Properties

Label 650.6.a.c.1.1
Level $650$
Weight $6$
Character 650.1
Self dual yes
Analytic conductor $104.249$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,6,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.249482878\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.74166\) of defining polynomial
Character \(\chi\) \(=\) 650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -3.22497 q^{3} +16.0000 q^{4} +12.8999 q^{6} +200.833 q^{7} -64.0000 q^{8} -232.600 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} -3.22497 q^{3} +16.0000 q^{4} +12.8999 q^{6} +200.833 q^{7} -64.0000 q^{8} -232.600 q^{9} -530.607 q^{11} -51.5996 q^{12} +169.000 q^{13} -803.333 q^{14} +256.000 q^{16} +15.1196 q^{17} +930.398 q^{18} -392.592 q^{19} -647.681 q^{21} +2122.43 q^{22} -2633.57 q^{23} +206.398 q^{24} -676.000 q^{26} +1533.80 q^{27} +3213.33 q^{28} -7135.52 q^{29} +6828.51 q^{31} -1024.00 q^{32} +1711.19 q^{33} -60.4783 q^{34} -3721.59 q^{36} +13272.7 q^{37} +1570.37 q^{38} -545.020 q^{39} +3210.06 q^{41} +2590.73 q^{42} +11083.4 q^{43} -8489.71 q^{44} +10534.3 q^{46} -9258.69 q^{47} -825.593 q^{48} +23527.0 q^{49} -48.7602 q^{51} +2704.00 q^{52} -3520.99 q^{53} -6135.18 q^{54} -12853.3 q^{56} +1266.10 q^{57} +28542.1 q^{58} +40334.1 q^{59} -44243.3 q^{61} -27314.0 q^{62} -46713.7 q^{63} +4096.00 q^{64} -6844.77 q^{66} -7071.36 q^{67} +241.913 q^{68} +8493.18 q^{69} -36271.3 q^{71} +14886.4 q^{72} +41064.8 q^{73} -53090.8 q^{74} -6281.47 q^{76} -106563. q^{77} +2180.08 q^{78} -19473.4 q^{79} +51575.2 q^{81} -12840.3 q^{82} -67566.0 q^{83} -10362.9 q^{84} -44333.6 q^{86} +23011.9 q^{87} +33958.9 q^{88} +33319.0 q^{89} +33940.8 q^{91} -42137.1 q^{92} -22021.7 q^{93} +37034.8 q^{94} +3302.37 q^{96} +2206.46 q^{97} -94107.8 q^{98} +123419. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 16 q^{3} + 32 q^{4} - 64 q^{6} + 252 q^{7} - 128 q^{8} - 106 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 16 q^{3} + 32 q^{4} - 64 q^{6} + 252 q^{7} - 128 q^{8} - 106 q^{9} - 36 q^{11} + 256 q^{12} + 338 q^{13} - 1008 q^{14} + 512 q^{16} + 2380 q^{17} + 424 q^{18} - 1092 q^{19} + 336 q^{21} + 144 q^{22} + 1176 q^{23} - 1024 q^{24} - 1352 q^{26} - 704 q^{27} + 4032 q^{28} - 4872 q^{29} - 2260 q^{31} - 2048 q^{32} + 11220 q^{33} - 9520 q^{34} - 1696 q^{36} + 17760 q^{37} + 4368 q^{38} + 2704 q^{39} - 9220 q^{41} - 1344 q^{42} + 23656 q^{43} - 576 q^{44} - 4704 q^{46} - 12860 q^{47} + 4096 q^{48} + 9338 q^{49} + 45416 q^{51} + 5408 q^{52} - 11068 q^{53} + 2816 q^{54} - 16128 q^{56} - 12180 q^{57} + 19488 q^{58} + 90404 q^{59} - 69000 q^{61} + 9040 q^{62} - 40236 q^{63} + 8192 q^{64} - 44880 q^{66} - 50796 q^{67} + 38080 q^{68} + 81732 q^{69} - 28668 q^{71} + 6784 q^{72} + 62688 q^{73} - 71040 q^{74} - 17472 q^{76} - 81256 q^{77} - 10816 q^{78} + 84064 q^{79} - 22210 q^{81} + 36880 q^{82} + 12828 q^{83} + 5376 q^{84} - 94624 q^{86} + 66528 q^{87} + 2304 q^{88} + 92620 q^{89} + 42588 q^{91} + 18816 q^{92} - 196748 q^{93} + 51440 q^{94} - 16384 q^{96} + 75684 q^{97} - 37352 q^{98} + 186036 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −3.22497 −0.206882 −0.103441 0.994636i \(-0.532985\pi\)
−0.103441 + 0.994636i \(0.532985\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 12.8999 0.146288
\(7\) 200.833 1.54914 0.774569 0.632489i \(-0.217967\pi\)
0.774569 + 0.632489i \(0.217967\pi\)
\(8\) −64.0000 −0.353553
\(9\) −232.600 −0.957200
\(10\) 0 0
\(11\) −530.607 −1.32218 −0.661091 0.750306i \(-0.729906\pi\)
−0.661091 + 0.750306i \(0.729906\pi\)
\(12\) −51.5996 −0.103441
\(13\) 169.000 0.277350
\(14\) −803.333 −1.09541
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 15.1196 0.0126887 0.00634435 0.999980i \(-0.497981\pi\)
0.00634435 + 0.999980i \(0.497981\pi\)
\(18\) 930.398 0.676842
\(19\) −392.592 −0.249493 −0.124746 0.992189i \(-0.539812\pi\)
−0.124746 + 0.992189i \(0.539812\pi\)
\(20\) 0 0
\(21\) −647.681 −0.320489
\(22\) 2122.43 0.934924
\(23\) −2633.57 −1.03807 −0.519033 0.854754i \(-0.673708\pi\)
−0.519033 + 0.854754i \(0.673708\pi\)
\(24\) 206.398 0.0731439
\(25\) 0 0
\(26\) −676.000 −0.196116
\(27\) 1533.80 0.404910
\(28\) 3213.33 0.774569
\(29\) −7135.52 −1.57554 −0.787772 0.615966i \(-0.788766\pi\)
−0.787772 + 0.615966i \(0.788766\pi\)
\(30\) 0 0
\(31\) 6828.51 1.27621 0.638104 0.769950i \(-0.279719\pi\)
0.638104 + 0.769950i \(0.279719\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1711.19 0.273536
\(34\) −60.4783 −0.00897227
\(35\) 0 0
\(36\) −3721.59 −0.478600
\(37\) 13272.7 1.59388 0.796939 0.604060i \(-0.206451\pi\)
0.796939 + 0.604060i \(0.206451\pi\)
\(38\) 1570.37 0.176418
\(39\) −545.020 −0.0573788
\(40\) 0 0
\(41\) 3210.06 0.298232 0.149116 0.988820i \(-0.452357\pi\)
0.149116 + 0.988820i \(0.452357\pi\)
\(42\) 2590.73 0.226620
\(43\) 11083.4 0.914118 0.457059 0.889436i \(-0.348903\pi\)
0.457059 + 0.889436i \(0.348903\pi\)
\(44\) −8489.71 −0.661091
\(45\) 0 0
\(46\) 10534.3 0.734023
\(47\) −9258.69 −0.611371 −0.305686 0.952132i \(-0.598886\pi\)
