\(204\) 727436. 1.22383
\(205\) 0 0
\(206\) 123964. 0.203530
\(207\) 482289. 0.782315
\(208\) 43264.0 0.0693375
\(209\) −345932. −0.547804
\(210\) 0 0
\(211\) 1.00406e6 1.55258 0.776289 0.630377i \(-0.217100\pi\)
0.776289 + 0.630377i \(0.217100\pi\)
\(212\) −120752. −0.184525
\(213\) 146174. 0.220760
\(214\) 808155. 1.20631
\(215\) 0 0
\(216\) 143219. 0.208865
\(217\) −465030. −0.670397
\(218\) 684599. 0.975652
\(219\) 415705. 0.585700
\(220\) 0 0
\(221\) 399665. 0.550447
\(222\) −345072. −0.469924
\(223\) −369742. −0.497893 −0.248947 0.968517i \(-0.580084\pi\)
−0.248947 + 0.968517i \(0.580084\pi\)
\(224\) −52394.9 −0.0697700
\(225\) 0 0
\(226\) −552473. −0.719515
\(227\) 622238. 0.801479 0.400740 0.916192i \(-0.368753\pi\)
0.400740 + 0.916192i \(0.368753\pi\)
\(228\) −215138. −0.274081
\(229\) 328149. 0.413506 0.206753 0.978393i \(-0.433710\pi\)
0.206753 + 0.978393i \(0.433710\pi\)
\(230\) 0 0
\(231\) 486536. 0.599908
\(232\) −144865. −0.176703
\(233\) −1.25086e6 −1.50945 −0.754723 0.656044i \(-0.772229\pi\)
−0.754723 + 0.656044i \(0.772229\pi\)
\(234\) −85581.3 −0.102174
\(235\) 0 0
\(236\) 801118. 0.936304
\(237\) 1.99050e6 2.30193
\(238\) −484014. −0.553880
\(239\) 14131.5 0.0160027 0.00800134 0.999968i \(-0.497453\pi\)
0.00800134 + 0.999968i \(0.497453\pi\)
\(240\) 0 0
\(241\) 61638.0 0.0683606 0.0341803 0.999416i \(-0.489118\pi\)
0.0341803 + 0.999416i \(0.489118\pi\)
\(242\) −334341. −0.366987
\(243\) −874735. −0.950300
\(244\) −396108. −0.425930
\(245\) 0 0
\(246\) 955871. 1.00707
\(247\) −118200. −0.123275
\(248\) 581664. 0.600542
\(249\) 1.54557e6 1.57976
\(250\) 0 0
\(251\) −66537.0 −0.0666621 −0.0333310 0.999444i \(-0.510612\pi\)
−0.0333310 + 0.999444i \(0.510612\pi\)
\(252\) 103643. 0.102811
\(253\) 1.88424e6 1.85069
\(254\) 344121. 0.334677
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 270539. 0.255504 0.127752 0.991806i \(-0.459224\pi\)
0.127752 + 0.991806i \(0.459224\pi\)
\(258\) −966831. −0.904276
\(259\) 229601. 0.212679
\(260\) 0 0
\(261\) 286561. 0.260385
\(262\) 1.19059e6 1.07154
\(263\) 1.11803e6 0.996698 0.498349 0.866976i \(-0.333940\pi\)
0.498349 + 0.866976i \(0.333940\pi\)
\(264\) −608564. −0.537398
\(265\) 0 0
\(266\) 143146. 0.124044
\(267\) 1.14006e6 0.978701
\(268\) −699594. −0.594989
\(269\) 947186. 0.798095 0.399047 0.916930i \(-0.369341\pi\)
0.399047 + 0.916930i \(0.369341\pi\)
\(270\) 0 0
\(271\) −2.13848e6 −1.76881 −0.884405 0.466720i \(-0.845436\pi\)
−0.884405 + 0.466720i \(0.845436\pi\)
\(272\) 605409. 0.496166
\(273\) 166242. 0.135000
\(274\) −302524. −0.243435
\(275\) 0 0
\(276\) 1.17182e6 0.925952
\(277\) 1.34126e6 1.05030 0.525151 0.851009i \(-0.324009\pi\)
0.525151 + 0.851009i \(0.324009\pi\)
\(278\) −234277. −0.181810
\(279\) −1.15060e6 −0.884941
\(280\) 0 0
\(281\) 1.64581e6 1.24341 0.621705 0.783252i \(-0.286440\pi\)
0.621705 + 0.783252i \(0.286440\pi\)
\(282\) 276940. 0.207378
\(283\) −444740. −0.330096 −0.165048 0.986286i \(-0.552778\pi\)
−0.165048 + 0.986286i \(0.552778\pi\)
\(284\) 121653. 0.0895011
\(285\) 0 0
\(286\) −334354. −0.241709
\(287\) −636007. −0.455782
\(288\) −129638. −0.0920982
\(289\) 4.17280e6 2.93889
\(290\) 0 0
\(291\) 1.41260e6 0.977885
\(292\) 345971. 0.237456
\(293\) −458582. −0.312067 −0.156033 0.987752i \(-0.549871\pi\)
−0.156033 + 0.987752i \(0.549871\pi\)
\(294\) 1.09113e6 0.736220
\(295\) 0 0
\(296\) −287187. −0.190518
\(297\) −1.10683e6 −0.728098
\(298\) 1.37994e6 0.900157
\(299\) 643817. 0.416471
\(300\) 0 0
\(301\) 643300. 0.409258
\(302\) −49734.8 −0.0313793
\(303\) 1.87574e6 1.17372
\(304\) −179048. −0.111119
\(305\) 0 0
\(306\) −1.19757e6 −0.731135
