Properties

Label 650.4.a.c
Level $650$
Weight $4$
Character orbit 650.a
Self dual yes
Analytic conductor $38.351$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [650,4,Mod(1,650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("650.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.3512415037\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + q^{3} + 4 q^{4} - 2 q^{6} + 35 q^{7} - 8 q^{8} - 26 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + q^{3} + 4 q^{4} - 2 q^{6} + 35 q^{7} - 8 q^{8} - 26 q^{9} + 2 q^{11} + 4 q^{12} - 13 q^{13} - 70 q^{14} + 16 q^{16} + 19 q^{17} + 52 q^{18} + 94 q^{19} + 35 q^{21} - 4 q^{22} + 72 q^{23} - 8 q^{24} + 26 q^{26} - 53 q^{27} + 140 q^{28} + 246 q^{29} - 100 q^{31} - 32 q^{32} + 2 q^{33} - 38 q^{34} - 104 q^{36} + 11 q^{37} - 188 q^{38} - 13 q^{39} - 280 q^{41} - 70 q^{42} - 241 q^{43} + 8 q^{44} - 144 q^{46} - 137 q^{47} + 16 q^{48} + 882 q^{49} + 19 q^{51} - 52 q^{52} + 232 q^{53} + 106 q^{54} - 280 q^{56} + 94 q^{57} - 492 q^{58} - 386 q^{59} + 64 q^{61} + 200 q^{62} - 910 q^{63} + 64 q^{64} - 4 q^{66} + 670 q^{67} + 76 q^{68} + 72 q^{69} + 55 q^{71} + 208 q^{72} + 838 q^{73} - 22 q^{74} + 376 q^{76} + 70 q^{77} + 26 q^{78} + 1016 q^{79} + 649 q^{81} + 560 q^{82} - 420 q^{83} + 140 q^{84} + 482 q^{86} + 246 q^{87} - 16 q^{88} - 934 q^{89} - 455 q^{91} + 288 q^{92} - 100 q^{93} + 274 q^{94} - 32 q^{96} + 1154 q^{97} - 1764 q^{98} - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 1.00000 4.00000 0 −2.00000 35.0000 −8.00000 −26.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.4.a.c 1
5.b even 2 1 26.4.a.b 1
5.c odd 4 2 650.4.b.d 2
15.d odd 2 1 234.4.a.a 1
20.d odd 2 1 208.4.a.e 1
35.c odd 2 1 1274.4.a.f 1
40.e odd 2 1 832.4.a.g 1
40.f even 2 1 832.4.a.j 1
60.h even 2 1 1872.4.a.b 1
65.d even 2 1 338.4.a.b 1
65.g odd 4 2 338.4.b.b 2
65.l even 6 2 338.4.c.g 2
65.n even 6 2 338.4.c.c 2
65.s odd 12 4 338.4.e.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.b 1 5.b even 2 1
208.4.a.e 1 20.d odd 2 1
234.4.a.a 1 15.d odd 2 1
338.4.a.b 1 65.d even 2 1
338.4.b.b 2 65.g odd 4 2
338.4.c.c 2 65.n even 6 2
338.4.c.g 2 65.l even 6 2
338.4.e.c 4 65.s odd 12 4
650.4.a.c 1 1.a even 1 1 trivial
650.4.b.d 2 5.c odd 4 2
832.4.a.g 1 40.e odd 2 1
832.4.a.j 1 40.f even 2 1
1274.4.a.f 1 35.c odd 2 1
1872.4.a.b 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(650))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{7} - 35 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 35 \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T - 19 \) Copy content Toggle raw display
$19$ \( T - 94 \) Copy content Toggle raw display
$23$ \( T - 72 \) Copy content Toggle raw display
$29$ \( T - 246 \) Copy content Toggle raw display
$31$ \( T + 100 \) Copy content Toggle raw display
$37$ \( T - 11 \) Copy content Toggle raw display
$41$ \( T + 280 \) Copy content Toggle raw display
$43$ \( T + 241 \) Copy content Toggle raw display
$47$ \( T + 137 \) Copy content Toggle raw display
$53$ \( T - 232 \) Copy content Toggle raw display
$59$ \( T + 386 \) Copy content Toggle raw display
$61$ \( T - 64 \) Copy content Toggle raw display
$67$ \( T - 670 \) Copy content Toggle raw display
$71$ \( T - 55 \) Copy content Toggle raw display
$73$ \( T - 838 \) Copy content Toggle raw display
$79$ \( T - 1016 \) Copy content Toggle raw display
$83$ \( T + 420 \) Copy content Toggle raw display
$89$ \( T + 934 \) Copy content Toggle raw display
$97$ \( T - 1154 \) Copy content Toggle raw display
show more
show less