−0.305686 + 0.952132i \(0.598886\pi\)
\(48\) −825.593 −0.0517205
\(49\) 23527.0 1.39983
\(50\) 0 0
\(51\) −48.7602 −0.00262507
\(52\) 2704.00 0.138675
\(53\) −3520.99 −0.172177 −0.0860885 0.996287i \(-0.527437\pi\)
−0.0860885 + 0.996287i \(0.527437\pi\)
\(54\) −6135.18 −0.286314
\(55\) 0 0
\(56\) −12853.3 −0.547703
\(57\) 1266.10 0.0516155
\(58\) 28542.1 1.11408
\(59\) 40334.1 1.50849 0.754245 0.656593i \(-0.228003\pi\)
0.754245 + 0.656593i \(0.228003\pi\)
\(60\) 0 0
\(61\) −44243.3 −1.52238 −0.761189 0.648530i \(-0.775384\pi\)
−0.761189 + 0.648530i \(0.775384\pi\)
\(62\) −27314.0 −0.902415
\(63\) −46713.7 −1.48284
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −6844.77 −0.193419
\(67\) −7071.36 −0.192449 −0.0962246 0.995360i \(-0.530677\pi\)
−0.0962246 + 0.995360i \(0.530677\pi\)
\(68\) 241.913 0.00634435
\(69\) 8493.18 0.214757
\(70\) 0 0
\(71\) −36271.3 −0.853921 −0.426961 0.904270i \(-0.640416\pi\)
−0.426961 + 0.904270i \(0.640416\pi\)
\(72\) 14886.4 0.338421
\(73\) 41064.8 0.901909 0.450955 0.892547i \(-0.351084\pi\)
0.450955 + 0.892547i \(0.351084\pi\)
\(74\) −53090.8 −1.12704
\(75\) 0 0
\(76\) −6281.47 −0.124746
\(77\) −106563. −2.04824
\(78\) 2180.08 0.0405729
\(79\) −19473.4 −0.351053 −0.175527 0.984475i \(-0.556163\pi\)
−0.175527 + 0.984475i \(0.556163\pi\)
\(80\) 0 0
\(81\) 51575.2 0.873431
\(82\) −12840.3 −0.210882
\(83\) −67566.0 −1.07655 −0.538274 0.842770i \(-0.680923\pi\)
−0.538274 + 0.842770i \(0.680923\pi\)
\(84\) −10362.9 −0.160245
\(85\) 0 0
\(86\) −44333.6 −0.646379
\(87\) 23011.9 0.325952
\(88\) 33958.9 0.467462
\(89\) 33319.0 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(90\) 0 0
\(91\) 33940.8 0.429654
\(92\) −42137.1 −0.519033
\(93\) −22021.7 −0.264025
\(94\) 37034.8 0.432305
\(95\) 0 0
\(96\) 3302.37 0.0365719
\(97\) 2206.46 0.0238103 0.0119052 0.999929i \(-0.496210\pi\)
0.0119052 + 0.999929i \(0.496210\pi\)
\(98\) −94107.8 −0.989830
\(99\) 123419. 1.26559
\(100\) 0 0
\(101\) −93675.8 −0.913743 −0.456871 0.889533i \(-0.651030\pi\)
−0.456871 + 0.889533i \(0.651030\pi\)
\(102\) 195.041 0.00185620
\(103\) −116473. −1.08176 −0.540881 0.841099i \(-0.681909\pi\)
−0.540881 + 0.841099i \(0.681909\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) 14084.0 0.121747
\(107\) 195303. 1.64911 0.824554 0.565784i \(-0.191426\pi\)
0.824554 + 0.565784i \(0.191426\pi\)
\(108\) 24540.7 0.202455
\(109\) 173562. 1.39923 0.699613 0.714522i \(-0.253356\pi\)
0.699613 + 0.714522i \(0.253356\pi\)
\(110\) 0 0
\(111\) −42804.1 −0.329745
\(112\) 51413.3 0.387285
\(113\) −3810.27 −0.0280711 −0.0140356 0.999901i \(-0.504468\pi\)
−0.0140356 + 0.999901i \(0.504468\pi\)
\(114\) −5064.39 −0.0364977
\(115\) 0 0
\(116\) −114168. −0.787772
\(117\) −39309.3 −0.265479
\(118\) −161336. −1.06666
\(119\) 3036.51 0.0196566
\(120\) 0 0
\(121\) 120493. 0.748166
\(122\) 176973. 1.07648
\(123\) −10352.4 −0.0616988
\(124\) 109256. 0.638104
\(125\) 0 0
\(126\) 186855. 1.04852
\(127\) 19926.1 0.109626 0.0548130 0.998497i \(-0.482544\pi\)
0.0548130 + 0.998497i \(0.482544\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −35743.7 −0.189115
\(130\) 0 0
\(131\) 266895. 1.35882 0.679409 0.733759i \(-0.262236\pi\)
0.679409 + 0.733759i \(0.262236\pi\)
\(132\) 27379.1 0.136768
\(133\) −78845.5 −0.386498
\(134\) 28285.4 0.136082
\(135\) 0 0
\(136\) −967.653 −0.00448614
\(137\) −9618.96 −0.0437851 −0.0218926 0.999760i \(-0.506969\pi\)
−0.0218926 + 0.999760i \(0.506969\pi\)
\(138\) −33972.7 −0.151856
\(139\) −85185.2 −0.373962 −0.186981 0.982364i \(-0.559870\pi\)
−0.186981 + 0.982364i \(0.559870\pi\)
\(140\) 0 0
\(141\) 29859.0 0.126482
\(142\) 145085. 0.603813
\(143\) −89672.6 −0.366707
\(144\) −59545.5 −0.239300
\(145\) 0 0
\(146\) −164259. −0.637746
\(147\) −75873.8 −0.289600
\(148\) 212363. 0.796939
\(149\) 222940. 0.822663 0.411332 0.911486i \(-0.365064\pi\)
0.411332 + 0.911486i \(0.365064\pi\)
\(150\) 0 0
\(151\) −363446. −1.29717 −0.648585 0.761142i \(-0.724639\pi\)
−0.648585 + 0.761142i \(0.724639\pi\)
\(152\) 25125.9 0.0882089
\(153\) −3516.81 −0.0121456
\(154\) 426254. 1.44833
\(155\) 0 0
\(156\) −8720.32 −0.0286894
\(157\) 323402. 1.04711 0.523556 0.851991i \(-0.324605\pi\)
0.523556 + 0.851991i \(0.324605\pi\)
\(158\) 77893.5 0.248232
\(159\) 11355.1 0.0356203
\(160\) 0 0
\(161\) −528908. −1.60811
\(162\) −206301. −0.617609
\(163\) 361691. 1.06627 0.533137 0.846029i \(-0.321013\pi\)
0.533137 + 0.846029i \(0.321013\pi\)
\(164\) 51361.0 0.149116
\(165\) 0 0
\(166\) 270264. 0.761234
\(167\) 535913. 1.48697 0.743486 0.668751i \(-0.233171\pi\)
0.743486 + 0.668751i \(0.233171\pi\)
\(168\) 41451.6 0.113310
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 91316.7 0.238814
\(172\) 177335. 0.457059
\(173\) 252514. 0.641462 0.320731 0.947170i \(-0.396071\pi\)
0.320731 + 0.947170i \(0.396071\pi\)
\(174\) −92047.4 −0.230483
\(175\) 0 0
\(176\) −135835. −0.330546
\(177\) −130076. −0.312079
\(178\) −133276. −0.315284
\(179\) −499988. −1.16634 −0.583172 0.812349i \(-0.698189\pi\)