\(307\) −2.49374e6 −1.51010 −0.755050 0.655668i \(-0.772387\pi\)
−0.755050 + 0.655668i \(0.772387\pi\)
\(308\) 404920. 0.243216
\(309\) −595802. −0.354982
\(310\) 0 0
\(311\) −1.74516e6 −1.02314 −0.511569 0.859242i \(-0.670935\pi\)
−0.511569 + 0.859242i \(0.670935\pi\)
\(312\) −207937. −0.120933
\(313\) −791926. −0.456903 −0.228451 0.973555i \(-0.573366\pi\)
−0.228451 + 0.973555i \(0.573366\pi\)
\(314\) −1.66670e6 −0.953965
\(315\) 0 0
\(316\) 1.65660e6 0.933253
\(317\) 2.73806e6 1.53037 0.765183 0.643813i \(-0.222648\pi\)
0.765183 + 0.643813i \(0.222648\pi\)
\(318\) 580364. 0.321835
\(319\) 1.11955e6 0.615982
\(320\) 0 0
\(321\) −3.88419e6 −2.10396
\(322\) −779694. −0.419068
\(323\) −1.65402e6 −0.882132
\(324\) −1.18056e6 −0.624780
\(325\) 0 0
\(326\) −900483. −0.469279
\(327\) −3.29035e6 −1.70166
\(328\) 795524. 0.408290
\(329\) −184268. −0.0938554
\(330\) 0 0
\(331\) 134538. 0.0674954 0.0337477 0.999430i \(-0.489256\pi\)
0.0337477 + 0.999430i \(0.489256\pi\)
\(332\) 1.28630e6 0.640470
\(333\) 568089. 0.280741
\(334\) −378188. −0.185499
\(335\) 0 0
\(336\) 251822. 0.121688
\(337\) 393396. 0.188693 0.0943463 0.995539i \(-0.469924\pi\)
0.0943463 + 0.995539i \(0.469924\pi\)
\(338\) −114244. −0.0543928
\(339\) 2.65532e6 1.25492
\(340\) 0 0
\(341\) −4.49524e6 −2.09347
\(342\) 354179. 0.163741
\(343\) −1.58597e6 −0.727878
\(344\) −804646. −0.366614
\(345\) 0 0
\(346\) −370982. −0.166595
\(347\) 409410. 0.182530 0.0912651 0.995827i \(-0.470909\pi\)
0.0912651 + 0.995827i \(0.470909\pi\)
\(348\) 696258. 0.308193
\(349\) 862372. 0.378993 0.189497 0.981881i \(-0.439314\pi\)
0.189497 + 0.981881i \(0.439314\pi\)
\(350\) 0 0
\(351\) −378187. −0.163847
\(352\) −506478. −0.217873
\(353\) 967902. 0.413423 0.206711 0.978402i \(-0.433724\pi\)
0.206711 + 0.978402i \(0.433724\pi\)
\(354\) −3.85037e6 −1.63303
\(355\) 0 0
\(356\) 948817. 0.396787
\(357\) 2.32629e6 0.966035
\(358\) −907407. −0.374192
\(359\) −2.87414e6 −1.17699 −0.588493 0.808502i \(-0.700279\pi\)
−0.588493 + 0.808502i \(0.700279\pi\)
\(360\) 0 0
\(361\) −1.98693e6 −0.802443
\(362\) −2.76595e6 −1.10936
\(363\) 1.60692e6 0.640071
\(364\) 138355. 0.0547321
\(365\) 0 0
\(366\) 1.90379e6 0.742876
\(367\) −2.80197e6 −1.08592 −0.542961 0.839758i \(-0.682697\pi\)
−0.542961 + 0.839758i \(0.682697\pi\)
\(368\) 975249. 0.375402
\(369\) −1.57364e6 −0.601644
\(370\) 0 0
\(371\) −386157. −0.145656
\(372\) −2.79562e6 −1.04742
\(373\) 508739. 0.189331 0.0946657 0.995509i \(-0.469822\pi\)
0.0946657 + 0.995509i \(0.469822\pi\)
\(374\) −4.67875e6 −1.72962
\(375\) 0 0
\(376\) 230484. 0.0840757
\(377\) 382535. 0.138617
\(378\) 458004. 0.164869
\(379\) 26753.7 0.00956722 0.00478361 0.999989i \(-0.498477\pi\)
0.00478361 + 0.999989i \(0.498477\pi\)
\(380\) 0 0
\(381\) −1.65393e6 −0.583719
\(382\) 1.36245e6 0.477707
\(383\) 4.57628e6 1.59410 0.797049 0.603914i \(-0.206393\pi\)
0.797049 + 0.603914i \(0.206393\pi\)
\(384\) −314982. −0.109008
\(385\) 0 0
\(386\) −1.91936e6 −0.655673
\(387\) 1.59168e6 0.540231
\(388\) 1.17564e6 0.396456
\(389\) −905452. −0.303383 −0.151692 0.988428i \(-0.548472\pi\)
−0.151692 + 0.988428i \(0.548472\pi\)
\(390\) 0 0
\(391\) 9.00917e6 2.98018
\(392\) 908093. 0.298480
\(393\) −5.72225e6 −1.86890
\(394\) 3.10175e6 1.00662
\(395\) 0 0
\(396\) 1.00187e6 0.321051
\(397\) −2.20323e6 −0.701590 −0.350795 0.936452i \(-0.614089\pi\)
−0.350795 + 0.936452i \(0.614089\pi\)
\(398\) −3.84322e6 −1.21615
\(399\) −687995. −0.216348
\(400\) 0 0
\(401\) −1.12383e6 −0.349011 −0.174505 0.984656i \(-0.555833\pi\)
−0.174505 + 0.984656i \(0.555833\pi\)
\(402\) 3.36242e6 1.03774
\(403\) −1.53596e6 −0.471104
\(404\) 1.56108e6 0.475853
\(405\) 0 0
\(406\) −463269. −0.139482
\(407\) 2.21945e6 0.664139
\(408\) −2.90974e6 −0.865375
\(409\) 1.00525e6 0.297143 0.148572 0.988902i \(-0.452532\pi\)
0.148572 + 0.988902i \(0.452532\pi\)
\(410\) 0 0
\(411\) 1.45400e6 0.424581
\(412\) −495857. −0.143917
\(413\) 2.56192e6 0.739078
\(414\) −1.92916e6 −0.553181
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) 1.12599e6 0.317099
\(418\) 1.38373e6 0.387356
\(419\) 1.52964e6 0.425653 0.212826 0.977090i \(-0.431733\pi\)
0.212826 + 0.977090i \(0.431733\pi\)
\(420\) 0 0
\(421\) 2.29967e6 0.632354 0.316177 0.948700i \(-0.397601\pi\)
0.316177 + 0.948700i \(0.397601\pi\)
\(422\) −4.01624e6 −1.09784
\(423\) −455924. −0.123891
\(424\) 483009. 0.130479
\(425\) 0 0
\(426\) −584696. −0.156101
\(427\) −1.26672e6 −0.336211
\(428\) −3.23262e6 −0.852993
\(429\) 1.60699e6 0.421570
\(430\) 0 0
\(431\) −2.62082e6 −0.679585 −0.339793 0.940500i \(-0.610357\pi\)
−0.339793 + 0.940500i \(0.610357\pi\)
\(432\) −572876. −0.147690
\(433\) 591237. 0.151545 0.0757726 0.997125i \(-0.475858\pi\)
0.0757726 + 0.997125i \(0.475858\pi\)
\(434\) 1.86012e6 0.474042
\(435\) 0 0
\(436\) −2.73840e6 −0.689890
\(437\) −2.66444e6 −0.667425
\(438\) −1.66282e6 −0.414152
\(439\) −5.86023e6 −1.45129 −0.725644 0.688070i \(-0.758458\pi\)
−0.725644 + 0.688070i \(0.758458\pi\)
\(440\) 0 0
\(441\) −1.79632e6 −0.439831
\(442\) −1.59866e6 −0.389225
\(443\) −1.49526e6 −0.361998 −0.180999 0.983483i \(-0.557933\pi\)
−0.180999 + 0.983483i \(0.557933\pi\)
\(444\) 1.38029e6 0.332287
\(445\) 0 0
\(446\) 1.47897e6 0.352064
\(447\) −6.63231e6 −1.56999
\(448\) 209579. 0.0493348
\(449\) −3.87629e6 −0.907404 −0.453702 0.891154i \(-0.649897\pi\)
−0.453702 + 0.891154i \(0.649897\pi\)
\(450\) 0 0
\(451\) −6.14800e6 −1.42329
\(452\) 2.20989e6 0.508774
\(453\) 239038. 0.0547294
\(454\) −2.48895e6 −0.566731
\(455\) 0 0
\(456\) 860550. 0.193805
\(457\) −6.46622e6 −1.44830 −0.724152 0.689640i \(-0.757769\pi\)
−0.724152 + 0.689640i \(0.757769\pi\)
\(458\) −1.31260e6 −0.292393
\(459\) −5.29212e6 −1.17246
\(460\) 0 0
\(461\) −7.26166e6 −1.59141 −0.795707 0.605681i \(-0.792901\pi\)
−0.795707 + 0.605681i \(0.792901\pi\)
\(462\) −1.94614e6 −0.424199
\(463\) −4.81594e6 −1.04407 −0.522034 0.852925i \(-0.674827\pi\)
−0.522034 + 0.852925i \(0.674827\pi\)
\(464\) 579462. 0.124948
\(465\) 0 0
\(466\) 5.00342e6 1.06734
\(467\) −231914. −0.0492078 −0.0246039 0.999697i \(-0.507832\pi\)
−0.0246039 + 0.999697i \(0.507832\pi\)
\(468\) 342325. 0.0722477
\(469\) −2.23725e6 −0.469659
\(470\) 0 0
\(471\) 8.01055e6 1.66383
\(472\) −3.20447e6 −0.662067
\(473\) 6.21849e6 1.27800
\(474\) −7.96201e6 −1.62771
\(475\) 0 0
\(476\) 1.93606e6 0.391652
\(477\) −955448. −0.192270
\(478\) −56525.9 −0.0113156
\(479\) 3.25748e6 0.648700 0.324350 0.945937i \(-0.394855\pi\)
0.324350 + 0.945937i \(0.394855\pi\)
\(480\) 0 0
\(481\) 758353. 0.149454
\(482\) −246552. −0.0483382
\(483\) 3.74740e6 0.730907
\(484\) 1.33736e6 0.259499
\(485\) 0 0
\(486\) 3.49894e6 0.671964
\(487\) −7.51626e6 −1.43608 −0.718042 0.696000i \(-0.754961\pi\)
−0.718042 + 0.696000i \(0.754961\pi\)
\(488\) 1.58443e6 0.301178
\(489\) 4.32794e6 0.818482
\(490\) 0 0
\(491\) −456011. −0.0853634 −0.0426817 0.999089i \(-0.513590\pi\)
−0.0426817 + 0.999089i \(0.513590\pi\)
\(492\) −3.82348e6 −0.712109
\(493\) 5.35296e6 0.991920
\(494\) 472800. 0.0871686
\(495\) 0 0
\(496\) −2.32666e6 −0.424647
\(497\) 389039. 0.0706483
\(498\) −6.18229e6 −1.11706
\(499\) 3.33321e6 0.599255 0.299627 0.954056i \(-0.403138\pi\)
0.299627 + 0.954056i \(0.403138\pi\)
\(500\) 0 0
\(501\) 1.81766e6 0.323534
\(502\) 266148. 0.0471372