−0.583172 + 0.812349i \(0.698189\pi\)
\(180\) 0 0
\(181\) −607767. −1.37892 −0.689462 0.724322i \(-0.742153\pi\)
−0.689462 + 0.724322i \(0.742153\pi\)
\(182\) −135763. −0.303811
\(183\) 142683. 0.314953
\(184\) 168548. 0.367012
\(185\) 0 0
\(186\) 88087.0 0.186694
\(187\) −8022.56 −0.0167768
\(188\) −148139. −0.305686
\(189\) 308037. 0.627261
\(190\) 0 0
\(191\) 51603.7 0.102352 0.0511762 0.998690i \(-0.483703\pi\)
0.0511762 + 0.998690i \(0.483703\pi\)
\(192\) −13209.5 −0.0258603
\(193\) 946349. 1.82877 0.914383 0.404851i \(-0.132677\pi\)
0.914383 + 0.404851i \(0.132677\pi\)
\(194\) −8825.82 −0.0168365
\(195\) 0 0
\(196\) 376431. 0.699915
\(197\) 229033. 0.420468 0.210234 0.977651i \(-0.432577\pi\)
0.210234 + 0.977651i \(0.432577\pi\)
\(198\) −493676. −0.894909
\(199\) 1.06207e6 1.90116 0.950582 0.310473i \(-0.100487\pi\)
0.950582 + 0.310473i \(0.100487\pi\)
\(200\) 0 0
\(201\) 22804.9 0.0398143
\(202\) 374703. 0.646114
\(203\) −1.43305e6 −2.44074
\(204\) −780.164 −0.00131253
\(205\) 0 0
\(206\) 465892. 0.764922
\(207\) 612567. 0.993636
\(208\) 43264.0 0.0693375
\(209\) 208312. 0.329875
\(210\) 0 0
\(211\) −256699. −0.396934 −0.198467 0.980108i \(-0.563596\pi\)
−0.198467 + 0.980108i \(0.563596\pi\)
\(212\) −56335.8 −0.0860885
\(213\) 116974. 0.176661
\(214\) −781211. −1.16610
\(215\) 0 0
\(216\) −98162.9 −0.143157
\(217\) 1.37139e6 1.97702
\(218\) −694247. −0.989402
\(219\) −132433. −0.186589
\(220\) 0 0
\(221\) 2555.21 0.00351921
\(222\) 171216. 0.233165
\(223\) −809910. −1.09062 −0.545312 0.838233i \(-0.683589\pi\)
−0.545312 + 0.838233i \(0.683589\pi\)
\(224\) −205653. −0.273852
\(225\) 0 0
\(226\) 15241.1 0.0198493
\(227\) 656318. 0.845375 0.422687 0.906276i \(-0.361087\pi\)
0.422687 + 0.906276i \(0.361087\pi\)
\(228\) 20257.6 0.0258078
\(229\) 1.19398e6 1.50456 0.752280 0.658844i \(-0.228954\pi\)
0.752280 + 0.658844i \(0.228954\pi\)
\(230\) 0 0
\(231\) 343664. 0.423745
\(232\) 456673. 0.557039
\(233\) 1.06005e6 1.27920 0.639598 0.768709i \(-0.279101\pi\)
0.639598 + 0.768709i \(0.279101\pi\)
\(234\) 157237. 0.187722
\(235\) 0 0
\(236\) 645346. 0.754245
\(237\) 62801.1 0.0726267
\(238\) −12146.1 −0.0138993
\(239\) 456553. 0.517006 0.258503 0.966010i \(-0.416771\pi\)
0.258503 + 0.966010i \(0.416771\pi\)
\(240\) 0 0
\(241\) 1.22007e6 1.35314 0.676569 0.736379i \(-0.263466\pi\)
0.676569 + 0.736379i \(0.263466\pi\)
\(242\) −481971. −0.529033
\(243\) −539041. −0.585607
\(244\) −707892. −0.761189
\(245\) 0 0
\(246\) 41409.5 0.0436277
\(247\) −66348.1 −0.0691968
\(248\) −437024. −0.451208
\(249\) 217899. 0.222718
\(250\) 0 0
\(251\) 1.44804e6 1.45076 0.725382 0.688347i \(-0.241663\pi\)
0.725382 + 0.688347i \(0.241663\pi\)
\(252\) −747419. −0.741418
\(253\) 1.39739e6 1.37251
\(254\) −79704.5 −0.0775173
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.21790e6 1.15021 0.575106 0.818079i \(-0.304961\pi\)
0.575106 + 0.818079i \(0.304961\pi\)
\(258\) 142975. 0.133724
\(259\) 2.66560e6 2.46914
\(260\) 0 0
\(261\) 1.65972e6 1.50811
\(262\) −1.06758e6 −0.960830
\(263\) −1.51165e6 −1.34760 −0.673799 0.738915i \(-0.735339\pi\)
−0.673799 + 0.738915i \(0.735339\pi\)
\(264\) −109516. −0.0967095
\(265\) 0 0
\(266\) 315382. 0.273296
\(267\) −107453. −0.0922443
\(268\) −113142. −0.0962246
\(269\) 405154. 0.341381 0.170691 0.985325i \(-0.445400\pi\)
0.170691 + 0.985325i \(0.445400\pi\)
\(270\) 0 0
\(271\) 613161. 0.507167 0.253584 0.967313i \(-0.418391\pi\)
0.253584 + 0.967313i \(0.418391\pi\)
\(272\) 3870.61 0.00317218
\(273\) −109458. −0.0888877
\(274\) 38475.8 0.0309608
\(275\) 0 0
\(276\) 135891. 0.107379
\(277\) 1.14240e6 0.894579 0.447289 0.894389i \(-0.352389\pi\)
0.447289 + 0.894389i \(0.352389\pi\)
\(278\) 340741. 0.264431
\(279\) −1.58831e6 −1.22159
\(280\) 0 0
\(281\) −705223. −0.532795 −0.266398 0.963863i \(-0.585833\pi\)
−0.266398 + 0.963863i \(0.585833\pi\)
\(282\) −119436. −0.0894361
\(283\) 205148. 0.152266 0.0761328 0.997098i \(-0.475743\pi\)
0.0761328 + 0.997098i \(0.475743\pi\)
\(284\) −580341. −0.426961
\(285\) 0 0
\(286\) 358690. 0.259301
\(287\) 644687. 0.462003
\(288\) 238182. 0.169211
\(289\) −1.41963e6 −0.999839
\(290\) 0 0
\(291\) −7115.76 −0.00492593
\(292\) 657037. 0.450955
\(293\) 2.50408e6 1.70404 0.852018 0.523513i \(-0.175379\pi\)
0.852018 + 0.523513i \(0.175379\pi\)
\(294\) 303495. 0.204778
\(295\) 0 0
\(296\) −849453. −0.563521
\(297\) −813843. −0.535364
\(298\) −891759. −0.581711
\(299\) −445073. −0.287908
\(300\) 0 0
\(301\) 2.22592e6 1.41610
\(302\) 1.45378e6 0.917238
\(303\) 302102. 0.189037
\(304\) −100504. −0.0623731
\(305\) 0 0
\(306\) 14067.2 0.00858826
\(307\) 110033. 0.0666312 0.0333156 0.999445i \(-0.489393\pi\)
0.0333156 + 0.999445i \(0.489393\pi\)
\(308\) −1.70502e6 −1.02412
\(309\) 375622. 0.223797
\(310\) 0 0
\(311\) −1.15351e6 −0.676272 −0.338136 0.941097i \(-0.609796\pi\)
−0.338136 + 0.941097i \(0.609796\pi\)
\(312\) 34881.3 0.0202865
\(313\) −2.00121e6 −1.15460 −0.577302 0.816531i \(-0.695894\pi\)
−0.577302 + 0.816531i \(0.695894\pi\)
\(314\) −1.29361e6 −0.740421
\(315\) 0 0
\(316\) −311574. −0.175527
\(317\) −90375.3 −0.0505128 −0.0252564 0.999681i \(-0.508040\pi\)
−0.0252564 + 0.999681i \(0.508040\pi\)
\(318\) −45420.4 −0.0251874
\(319\) 3.78616e6 2.08316
\(320\) 0 0
\(321\) −629846. −0.341171
\(322\) 2.11563e6 1.13710
\(323\) −5935.83 −0.00316574
\(324\) 825204. 0.436716
\(325\) 0 0
\(326\) −1.44676e6 −0.753970
\(327\) −559732. −0.289475
\(328\) −205444. −0.105441
\(329\) −1.85945e6 −0.947099
\(330\) 0 0
\(331\) −3.83957e6 −1.92625 −0.963126 0.269051i \(-0.913290\pi\)
−0.963126 + 0.269051i \(0.913290\pi\)
\(332\) −1.08106e6 −0.538274
\(333\) −3.08723e6 −1.52566
\(334\) −2.14365e6 −1.05145
\(335\) 0 0
\(336\) −165806. −0.0801223
\(337\) −2.29930e6 −1.10286 −0.551430 0.834221i \(-0.685917\pi\)
−0.551430 + 0.834221i \(0.685917\pi\)
\(338\) −114244. −0.0543928
\(339\) 12288.0 0.00580742
\(340\) 0 0
\(341\) −3.62325e6 −1.68738
\(342\) −365267. −0.168867
\(343\) 1.34959e6 0.619393
\(344\) −709338. −0.323190
\(345\) 0 0
\(346\) −1.01006e6 −0.453582
\(347\) 1.82848e6 0.815204 0.407602 0.913160i \(-0.366365\pi\)
0.407602 + 0.913160i \(0.366365\pi\)
\(348\) 368190. 0.162976
\(349\) 2.54054e6 1.11651 0.558254 0.829670i \(-0.311472\pi\)
0.558254 + 0.829670i \(0.311472\pi\)
\(350\) 0 0
\(351\) 259211. 0.112302
\(352\) 543342. 0.233731
\(353\) 3.67598e6 1.57013 0.785066 0.619412i \(-0.212629\pi\)
0.785066 + 0.619412i \(0.212629\pi\)
\(354\) 520305. 0.220674
\(355\) 0 0
\(356\) 533103. 0.222939
\(357\) −9792.67 −0.00406659
\(358\) 1.99995e6 0.824730
\(359\) −920537. −0.376969 −0.188484 0.982076i \(-0.560357\pi\)
−0.188484 + 0.982076i \(0.560357\pi\)
\(360\) 0 0
\(361\) −2.32197e6 −0.937753
\(362\) 2.43107e6 0.975047
\(363\) −388586. −0.154782
\(364\) 543053. 0.214827
\(365\) 0 0
\(366\) −570733. −0.222705
\(367\) −2.28316e6 −0.884854 −0.442427 0.896804i \(-0.645882\pi\)
−0.442427 + 0.896804i \(0.645882\pi\)
\(368\) −674193. −0.259516
\(369\) −746659. −0.285467
\(370\) 0 0
\(371\) −707131. −0.266726
\(372\) −352348. −0.132012
\(373\) −2.84732e6 −1.05965 −0.529827 0.848106i \(-0.677743\pi\)
−0.529827 + 0.848106i \(0.677743\pi\)
\(374\) 32090.2 0.0118630
\(375\) 0 0
\(376\) 592556. 0.216152
\(377\) −1.20590e6 −0.436977
\(378\) −1.23215e6 −0.443541
\(379\) 3.75104e6 1.34139 0.670693 0.741735i \(-0.265997\pi\)
0.670693 + 0.741735i \(0.265997\pi\)
\(380\) 0 0
\(381\) −64261.2 −0.0226797
\(382\) −206415. −0.0723740
\(383\) 1.81532e6 0.632349 0.316174 0.948701i \(-0.397602\pi\)
0.316174 + 0.948701i \(0.397602\pi\)
\(384\) 52837.9 0.0182860
\(385\) 0 0
\(386\) −3.78540e6 −1.29313
\(387\) −2.57800e6 −0.874994
\(388\) 35303.3 0.0119052
\(389\) −4.37154e6 −1.46474 −0.732371 0.680906i \(-0.761586\pi\)
−0.732371 + 0.680906i \(0.761586\pi\)
\(390\) 0 0
\(391\) −39818.4 −0.0131717
\(392\) −1.50573e6 −0.494915
\(393\) −860728. −0.281115
\(394\) −916133. −0.297316
\(395\) 0 0
\(396\) 1.97470e6 0.632796
\(397\) 2.28486e6 0.727584 0.363792 0.931480i \(-0.381482\pi\)
0.363792 + 0.931480i \(0.381482\pi\)
\(398\) −4.24827e6 −1.34433
\(399\) 254275. 0.0799596
\(400\) 0 0
\(401\) 5.53357e6 1.71848 0.859240 0.511573i \(-0.170937\pi\)
0.859240 + 0.511573i \(0.170937\pi\)
\(402\) −91219.8 −0.0281529
\(403\) 1.15402e6 0.353956
\(404\) −1.49881e6 −0.456871
\(405\) 0 0
\(406\) 5.73220e6 1.72586
\(407\) −7.04259e6 −2.10740
\(408\) 3120.65 0.000928101 0
\(409\) −2.28293e6 −0.674815 −0.337408 0.941359i \(-0.609550\pi\)
−0.337408 + 0.941359i \(0.609550\pi\)
\(410\) 0 0
\(411\) 31020.9 0.00905836
\(412\) −1.86357e6 −0.540881
\(413\) 8.10043e6 2.33686
\(414\) −2.45027e6 −0.702607
\(415\) 0 0
\(416\) −173056. −0.0490290
\(417\) 274720. 0.0773660
\(418\) −833248. −0.233257
\(419\) 2.75540e6 0.766741 0.383371 0.923595i \(-0.374763\pi\)
0.383371 + 0.923595i \(0.374763\pi\)
\(420\) 0 0
\(421\) −6.19470e6 −1.70339 −0.851697 0.524035i \(-0.824426\pi\)
−0.851697 + 0.524035i \(0.824426\pi\)
\(422\) 1.02680e6 0.280675
\(423\) 2.15357e6 0.585204
\(424\) 225343. 0.0608737
\(425\) 0 0
\(426\) −467896. −0.124918
\(427\) −8.88552e6 −2.35838
\(428\) 3.12484e6 0.824554
\(429\) 289192. 0.0758652
\(430\) 0 0
\(431\) 5.52072e6 1.43154 0.715768 0.698338i \(-0.246077\pi\)
0.715768 + 0.698338i \(0.246077\pi\)
\(432\) 392652. 0.101227
\(433\) 4.76773e6 1.22206 0.611030 0.791608i \(-0.290756\pi\)
0.611030 + 0.791608i \(0.290756\pi\)
\(434\) −5.48556e6 −1.39797
\(435\) 0 0
\(436\) 2.77699e6 0.699613
\(437\) 1.03392e6 0.258990
\(438\) 529732. 0.131938
\(439\) 275097. 0.0681279 0.0340639 0.999420i \(-0.489155\pi\)
0.0340639 + 0.999420i \(0.489155\pi\)
\(440\) 0 0
\(441\) −5.47236e6 −1.33992
\(442\) −10220.8 −0.00248846
\(443\) 5.89806e6 1.42791 0.713953 0.700194i \(-0.246903\pi\)
0.713953 + 0.700194i \(0.246903\pi\)
\(444\) −684866. −0.164872
\(445\) 0 0
\(446\) 3.23964e6 0.771187
\(447\) −718975. −0.170194
\(448\) 822613. 0.193642
\(449\) 2.69527e6 0.630938 0.315469 0.948936i \(-0.397838\pi\)
0.315469 + 0.948936i \(0.397838\pi\)
\(450\) 0 0
\(451\) −1.70328e6 −0.394317