\(503\) 3.46235e6 0.610171 0.305085 0.952325i \(-0.401315\pi\)
0.305085 + 0.952325i \(0.401315\pi\)
\(504\) −414573. −0.0726983
\(505\) 0 0
\(506\) −7.53695e6 −1.30864
\(507\) 549084. 0.0948679
\(508\) −1.37648e6 −0.236653
\(509\) −7.66998e6 −1.31220 −0.656100 0.754674i \(-0.727795\pi\)
−0.656100 + 0.754674i \(0.727795\pi\)
\(510\) 0 0
\(511\) 1.10639e6 0.187437
\(512\) −262144. −0.0441942
\(513\) 1.56513e6 0.262578
\(514\) −1.08216e6 −0.180668
\(515\) 0 0
\(516\) 3.86732e6 0.639420
\(517\) −1.78123e6 −0.293085
\(518\) −918403. −0.150386
\(519\) 1.78303e6 0.290563
\(520\) 0 0
\(521\) −7.45075e6 −1.20256 −0.601278 0.799040i \(-0.705342\pi\)
−0.601278 + 0.799040i \(0.705342\pi\)
\(522\) −1.14624e6 −0.184120
\(523\) 3.50008e6 0.559530 0.279765 0.960068i \(-0.409743\pi\)
0.279765 + 0.960068i \(0.409743\pi\)
\(524\) −4.76235e6 −0.757692
\(525\) 0 0
\(526\) −4.47212e6 −0.704772
\(527\) −2.14932e7 −3.37113
\(528\) 2.43425e6 0.379998
\(529\) 8.07646e6 1.25482
\(530\) 0 0
\(531\) 6.33883e6 0.975602
\(532\) −572584. −0.0877122
\(533\) −2.10068e6 −0.320289
\(534\) −4.56024e6 −0.692046
\(535\) 0 0
\(536\) 2.79838e6 0.420721
\(537\) 4.36122e6 0.652638
\(538\) −3.78874e6 −0.564338
\(539\) −7.01796e6 −1.04049
\(540\) 0 0
\(541\) −6.76874e6 −0.994294 −0.497147 0.867666i \(-0.665619\pi\)
−0.497147 + 0.867666i \(0.665619\pi\)
\(542\) 8.55391e6 1.25074
\(543\) 1.32938e7 1.93486
\(544\) −2.42164e6 −0.350842
\(545\) 0 0
\(546\) −664969. −0.0954596
\(547\) 1.19664e7 1.71000 0.855001 0.518627i \(-0.173557\pi\)
0.855001 + 0.518627i \(0.173557\pi\)
\(548\) 1.21010e6 0.172135
\(549\) −3.13419e6 −0.443807
\(550\) 0 0
\(551\) −1.58313e6 −0.222145
\(552\) −4.68728e6 −0.654747
\(553\) 5.29768e6 0.736670
\(554\) −5.36504e6 −0.742675
\(555\) 0 0
\(556\) 937108. 0.128559
\(557\) −445095. −0.0607875 −0.0303938 0.999538i \(-0.509676\pi\)
−0.0303938 + 0.999538i \(0.509676\pi\)
\(558\) 4.60240e6 0.625748
\(559\) 2.12477e6 0.287595
\(560\) 0 0
\(561\) 2.24872e7 3.01667
\(562\) −6.58324e6 −0.879223
\(563\) 9.94384e6 1.32216 0.661078 0.750317i \(-0.270099\pi\)
0.661078 + 0.750317i \(0.270099\pi\)
\(564\) −1.10776e6 −0.146639
\(565\) 0 0
\(566\) 1.77896e6 0.233413
\(567\) −3.77536e6 −0.493174
\(568\) −486614. −0.0632868
\(569\) 6.04270e6 0.782439 0.391220 0.920297i \(-0.372053\pi\)
0.391220 + 0.920297i \(0.372053\pi\)
\(570\) 0 0
\(571\) −5.12993e6 −0.658447 −0.329224 0.944252i \(-0.606787\pi\)
−0.329224 + 0.944252i \(0.606787\pi\)
\(572\) 1.33742e6 0.170914
\(573\) −6.54825e6 −0.833180
\(574\) 2.54403e6 0.322287
\(575\) 0 0
\(576\) 518552. 0.0651232
\(577\) 5.30151e6 0.662918 0.331459 0.943470i \(-0.392459\pi\)
0.331459 + 0.943470i \(0.392459\pi\)
\(578\) −1.66912e7 −2.07811
\(579\) 9.22489e6 1.14358
\(580\) 0 0
\(581\) 4.11351e6 0.505560
\(582\) −5.65042e6 −0.691469
\(583\) −3.73281e6 −0.454846
\(584\) −1.38388e6 −0.167906
\(585\) 0 0
\(586\) 1.83433e6 0.220665
\(587\) −9.26443e6 −1.10975 −0.554873 0.831935i \(-0.687233\pi\)
−0.554873 + 0.831935i \(0.687233\pi\)
\(588\) −4.36452e6 −0.520586
\(589\) 6.35657e6 0.754979
\(590\) 0 0
\(591\) −1.49078e7 −1.75567
\(592\) 1.14875e6 0.134716
\(593\) 4.97831e6 0.581360 0.290680 0.956820i \(-0.406118\pi\)
0.290680 + 0.956820i \(0.406118\pi\)
\(594\) 4.42732e6 0.514843
\(595\) 0 0
\(596\) −5.51974e6 −0.636507
\(597\) 1.84714e7 2.12112
\(598\) −2.57527e6 −0.294489
\(599\) −9.54062e6 −1.08645 −0.543225 0.839587i \(-0.682797\pi\)
−0.543225 + 0.839587i \(0.682797\pi\)
\(600\) 0 0
\(601\) −3.23751e6 −0.365615 −0.182808 0.983149i \(-0.558519\pi\)
−0.182808 + 0.983149i \(0.558519\pi\)
\(602\) −2.57320e6 −0.289389
\(603\) −5.53552e6 −0.619962
\(604\) 198939. 0.0221885
\(605\) 0 0
\(606\) −7.50295e6 −0.829948
\(607\) 1.01617e7 1.11942 0.559711 0.828688i \(-0.310912\pi\)
0.559711 + 0.828688i \(0.310912\pi\)
\(608\) 716194. 0.0785727
\(609\) 2.22658e6 0.243274
\(610\) 0 0
\(611\) −608621. −0.0659544
\(612\) 4.79028e6 0.516991
\(613\) −2.31456e6 −0.248781 −0.124391 0.992233i \(-0.539698\pi\)
−0.124391 + 0.992233i \(0.539698\pi\)
\(614\) 9.97496e6 1.06780
\(615\) 0 0
\(616\) −1.61968e6 −0.171980
\(617\) 6.41200e6 0.678079 0.339040 0.940772i \(-0.389898\pi\)
0.339040 + 0.940772i \(0.389898\pi\)
\(618\) 2.38321e6 0.251010
\(619\) −1.37209e7 −1.43932 −0.719659 0.694327i \(-0.755702\pi\)
−0.719659 + 0.694327i \(0.755702\pi\)
\(620\) 0 0
\(621\) −8.52503e6 −0.887089
\(622\) 6.98064e6 0.723467
\(623\) 3.03425e6 0.313207
\(624\) 831749. 0.0855128
\(625\) 0 0
\(626\) 3.16770e6 0.323079
\(627\) −6.65054e6 −0.675597
\(628\) 6.66678e6 0.674555
\(629\) 1.06119e7 1.06947
\(630\) 0 0
\(631\) −3.42813e6 −0.342755 −0.171378 0.985205i \(-0.554822\pi\)
−0.171378 + 0.985205i \(0.554822\pi\)
\(632\) −6.62639e6 −0.659910
\(633\) 1.93030e7 1.91477
\(634\) −1.09523e7 −1.08213
\(635\) 0 0
\(636\) −2.32146e6 −0.227572
\(637\) −2.39793e6 −0.234147
\(638\) −4.47822e6 −0.435565
\(639\) 962579. 0.0932576
\(640\) 0 0
\(641\) 1.19999e7 1.15354 0.576770 0.816906i \(-0.304313\pi\)
0.576770 + 0.816906i \(0.304313\pi\)
\(642\) 1.55368e7 1.48773
\(643\) −39448.9 −0.00376277 −0.00188139 0.999998i \(-0.500599\pi\)
−0.00188139 + 0.999998i \(0.500599\pi\)
\(644\) 3.11878e6 0.296326
\(645\) 0 0
\(646\) 6.61606e6 0.623761
\(647\) 3.43534e6 0.322633 0.161317 0.986903i \(-0.448426\pi\)
0.161317 + 0.986903i \(0.448426\pi\)
\(648\) 4.72226e6 0.441786
\(649\) 2.47649e7 2.30794
\(650\) 0 0
\(651\) −8.94019e6 −0.826788
\(652\) 3.60193e6 0.331831
\(653\) −1.35146e7 −1.24028 −0.620142 0.784490i \(-0.712925\pi\)
−0.620142 + 0.784490i \(0.712925\pi\)
\(654\) 1.31614e7 1.20325
\(655\) 0 0
\(656\) −3.18210e6 −0.288705
\(657\) 2.73748e6 0.247422
\(658\) 737070. 0.0663658
\(659\) −2.17250e7 −1.94871 −0.974355 0.225018i \(-0.927756\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(660\) 0 0
\(661\) 3.12575e6 0.278260 0.139130 0.990274i \(-0.455569\pi\)
0.139130 + 0.990274i \(0.455569\pi\)
\(662\) −538151. −0.0477265
\(663\) 7.68354e6 0.678856
\(664\) −5.14522e6 −0.452881
\(665\) 0 0
\(666\) −2.27236e6 −0.198514
\(667\) 8.62304e6 0.750491
\(668\) 1.51275e6 0.131168
\(669\) −7.10827e6 −0.614043
\(670\) 0 0
\(671\) −1.22449e7 −1.04990
\(672\) −1.00729e6 −0.0860461
\(673\) 1.26422e7 1.07594 0.537968 0.842965i \(-0.319192\pi\)
0.537968 + 0.842965i \(0.319192\pi\)
\(674\) −1.57358e6 −0.133426
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 1.82316e7 1.52881 0.764404 0.644737i \(-0.223033\pi\)
0.764404 + 0.644737i \(0.223033\pi\)
\(678\) −1.06213e7 −0.887366
\(679\) 3.75961e6 0.312946
\(680\) 0 0
\(681\) 1.19625e7 0.988450
\(682\) 1.79810e7 1.48031
\(683\) 1.60919e7 1.31994 0.659972 0.751290i \(-0.270568\pi\)
0.659972 + 0.751290i \(0.270568\pi\)
\(684\) −1.41672e6 −0.115782
\(685\) 0 0
\(686\) 6.34386e6 0.514687
\(687\) 6.30865e6 0.509970
\(688\) 3.21858e6 0.259235
\(689\) −1.27544e6 −0.102356
\(690\) 0 0
\(691\) 1.96555e6 0.156599 0.0782994 0.996930i \(-0.475051\pi\)
0.0782994 + 0.996930i \(0.475051\pi\)
\(692\) 1.48393e6 0.117801
\(693\) 3.20392e6 0.253424
\(694\) −1.63764e6 −0.129068
\(695\) 0 0
\(696\) −2.78503e6 −0.217925
\(697\) −2.93956e7 −2.29193
\(698\) −3.44949e6 −0.267989
\(699\) −2.40477e7 −1.86157
\(700\) 0 0
\(701\) 2.38464e7 1.83285 0.916426 0.400204i \(-0.131061\pi\)
0.916426 + 0.400204i \(0.131061\pi\)
\(702\) 1.51275e6 0.115858