\(452\) −60964.4 −0.0140356
\(453\) 1.17210e6 0.268361
\(454\) −2.62527e6 −0.597770
\(455\) 0 0
\(456\) −81030.3 −0.0182488
\(457\) −5.00128e6 −1.12019 −0.560094 0.828429i \(-0.689235\pi\)
−0.560094 + 0.828429i \(0.689235\pi\)
\(458\) −4.77593e6 −1.06388
\(459\) 23190.3 0.00513778
\(460\) 0 0
\(461\) 1.31041e6 0.287179 0.143590 0.989637i \(-0.454135\pi\)
0.143590 + 0.989637i \(0.454135\pi\)
\(462\) −1.37466e6 −0.299633
\(463\) −4.81314e6 −1.04346 −0.521731 0.853110i \(-0.674713\pi\)
−0.521731 + 0.853110i \(0.674713\pi\)
\(464\) −1.82669e6 −0.393886
\(465\) 0 0
\(466\) −4.24021e6 −0.904529
\(467\) 8.29674e6 1.76042 0.880208 0.474589i \(-0.157403\pi\)
0.880208 + 0.474589i \(0.157403\pi\)
\(468\) −628949. −0.132740
\(469\) −1.42016e6 −0.298130
\(470\) 0 0
\(471\) −1.04296e6 −0.216629
\(472\) −2.58138e6 −0.533332
\(473\) −5.88094e6 −1.20863
\(474\) −251204. −0.0513548
\(475\) 0 0
\(476\) 48584.2 0.00982828
\(477\) 818980. 0.164808
\(478\) −1.82621e6 −0.365579
\(479\) −1.37501e6 −0.273821 −0.136910 0.990583i \(-0.543717\pi\)
−0.136910 + 0.990583i \(0.543717\pi\)
\(480\) 0 0
\(481\) 2.24309e6 0.442062
\(482\) −4.88028e6 −0.956813
\(483\) 1.70571e6 0.332689
\(484\) 1.92789e6 0.374083
\(485\) 0 0
\(486\) 2.15616e6 0.414087
\(487\) 3.68612e6 0.704283 0.352142 0.935947i \(-0.385454\pi\)
0.352142 + 0.935947i \(0.385454\pi\)
\(488\) 2.83157e6 0.538242
\(489\) −1.16644e6 −0.220593
\(490\) 0 0
\(491\) −4.43125e6 −0.829512 −0.414756 0.909933i \(-0.636133\pi\)
−0.414756 + 0.909933i \(0.636133\pi\)
\(492\) −165638. −0.0308494
\(493\) −107886. −0.0199916
\(494\) 265392. 0.0489295
\(495\) 0 0
\(496\) 1.74810e6 0.319052
\(497\) −7.28449e6 −1.32284
\(498\) −871595. −0.157486
\(499\) 8.78314e6 1.57906 0.789529 0.613713i \(-0.210325\pi\)
0.789529 + 0.613713i \(0.210325\pi\)
\(500\) 0 0
\(501\) −1.72830e6 −0.307628
\(502\) −5.79216e6 −1.02584
\(503\) 8.16254e6 1.43849 0.719243 0.694759i \(-0.244489\pi\)
0.719243 + 0.694759i \(0.244489\pi\)
\(504\) 2.98968e6 0.524261
\(505\) 0 0
\(506\) −5.58956e6 −0.970512
\(507\) −92108.4 −0.0159140
\(508\) 318818. 0.0548130
\(509\) 1.76886e6 0.302621 0.151310 0.988486i \(-0.451651\pi\)
0.151310 + 0.988486i \(0.451651\pi\)
\(510\) 0 0
\(511\) 8.24718e6 1.39718
\(512\) −262144. −0.0441942
\(513\) −602156. −0.101022
\(514\) −4.87159e6 −0.813322
\(515\) 0 0
\(516\) −571899. −0.0945573
\(517\) 4.91273e6 0.808344
\(518\) −1.06624e7 −1.74594
\(519\) −814352. −0.132707
\(520\) 0 0
\(521\) −1.12965e6 −0.182327 −0.0911634 0.995836i \(-0.529059\pi\)
−0.0911634 + 0.995836i \(0.529059\pi\)
\(522\) −6.63888e6 −1.06640
\(523\) −3.65785e6 −0.584753 −0.292376 0.956303i \(-0.594446\pi\)
−0.292376 + 0.956303i \(0.594446\pi\)
\(524\) 4.27031e6 0.679409
\(525\) 0 0
\(526\) 6.04658e6 0.952896
\(527\) 103244. 0.0161934
\(528\) 438065. 0.0683839
\(529\) 499332. 0.0775801
\(530\) 0 0
\(531\) −9.38169e6 −1.44393
\(532\) −1.26153e6 −0.193249
\(533\) 542501. 0.0827146
\(534\) 429811. 0.0652265
\(535\) 0 0
\(536\) 452567. 0.0680411
\(537\) 1.61245e6 0.241296
\(538\) −1.62062e6 −0.241393
\(539\) −1.24836e7 −1.85083
\(540\) 0 0
\(541\) −4.32623e6 −0.635502 −0.317751 0.948174i \(-0.602928\pi\)
−0.317751 + 0.948174i \(0.602928\pi\)
\(542\) −2.45264e6 −0.358621
\(543\) 1.96003e6 0.285275
\(544\) −15482.5 −0.00224307
\(545\) 0 0
\(546\) 437833. 0.0628531
\(547\) −7.59075e6 −1.08472 −0.542359 0.840147i \(-0.682469\pi\)
−0.542359 + 0.840147i \(0.682469\pi\)
\(548\) −153903. −0.0218926
\(549\) 1.02910e7 1.45722
\(550\) 0 0
\(551\) 2.80135e6 0.393087
\(552\) −543564. −0.0759281
\(553\) −3.91090e6 −0.543830
\(554\) −4.56960e6 −0.632563
\(555\) 0 0
\(556\) −1.36296e6 −0.186981
\(557\) −1.04397e7 −1.42577 −0.712886 0.701280i \(-0.752612\pi\)
−0.712886 + 0.701280i \(0.752612\pi\)
\(558\) 6.35323e6 0.863792
\(559\) 1.87310e6 0.253531
\(560\) 0 0
\(561\) 25872.5 0.00347082
\(562\) 2.82089e6 0.376743
\(563\) 3.38176e6 0.449646 0.224823 0.974400i \(-0.427820\pi\)
0.224823 + 0.974400i \(0.427820\pi\)
\(564\) 477744. 0.0632409
\(565\) 0 0
\(566\) −820593. −0.107668
\(567\) 1.03580e7 1.35307
\(568\) 2.32137e6 0.301907
\(569\) −1.09186e7 −1.41380 −0.706900 0.707313i \(-0.749907\pi\)
−0.706900 + 0.707313i \(0.749907\pi\)
\(570\) 0 0
\(571\) 1.15547e7 1.48310 0.741549 0.670899i \(-0.234092\pi\)
0.741549 + 0.670899i \(0.234092\pi\)
\(572\) −1.43476e6 −0.183354
\(573\) −166421. −0.0211749
\(574\) −2.57875e6 −0.326685
\(575\) 0 0
\(576\) −952728. −0.119650
\(577\) −1.71415e6 −0.214343 −0.107171 0.994241i \(-0.534179\pi\)
−0.107171 + 0.994241i \(0.534179\pi\)
\(578\) 5.67851e6 0.706993
\(579\) −3.05195e6 −0.378339
\(580\) 0 0
\(581\) −1.35695e7 −1.66772
\(582\) 28463.0 0.00348316
\(583\) 1.86826e6 0.227649
\(584\) −2.62815e6 −0.318873
\(585\) 0 0
\(586\) −1.00163e7 −1.20494
\(587\) 2.85910e6 0.342479 0.171239 0.985229i \(-0.445223\pi\)
0.171239 + 0.985229i \(0.445223\pi\)
\(588\) −1.21398e6 −0.144800
\(589\) −2.68082e6 −0.318404
\(590\) 0 0
\(591\) −738626. −0.0869873
\(592\) 3.39781e6 0.398470