\(703\) −3.13845e6 −0.239512
\(704\) 2.02591e6 0.154060
\(705\) 0 0
\(706\) −3.87161e6 −0.292334
\(707\) 4.99224e6 0.375618
\(708\) 1.54015e7 1.15473
\(709\) −6.90141e6 −0.515611 −0.257805 0.966197i \(-0.582999\pi\)
−0.257805 + 0.966197i \(0.582999\pi\)
\(710\) 0 0
\(711\) 1.31078e7 0.972423
\(712\) −3.79527e6 −0.280571
\(713\) −3.46233e7 −2.55061
\(714\) −9.30515e6 −0.683090
\(715\) 0 0
\(716\) 3.62963e6 0.264594
\(717\) 271677. 0.0197358
\(718\) 1.14966e7 0.832255
\(719\) −1.72590e6 −0.124507 −0.0622533 0.998060i \(-0.519829\pi\)
−0.0622533 + 0.998060i \(0.519829\pi\)
\(720\) 0 0
\(721\) −1.58571e6 −0.113602
\(722\) 7.94771e6 0.567413
\(723\) 1.18499e6 0.0843079
\(724\) 1.10638e7 0.784436
\(725\) 0 0
\(726\) −6.42769e6 −0.452599
\(727\) −4.93378e6 −0.346213 −0.173107 0.984903i \(-0.555381\pi\)
−0.173107 + 0.984903i \(0.555381\pi\)
\(728\) −553421. −0.0387014
\(729\) 1.11306e6 0.0775709
\(730\) 0 0
\(731\) 2.97327e7 2.05798
\(732\) −7.61516e6 −0.525292
\(733\) −1.95099e7 −1.34120 −0.670601 0.741818i \(-0.733964\pi\)
−0.670601 + 0.741818i \(0.733964\pi\)
\(734\) 1.12079e7 0.767863
\(735\) 0 0
\(736\) −3.90100e6 −0.265449
\(737\) −2.16265e7 −1.46662
\(738\) 6.29456e6 0.425427
\(739\) 1.62743e7 1.09621 0.548103 0.836411i \(-0.315350\pi\)
0.548103 + 0.836411i \(0.315350\pi\)
\(740\) 0 0
\(741\) −2.27239e6 −0.152033
\(742\) 1.54463e6 0.102994
\(743\) −1.79935e7 −1.19576 −0.597878 0.801587i \(-0.703989\pi\)
−0.597878 + 0.801587i \(0.703989\pi\)
\(744\) 1.11825e7 0.740638
\(745\) 0 0
\(746\) −2.03495e6 −0.133877
\(747\) 1.01779e7 0.667351
\(748\) 1.87150e7 1.22303
\(749\) −1.03377e7 −0.673316
\(750\) 0 0
\(751\) 1.05276e7 0.681130 0.340565 0.940221i \(-0.389382\pi\)
0.340565 + 0.940221i \(0.389382\pi\)
\(752\) −921935. −0.0594505
\(753\) −1.27917e6 −0.0822132
\(754\) −1.53014e6 −0.0980174
\(755\) 0 0
\(756\) −1.83202e6 −0.116580
\(757\) −7.81642e6 −0.495756 −0.247878 0.968791i \(-0.579733\pi\)
−0.247878 + 0.968791i \(0.579733\pi\)
\(758\) −107015. −0.00676505
\(759\) 3.62244e7 2.28243
\(760\) 0 0
\(761\) −6.86800e6 −0.429901 −0.214951 0.976625i \(-0.568959\pi\)
−0.214951 + 0.976625i \(0.568959\pi\)
\(762\) 6.61571e6 0.412752
\(763\) −8.75719e6 −0.544570
\(764\) −5.44979e6 −0.337790
\(765\) 0 0
\(766\) −1.83051e7 −1.12720
\(767\) 8.46181e6 0.519368
\(768\) 1.25993e6 0.0770802
\(769\) 1.29868e7 0.791928 0.395964 0.918266i \(-0.370410\pi\)
0.395964 + 0.918266i \(0.370410\pi\)
\(770\) 0 0
\(771\) 5.20111e6 0.315108
\(772\) 7.67743e6 0.463631
\(773\) −2.61945e7 −1.57674 −0.788371 0.615200i \(-0.789075\pi\)
−0.788371 + 0.615200i \(0.789075\pi\)
\(774\) −6.36674e6 −0.382001
\(775\) 0 0
\(776\) −4.70256e6 −0.280337
\(777\) 4.41407e6 0.262293
\(778\) 3.62181e6 0.214524
\(779\) 8.69369e6 0.513287
\(780\) 0 0
\(781\) 3.76066e6 0.220616
\(782\) −3.60367e7 −2.10731
\(783\) −5.06530e6 −0.295257
\(784\) −3.63237e6 −0.211057
\(785\) 0 0
\(786\) 2.28890e7 1.32151
\(787\) −2.55783e6 −0.147209 −0.0736046 0.997288i \(-0.523450\pi\)
−0.0736046 + 0.997288i \(0.523450\pi\)
\(788\) −1.24070e7 −0.711789
\(789\) 2.14941e7 1.22921
\(790\) 0 0
\(791\) 7.06708e6 0.401605
\(792\) −4.00749e6 −0.227018
\(793\) −4.18389e6 −0.236264
\(794\) 8.81291e6 0.496099
\(795\) 0 0
\(796\) 1.53729e7 0.859948
\(797\) −2.70410e7 −1.50792 −0.753958 0.656923i \(-0.771858\pi\)
−0.753958 + 0.656923i \(0.771858\pi\)
\(798\) 2.75198e6 0.152981
\(799\) −8.51666e6 −0.471957
\(800\) 0 0
\(801\) 7.50748e6 0.413441
\(802\) 4.49531e6 0.246788
\(803\) 1.06950e7 0.585317
\(804\) −1.34497e7 −0.733790
\(805\) 0 0
\(806\) 6.14383e6 0.333121
\(807\) 1.82096e7 0.984276
\(808\) −6.24434e6 −0.336479