\(593\) −4.96085e6 −0.579321 −0.289661 0.957129i \(-0.593542\pi\)
−0.289661 + 0.957129i \(0.593542\pi\)
\(594\) 3.25537e6 0.378560
\(595\) 0 0
\(596\) 3.56704e6 0.411332
\(597\) −3.42514e6 −0.393317
\(598\) 1.78029e6 0.203581
\(599\) −1.24276e7 −1.41520 −0.707601 0.706612i \(-0.750223\pi\)
−0.707601 + 0.706612i \(0.750223\pi\)
\(600\) 0 0
\(601\) 3.58410e6 0.404757 0.202378 0.979307i \(-0.435133\pi\)
0.202378 + 0.979307i \(0.435133\pi\)
\(602\) −8.90366e6 −1.00133
\(603\) 1.64480e6 0.184212
\(604\) −5.81513e6 −0.648585
\(605\) 0 0
\(606\) −1.20841e6 −0.133669
\(607\) 3.78467e6 0.416923 0.208462 0.978031i \(-0.433154\pi\)
0.208462 + 0.978031i \(0.433154\pi\)
\(608\) 402014. 0.0441045
\(609\) 4.62154e6 0.504945
\(610\) 0 0
\(611\) −1.56472e6 −0.169564
\(612\) −56268.9 −0.00607281
\(613\) −1.54450e7 −1.66011 −0.830053 0.557685i \(-0.811690\pi\)
−0.830053 + 0.557685i \(0.811690\pi\)
\(614\) −440133. −0.0471154
\(615\) 0 0
\(616\) 6.82006e6 0.724163
\(617\) −6.78866e6 −0.717912 −0.358956 0.933355i \(-0.616867\pi\)
−0.358956 + 0.933355i \(0.616867\pi\)
\(618\) −1.50249e6 −0.158249
\(619\) −1.31549e7 −1.37994 −0.689970 0.723838i \(-0.742376\pi\)
−0.689970 + 0.723838i \(0.742376\pi\)
\(620\) 0 0
\(621\) −4.03935e6 −0.420323
\(622\) 4.61405e6 0.478197
\(623\) 6.69155e6 0.690728
\(624\) −139525. −0.0143447
\(625\) 0 0
\(626\) 8.00486e6 0.816428
\(627\) −671801. −0.0682451
\(628\) 5.17443e6 0.523556
\(629\) 200678. 0.0202243
\(630\) 0 0
\(631\) 9.46150e6 0.945990 0.472995 0.881065i \(-0.343173\pi\)
0.472995 + 0.881065i \(0.343173\pi\)
\(632\) 1.24630e6 0.124116
\(633\) 827849. 0.0821186
\(634\) 361501. 0.0357179
\(635\) 0 0
\(636\) 181681. 0.0178102
\(637\) 3.97606e6 0.388243
\(638\) −1.51446e7 −1.47301
\(639\) 8.43670e6 0.817373
\(640\) 0 0
\(641\) −1.66495e7 −1.60050 −0.800250 0.599666i \(-0.795300\pi\)
−0.800250 + 0.599666i \(0.795300\pi\)
\(642\) 2.51938e6 0.241244
\(643\) 1.31070e7 1.25019 0.625096 0.780548i \(-0.285060\pi\)
0.625096 + 0.780548i \(0.285060\pi\)
\(644\) −8.46252e6 −0.804054
\(645\) 0 0
\(646\) 23743.3 0.00223851
\(647\) 1.08998e7 1.02366 0.511832 0.859086i \(-0.328967\pi\)
0.511832 + 0.859086i \(0.328967\pi\)
\(648\) −3.30082e6 −0.308805
\(649\) −2.14016e7 −1.99450
\(650\) 0 0
\(651\) −4.42270e6 −0.409011
\(652\) 5.78706e6 0.533137
\(653\) 1.18879e7 1.09099 0.545497 0.838113i \(-0.316341\pi\)
0.545497 + 0.838113i \(0.316341\pi\)
\(654\) 2.23893e6 0.204689
\(655\) 0 0
\(656\) 821776. 0.0745580
\(657\) −9.55166e6 −0.863307
\(658\) 7.43781e6 0.669700
\(659\) 5.65451e6 0.507203 0.253601 0.967309i \(-0.418385\pi\)
0.253601 + 0.967309i \(0.418385\pi\)
\(660\) 0 0
\(661\) 8.05716e6 0.717263 0.358631 0.933479i \(-0.383243\pi\)
0.358631 + 0.933479i \(0.383243\pi\)
\(662\) 1.53583e7 1.36207
\(663\) −8240.48 −0.000728062 0
\(664\) 4.32423e6 0.380617
\(665\) 0 0
\(666\) 1.23489e7 1.07880
\(667\) 1.87919e7 1.63552
\(668\) 8.57461e6 0.743486
\(669\) 2.61194e6 0.225630
\(670\) 0 0
\(671\) 2.34758e7 2.01286
\(672\) 663226. 0.0566550
\(673\) 8.86976e6 0.754874 0.377437 0.926035i \(-0.376806\pi\)
0.377437 + 0.926035i \(0.376806\pi\)
\(674\) 9.19718e6 0.779839
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 1.86550e7 1.56431 0.782156 0.623083i \(-0.214120\pi\)
0.782156 + 0.623083i \(0.214120\pi\)
\(678\) −49152.1 −0.00410646
\(679\) 443129. 0.0368855
\(680\) 0 0
\(681\) −2.11661e6 −0.174893
\(682\) 1.44930e7 1.19316
\(683\) −1.79463e7 −1.47205 −0.736027 0.676952i \(-0.763300\pi\)
−0.736027 + 0.676952i \(0.763300\pi\)
\(684\) 1.46107e6 0.119407
\(685\) 0 0
\(686\) −5.39836e6 −0.437977
\(687\) −3.85056e6 −0.311266
\(688\) 2.83735e6 0.228530
\(689\) −595047. −0.0477533
\(690\) 0 0
\(691\) 1.39282e7 1.10969 0.554844 0.831954i \(-0.312778\pi\)
0.554844 + 0.831954i \(0.312778\pi\)
\(692\) 4.04023e6 0.320731
\(693\) 2.47866e7 1.96058
\(694\) −7.31391e6 −0.576436
\(695\) 0 0
\(696\) −1.47276e6 −0.115241
\(697\) 48534.8 0.00378418
\(698\) −1.01621e7 −0.789490
\(699\) −3.41864e6 −0.264643
\(700\) 0 0
\(701\) 2.29331e7 1.76265 0.881326 0.472508i \(-0.156651\pi\)
0.881326 + 0.472508i \(0.156651\pi\)
\(702\) −1.03685e6 −0.0794093
\(703\) −5.21076e6 −0.397661
\(704\) −2.17337e6 −0.165273
\(705\) 0 0
\(706\) −1.47039e7 −1.11025
\(707\) −1.88132e7 −1.41551
\(708\) −2.08122e6 −0.156040
\(709\) 2.11865e7 1.58286 0.791430 0.611260i \(-0.209337\pi\)
0.791430 + 0.611260i \(0.209337\pi\)
\(710\) 0 0
\(711\) 4.52950e6 0.336028
\(712\) −2.13241e6 −0.157642
\(713\) −1.79833e7 −1.32479
\(714\) 39170.7 0.00287551
\(715\) 0 0
\(716\) −7.99980e6 −0.583172
\(717\) −1.47237e6 −0.106959
\(718\) 3.68215e6 0.266557
\(719\) 2.03595e7 1.46874 0.734371 0.678749i \(-0.237477\pi\)
0.734371 + 0.678749i \(0.237477\pi\)
\(720\) 0 0
\(721\) −2.33916e7 −1.67580
\(722\) 9.28788e6 0.663092
\(723\) −3.93469e6 −0.279940
\(724\) −9.72426e6 −0.689462
\(725\) 0 0
\(726\) 1.55434e6 0.109447
\(727\) −3.11392e6 −0.218510 −0.109255 0.994014i \(-0.534847\pi\)
−0.109255 + 0.994014i \(0.534847\pi\)
\(728\) −2.17221e6 −0.151906
\(729\) −1.07944e7 −0.752280