\(809\) −7.14004e6 −0.383557 −0.191778 0.981438i \(-0.561425\pi\)
−0.191778 + 0.981438i \(0.561425\pi\)
\(810\) 0 0
\(811\) −3.49368e7 −1.86522 −0.932612 0.360882i \(-0.882476\pi\)
−0.932612 + 0.360882i \(0.882476\pi\)
\(812\) 1.85308e6 0.0986287
\(813\) −4.11122e7 −2.18144
\(814\) −8.87779e6 −0.469617
\(815\) 0 0
\(816\) 1.16390e7 0.611913
\(817\) −8.79337e6 −0.460893
\(818\) −4.02100e6 −0.210112
\(819\) 1.09473e6 0.0570293
\(820\) 0 0
\(821\) −5.14344e6 −0.266315 −0.133158 0.991095i \(-0.542512\pi\)
−0.133158 + 0.991095i \(0.542512\pi\)
\(822\) −5.81601e6 −0.300224
\(823\) −4.85712e6 −0.249965 −0.124982 0.992159i \(-0.539887\pi\)
−0.124982 + 0.992159i \(0.539887\pi\)
\(824\) 1.98343e6 0.101765
\(825\) 0 0
\(826\) −1.02477e7 −0.522607
\(827\) −1.70403e7 −0.866391 −0.433196 0.901300i \(-0.642614\pi\)
−0.433196 + 0.901300i \(0.642614\pi\)
\(828\) 7.71663e6 0.391158
\(829\) −2.27045e7 −1.14743 −0.573715 0.819055i \(-0.694498\pi\)
−0.573715 + 0.819055i \(0.694498\pi\)
\(830\) 0 0
\(831\) 2.57857e7 1.29532
\(832\) 692224. 0.0346688
\(833\) −3.35552e7 −1.67551
\(834\) −4.50397e6 −0.224223
\(835\) 0 0
\(836\) −5.53491e6 −0.273902
\(837\) 2.03382e7 1.00346
\(838\) −6.11858e6 −0.300982
\(839\) −1.63556e7 −0.802159 −0.401080 0.916043i \(-0.631365\pi\)
−0.401080 + 0.916043i \(0.631365\pi\)
\(840\) 0 0
\(841\) −1.53876e7 −0.750208
\(842\) −9.19868e6 −0.447142
\(843\) 3.16407e7 1.53347
\(844\) 1.60650e7 0.776289
\(845\) 0 0
\(846\) 1.82370e6 0.0876045
\(847\) 4.27679e6 0.204837
\(848\) −1.93203e6 −0.0922625
\(849\) −8.55012e6 −0.407102
\(850\) 0 0
\(851\) 1.70946e7 0.809163
\(852\) 2.33878e6 0.110380
\(853\) 4.52879e6 0.213113 0.106556 0.994307i \(-0.466018\pi\)
0.106556 + 0.994307i \(0.466018\pi\)
\(854\) 5.06689e6 0.237737
\(855\) 0 0
\(856\) 1.29305e7 0.603157
\(857\) 3.52177e7 1.63798 0.818990 0.573807i \(-0.194534\pi\)
0.818990 + 0.573807i \(0.194534\pi\)
\(858\) −6.42795e6 −0.298095
\(859\) −3.55901e7 −1.64568 −0.822841 0.568271i \(-0.807612\pi\)
−0.822841 + 0.568271i \(0.807612\pi\)
\(860\) 0 0
\(861\) −1.22272e7 −0.562108
\(862\) 1.04833e7 0.480539
\(863\) −2.78981e7 −1.27511 −0.637555 0.770405i \(-0.720054\pi\)
−0.637555 + 0.770405i \(0.720054\pi\)
\(864\) 2.29150e6 0.104433
\(865\) 0 0
\(866\) −2.36495e6 −0.107159
\(867\) 8.02220e7 3.62448
\(868\) −7.44048e6 −0.335198
\(869\) 5.12103e7 2.30042
\(870\) 0 0
\(871\) −7.38946e6 −0.330041
\(872\) 1.09536e7 0.487826
\(873\) 9.30222e6 0.413096
\(874\) 1.06578e7 0.471941
\(875\) 0 0
\(876\) 6.65128e6 0.292850
\(877\) −6.79883e6 −0.298494 −0.149247 0.988800i \(-0.547685\pi\)
−0.149247 + 0.988800i \(0.547685\pi\)
\(878\) 2.34409e7 1.02622
\(879\) −8.81622e6 −0.384867
\(880\) 0 0
\(881\) −4.02331e7 −1.74640 −0.873201 0.487360i \(-0.837960\pi\)
−0.873201 + 0.487360i \(0.837960\pi\)
\(882\) 7.18526e6 0.311008
\(883\) −7.81137e6 −0.337152 −0.168576 0.985689i \(-0.553917\pi\)
−0.168576 + 0.985689i \(0.553917\pi\)
\(884\) 6.39464e6 0.275223
\(885\) 0 0
\(886\) 5.98103e6 0.255971
\(887\) 2.69396e7 1.14970 0.574848 0.818260i \(-0.305061\pi\)
0.574848 + 0.818260i \(0.305061\pi\)
\(888\) −5.52116e6 −0.234962
\(889\) −4.40189e6 −0.186803
\(890\) 0 0
\(891\) −3.64947e7 −1.54005
\(892\) −5.91587e6 −0.248947
\(893\) 2.51878e6 0.105697
\(894\) 2.65292e7 1.11015
\(895\) 0 0
\(896\) −838318. −0.0348850
\(897\) 1.23774e7 0.513626
\(898\) 1.55052e7 0.641631
\(899\) −2.05720e7 −0.848942
\(900\) 0 0
\(901\) −1.78478e7 −0.732440
\(902\) 2.45920e7 1.00642
\(903\) 1.23674e7 0.504731
\(904\) −8.83957e6 −0.359758
\(905\) 0 0
\(906\) −956151. −0.0386995
\(907\) −3.66946e7 −1.48110 −0.740549 0.672002i \(-0.765435\pi\)
−0.740549 + 0.672002i \(0.765435\pi\)