\(730\) 0 0
\(731\) 167577. 0.0115990
\(732\) 2.28293e6 0.157476
\(733\) −2.20488e7 −1.51574 −0.757871 0.652405i \(-0.773760\pi\)
−0.757871 + 0.652405i \(0.773760\pi\)
\(734\) 9.13265e6 0.625686
\(735\) 0 0
\(736\) 2.69677e6 0.183506
\(737\) 3.75211e6 0.254453
\(738\) 2.98664e6 0.201856
\(739\) 2.29831e6 0.154809 0.0774046 0.997000i \(-0.475337\pi\)
0.0774046 + 0.997000i \(0.475337\pi\)
\(740\) 0 0
\(741\) 213971. 0.0143156
\(742\) 2.82852e6 0.188604
\(743\) −711970. −0.0473140 −0.0236570 0.999720i \(-0.507531\pi\)
−0.0236570 + 0.999720i \(0.507531\pi\)
\(744\) 1.40939e6 0.0933468
\(745\) 0 0
\(746\) 1.13893e7 0.749288
\(747\) 1.57158e7 1.03047
\(748\) −128361. −0.00838839
\(749\) 3.92233e7 2.55470
\(750\) 0 0
\(751\) −3.24479e6 −0.209936 −0.104968 0.994476i \(-0.533474\pi\)
−0.104968 + 0.994476i \(0.533474\pi\)
\(752\) −2.37023e6 −0.152843
\(753\) −4.66989e6 −0.300137
\(754\) 4.82361e6 0.308990
\(755\) 0 0
\(756\) 4.92859e6 0.313631
\(757\) −2.38887e7 −1.51514 −0.757569 0.652756i \(-0.773613\pi\)
−0.757569 + 0.652756i \(0.773613\pi\)
\(758\) −1.50042e7 −0.948504
\(759\) −4.50654e6 −0.283948
\(760\) 0 0
\(761\) 2340.75 0.000146519 0 7.32593e−5 1.00000i \(-0.499977\pi\)
7.32593e−5 1.00000i \(0.499977\pi\)
\(762\) 257045. 0.0160369
\(763\) 3.48569e7 2.16759
\(764\) 825660. 0.0511762
\(765\) 0 0
\(766\) −7.26128e6 −0.447138
\(767\) 6.81646e6 0.418380
\(768\) −211352. −0.0129301
\(769\) −365454. −0.0222852 −0.0111426 0.999938i \(-0.503547\pi\)
−0.0111426 + 0.999938i \(0.503547\pi\)
\(770\) 0 0
\(771\) −3.92768e6 −0.237958
\(772\) 1.51416e7 0.914383
\(773\) −2.76260e7 −1.66291 −0.831457 0.555589i \(-0.812493\pi\)
−0.831457 + 0.555589i \(0.812493\pi\)
\(774\) 1.03120e7 0.618714
\(775\) 0 0
\(776\) −141213. −0.00841823
\(777\) −8.59648e6 −0.510820
\(778\) 1.74862e7 1.03573
\(779\) −1.26025e6 −0.0744066
\(780\) 0 0
\(781\) 1.92458e7 1.12904
\(782\) 159274. 0.00931381
\(783\) −1.09444e7 −0.637953
\(784\) 6.02290e6 0.349958
\(785\) 0 0
\(786\) 3.44291e6 0.198779
\(787\) −9.92420e6 −0.571161 −0.285580 0.958355i \(-0.592186\pi\)
−0.285580 + 0.958355i \(0.592186\pi\)
\(788\) 3.66453e6 0.210234
\(789\) 4.87501e6 0.278794
\(790\) 0 0
\(791\) −765229. −0.0434861
\(792\) −7.89881e6 −0.447455
\(793\) −7.47711e6 −0.422232
\(794\) −9.13944e6 −0.514480
\(795\) 0 0
\(796\) 1.69931e7 0.950582
\(797\) 1.49499e6 0.0833668 0.0416834 0.999131i \(-0.486728\pi\)
0.0416834 + 0.999131i \(0.486728\pi\)
\(798\) −1.01710e6 −0.0565400
\(799\) −139988. −0.00775751
\(800\) 0 0
\(801\) −7.74998e6 −0.426795
\(802\) −2.21343e7 −1.21515
\(803\) −2.17893e7 −1.19249
\(804\) 364879. 0.0199071
\(805\) 0 0
\(806\) −4.61607e6 −0.250285
\(807\) −1.30661e6 −0.0706257
\(808\) 5.99525e6 0.323057
\(809\) −2.85707e6 −0.153479 −0.0767396 0.997051i \(-0.524451\pi\)
−0.0767396 + 0.997051i \(0.524451\pi\)
\(810\) 0 0
\(811\) −9.42188e6 −0.503020 −0.251510 0.967855i \(-0.580927\pi\)
−0.251510 + 0.967855i \(0.580927\pi\)
\(812\) −2.29288e7 −1.22037
\(813\) −1.97743e6 −0.104924
\(814\) 2.81704e7 1.49016
\(815\) 0 0
\(816\) −12482.6 −0.000656267 0
\(817\) −4.35126e6 −0.228066
\(818\) 9.13173e6 0.477167
\(819\) −7.89462e6 −0.411265
\(820\) 0 0
\(821\) 1.54084e7 0.797809 0.398904 0.916992i \(-0.369390\pi\)
0.398904 + 0.916992i \(0.369390\pi\)
\(822\) −124084. −0.00640523
\(823\) −4.13964e6 −0.213041 −0.106520 0.994311i \(-0.533971\pi\)
−0.106520 + 0.994311i \(0.533971\pi\)
\(824\) 7.45427e6 0.382461
\(825\) 0 0
\(826\) −3.24017e7 −1.65241
\(827\) 1.01580e7 0.516470 0.258235 0.966082i \(-0.416859\pi\)
0.258235 + 0.966082i \(0.416859\pi\)
\(828\) 9.80106e6 0.496818
\(829\) 3.45331e7 1.74521 0.872607 0.488423i \(-0.162428\pi\)
0.872607 + 0.488423i \(0.162428\pi\)
\(830\) 0 0
\(831\) −3.68421e6 −0.185072
\(832\) 692224. 0.0346688
\(833\) 355718. 0.0177620
\(834\) −1.09888e6 −0.0547060
\(835\) 0 0
\(836\) 3.33299e6 0.164937
\(837\) 1.04735e7 0.516749
\(838\) −1.10216e7 −0.542168
\(839\) −2.33327e7 −1.14435 −0.572177 0.820130i \(-0.693901\pi\)
−0.572177 + 0.820130i \(0.693901\pi\)
\(840\) 0 0
\(841\) 3.04045e7 1.48234
\(842\) 2.47788e7 1.20448
\(843\) 2.27432e6 0.110226
\(844\) −4.10719e6 −0.198467
\(845\) 0 0
\(846\) −8.61427e6 −0.413802
\(847\) 2.41990e7 1.15901
\(848\) −901373. −0.0430442
\(849\) −661597. −0.0315010
\(850\) 0 0
\(851\) −3.49546e7 −1.65455
\(852\) 1.87158e6 0.0883305
\(853\) 1.80270e7 0.848304 0.424152 0.905591i \(-0.360572\pi\)
0.424152 + 0.905591i \(0.360572\pi\)
\(854\) 3.55421e7 1.66762
\(855\) 0 0
\(856\) −1.24994e7 −0.583048
\(857\) −1.82132e7 −0.847100 −0.423550 0.905873i \(-0.639216\pi\)
−0.423550 + 0.905873i \(0.639216\pi\)
\(858\) −1.15677e6 −0.0536448
\(859\) 728581. 0.0336895 0.0168448 0.999858i \(-0.494638\pi\)
0.0168448 + 0.999858i \(0.494638\pi\)
\(860\) 0 0
\(861\) −2.07910e6 −0.0955800
\(862\) −2.20829e7 −1.01225
\(863\) −4.10201e7 −1.87486 −0.937432 0.348168i \(-0.886804\pi\)
−0.937432 + 0.348168i \(0.886804\pi\)
\(864\) −1.57061e6 −0.0715786
\(865\) 0 0
\(866\) −1.90709e7 −0.864127
\(867\) 4.57826e6 0.206849