\(908\) 9.95582e6 0.400740
\(909\) 1.23520e7 0.495826
\(910\) 0 0
\(911\) −1.68568e7 −0.672945 −0.336473 0.941693i \(-0.609234\pi\)
−0.336473 + 0.941693i \(0.609234\pi\)
\(912\) −3.44220e6 −0.137041
\(913\) 3.97635e7 1.57873
\(914\) 2.58649e7 1.02411
\(915\) 0 0
\(916\) 5.25038e6 0.206753
\(917\) −1.52296e7 −0.598090
\(918\) 2.11685e7 0.829054
\(919\) 3.12525e7 1.22066 0.610332 0.792146i \(-0.291036\pi\)
0.610332 + 0.792146i \(0.291036\pi\)
\(920\) 0 0
\(921\) −4.79421e7 −1.86238
\(922\) 2.90466e7 1.12530
\(923\) 1.28496e6 0.0496463
\(924\) 7.78457e6 0.299954
\(925\) 0 0
\(926\) 1.92638e7 0.738267
\(927\) −3.92345e6 −0.149958
\(928\) −2.31785e6 −0.0883517
\(929\) −3.27128e7 −1.24359 −0.621797 0.783178i \(-0.713597\pi\)
−0.621797 + 0.783178i \(0.713597\pi\)
\(930\) 0 0
\(931\) 9.92387e6 0.375238
\(932\) −2.00137e7 −0.754723
\(933\) −3.35506e7 −1.26182
\(934\) 927655. 0.0347952
\(935\) 0 0
\(936\) −1.36930e6 −0.0510869
\(937\) −4.53506e7 −1.68746 −0.843731 0.536767i \(-0.819645\pi\)
−0.843731 + 0.536767i \(0.819645\pi\)
\(938\) 8.94901e6 0.332099
\(939\) −1.52247e7 −0.563490
\(940\) 0 0
\(941\) −4.45649e7 −1.64066 −0.820331 0.571890i \(-0.806211\pi\)
−0.820331 + 0.571890i \(0.806211\pi\)
\(942\) −3.20422e7 −1.17651
\(943\) −4.73532e7 −1.73408
\(944\) 1.28179e7 0.468152
\(945\) 0 0
\(946\) −2.48740e7 −0.903685
\(947\) −1.90646e7 −0.690800 −0.345400 0.938456i \(-0.612257\pi\)
−0.345400 + 0.938456i \(0.612257\pi\)
\(948\) 3.18480e7 1.15096
\(949\) 3.65432e6 0.131717
\(950\) 0 0
\(951\) 5.26392e7 1.88737
\(952\) −7.74422e6 −0.276940
\(953\) −4.22576e6 −0.150721 −0.0753603 0.997156i \(-0.524011\pi\)
−0.0753603 + 0.997156i \(0.524011\pi\)
\(954\) 3.82179e6 0.135955
\(955\) 0 0
\(956\) 226104. 0.00800134
\(957\) 2.15234e7 0.759680
\(958\) −1.30299e7 −0.458700
\(959\) 3.86980e6 0.135876
\(960\) 0 0
\(961\) 5.39718e7 1.88520
\(962\) −3.03341e6 −0.105680
\(963\) −2.55780e7 −0.888794
\(964\) 986207. 0.0341803
\(965\) 0 0
\(966\) −1.49896e7 −0.516829
\(967\) 3.50435e7 1.20515 0.602575 0.798062i \(-0.294141\pi\)
0.602575 + 0.798062i \(0.294141\pi\)
\(968\) −5.34945e6 −0.183494
\(969\) −3.17984e7 −1.08792
\(970\) 0 0
\(971\) 7.67176e6 0.261124 0.130562 0.991440i \(-0.458322\pi\)
0.130562 + 0.991440i \(0.458322\pi\)
\(972\) −1.39958e7 −0.475150
\(973\) 2.99680e6 0.101479
\(974\) 3.00651e7 1.01546
\(975\) 0 0
\(976\) −6.33772e6 −0.212965
\(977\) 4.64539e7 1.55699 0.778494 0.627652i \(-0.215984\pi\)
0.778494 + 0.627652i \(0.215984\pi\)
\(978\) −1.73118e7 −0.578754
\(979\) 2.93307e7 0.978061
\(980\) 0 0
\(981\) −2.16675e7 −0.718846
\(982\) 1.82404e6 0.0603611
\(983\) −1.52982e7 −0.504959 −0.252480 0.967602i \(-0.581246\pi\)
−0.252480 + 0.967602i \(0.581246\pi\)
\(984\) 1.52939e7 0.503537
\(985\) 0 0
\(986\) −2.14118e7 −0.701393
\(987\) −3.54254e6 −0.115750
\(988\) −1.89120e6 −0.0616375
\(989\) 4.78961e7 1.55708
\(990\) 0 0
\(991\) −8.70500e6 −0.281569 −0.140784 0.990040i \(-0.544962\pi\)
−0.140784 + 0.990040i \(0.544962\pi\)
\(992\) 9.30663e6 0.300271
\(993\) 2.58649e6 0.0832409
\(994\) −1.55616e6 −0.0499559
\(995\) 0 0
\(996\) 2.47292e7 0.789880
\(997\) 4.01903e7 1.28051 0.640256 0.768162i \(-0.278828\pi\)
0.640256 + 0.768162i \(0.278828\pi\)
\(998\) −1.33328e7 −0.423737
\(999\) −1.00416e7 −0.318340
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.c.1.2 2
5.2 odd 4 650.6.b.c.599.1 4
5.3 odd 4 650.6.b.c.599.4 4
5.4 even 2 130.6.a.e.1.1 2
20.19 odd 2 1040.6.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.e.1.1 2 5.4 even 2
650.6.a.c.1.2 2 1.1 even 1 trivial
650.6.b.c.599.1 4 5.2 odd 4
650.6.b.c.599.4 4 5.3 odd 4
1040.6.a.h.1.2 2 20.19 odd 2