\(868\) 2.19422e7 0.988511
\(869\) 1.03327e7 0.464157
\(870\) 0 0
\(871\) −1.19506e6 −0.0533758
\(872\) −1.11079e7 −0.494701
\(873\) −513220. −0.0227913
\(874\) −4.13567e6 −0.183133
\(875\) 0 0
\(876\) −2.11893e6 −0.0932944
\(877\) 9.34651e6 0.410346 0.205173 0.978726i \(-0.434224\pi\)
0.205173 + 0.978726i \(0.434224\pi\)
\(878\) −1.10039e6 −0.0481737
\(879\) −8.07558e6 −0.352534
\(880\) 0 0
\(881\) 2.76158e7 1.19872 0.599361 0.800479i \(-0.295422\pi\)
0.599361 + 0.800479i \(0.295422\pi\)
\(882\) 2.18894e7 0.947465
\(883\) 1.71751e7 0.741305 0.370652 0.928772i \(-0.379134\pi\)
0.370652 + 0.928772i \(0.379134\pi\)
\(884\) 40883.3 0.00175961
\(885\) 0 0
\(886\) −2.35922e7 −1.00968
\(887\) −5.13121e6 −0.218983 −0.109492 0.993988i \(-0.534922\pi\)
−0.109492 + 0.993988i \(0.534922\pi\)
\(888\) 2.73946e6 0.116582
\(889\) 4.00183e6 0.169826
\(890\) 0 0
\(891\) −2.73662e7 −1.15484
\(892\) −1.29586e7 −0.545312
\(893\) 3.63489e6 0.152533
\(894\) 2.87590e6 0.120346
\(895\) 0 0
\(896\) −3.29045e6 −0.136926
\(897\) 1.43535e6 0.0595629
\(898\) −1.07811e7 −0.446140
\(899\) −4.87249e7 −2.01072
\(900\) 0 0
\(901\) −53235.9 −0.00218470
\(902\) 6.81313e6 0.278824
\(903\) −7.17852e6 −0.292965
\(904\) 243858. 0.00992465
\(905\) 0 0
\(906\) −4.68841e6 −0.189760
\(907\) 4.53644e7 1.83104 0.915519 0.402275i \(-0.131780\pi\)
0.915519 + 0.402275i \(0.131780\pi\)
\(908\) 1.05011e7 0.422687
\(909\) 2.17889e7 0.874634
\(910\) 0 0
\(911\) 3.56713e7 1.42404 0.712021 0.702158i \(-0.247780\pi\)
0.712021 + 0.702158i \(0.247780\pi\)
\(912\) 324121. 0.0129039
\(913\) 3.58510e7 1.42339
\(914\) 2.00051e7 0.792093
\(915\) 0 0
\(916\) 1.91037e7 0.752280
\(917\) 5.36013e7 2.10500
\(918\) −92761.4 −0.00363296
\(919\) 1.32697e6 0.0518289 0.0259144 0.999664i \(-0.491750\pi\)
0.0259144 + 0.999664i \(0.491750\pi\)
\(920\) 0 0
\(921\) −354854. −0.0137848
\(922\) −5.24162e6 −0.203066
\(923\) −6.12986e6 −0.236835
\(924\) 5.49863e6 0.211872
\(925\) 0 0
\(926\) 1.92526e7 0.737838
\(927\) 2.70916e7 1.03546
\(928\) 7.30677e6 0.278520
\(929\) 1.87784e7 0.713869 0.356935 0.934129i \(-0.383822\pi\)
0.356935 + 0.934129i \(0.383822\pi\)
\(930\) 0 0
\(931\) −9.23649e6 −0.349247
\(932\) 1.69608e7 0.639598
\(933\) 3.72005e6 0.139909
\(934\) −3.31870e7 −1.24480
\(935\) 0 0
\(936\) 2.51580e6 0.0938612
\(937\) 2.71600e7 1.01060 0.505302 0.862942i \(-0.331381\pi\)
0.505302 + 0.862942i \(0.331381\pi\)
\(938\) 5.68066e6 0.210810
\(939\) 6.45386e6 0.238867
\(940\) 0 0
\(941\) −3.93036e7 −1.44696 −0.723482 0.690343i \(-0.757460\pi\)
−0.723482 + 0.690343i \(0.757460\pi\)
\(942\) 4.17185e6 0.153180
\(943\) −8.45392e6 −0.309584
\(944\) 1.03255e7 0.377122
\(945\) 0 0
\(946\) 2.35237e7 0.854631
\(947\) 1.05666e7 0.382877 0.191439 0.981505i \(-0.438685\pi\)
0.191439 + 0.981505i \(0.438685\pi\)
\(948\) 1.00482e6 0.0363133
\(949\) 6.93996e6 0.250145
\(950\) 0 0
\(951\) 291458. 0.0104502
\(952\) −194337. −0.00694965
\(953\) −1.99531e7 −0.711667 −0.355834 0.934549i \(-0.615803\pi\)
−0.355834 + 0.934549i \(0.615803\pi\)
\(954\) −3.27592e6 −0.116537
\(955\) 0 0
\(956\) 7.30484e6 0.258503
\(957\) −1.22103e7 −0.430968
\(958\) 5.50004e6 0.193621
\(959\) −1.93181e6 −0.0678293
\(960\) 0 0
\(961\) 1.79993e7 0.628706
\(962\) −8.97235e6 −0.312585
\(963\) −4.54273e7 −1.57853
\(964\) 1.95211e7 0.676569
\(965\) 0 0
\(966\) −6.82285e6 −0.235246
\(967\) 2.42835e6 0.0835113 0.0417556 0.999128i \(-0.486705\pi\)
0.0417556 + 0.999128i \(0.486705\pi\)
\(968\) −7.71154e6 −0.264517
\(969\) 19142.9 0.000654934 0
\(970\) 0 0
\(971\) 1.43525e7 0.488517 0.244259 0.969710i \(-0.421455\pi\)
0.244259 + 0.969710i \(0.421455\pi\)
\(972\) −8.62466e6 −0.292803
\(973\) −1.71080e7 −0.579319
\(974\) −1.47445e7 −0.498004
\(975\) 0 0
\(976\) −1.13263e7 −0.380595
\(977\) −2.56112e7 −0.858409 −0.429205 0.903207i \(-0.641206\pi\)
−0.429205 + 0.903207i \(0.641206\pi\)
\(978\) 4.66578e6 0.155983
\(979\) −1.76793e7 −0.589533
\(980\) 0 0
\(981\) −4.03704e7 −1.33934
\(982\) 1.77250e7 0.586554
\(983\) 2.23389e6 0.0737356 0.0368678 0.999320i \(-0.488262\pi\)
0.0368678 + 0.999320i \(0.488262\pi\)
\(984\) 662551. 0.0218138
\(985\) 0 0
\(986\) 431544. 0.0141362
\(987\) 5.99668e6 0.195938
\(988\) −1.06157e6 −0.0345984
\(989\) −2.91889e7 −0.948914
\(990\) 0 0
\(991\) −5.77025e6 −0.186643 −0.0933213 0.995636i \(-0.529748\pi\)
−0.0933213 + 0.995636i \(0.529748\pi\)
\(992\) −6.99239e6 −0.225604
\(993\) 1.23825e7 0.398507
\(994\) 2.91379e7 0.935391
\(995\) 0 0
\(996\) 3.48638e6 0.111359
\(997\) −1.12116e7 −0.357216 −0.178608 0.983920i \(-0.557159\pi\)
−0.178608 + 0.983920i \(0.557159\pi\)
\(998\) −3.51325e7 −1.11656
\(999\) 2.03576e7 0.645377
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.6.a.c.1.1 2
5.2 odd 4 650.6.b.c.599.2 4
5.3 odd 4 650.6.b.c.599.3 4
5.4 even 2 130.6.a.e.1.2 2
20.19 odd 2 1040.6.a.h.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.e.1.2 2 5.4 even 2
650.6.a.c.1.1 2 1.1 even 1 trivial
650.6.b.c.599.2 4 5.2 odd 4
650.6.b.c.599.3 4 5.3 odd 4
1040.6.a.h.1.1 2 20.19 odd 2