Defining parameters
Level: | \( N \) | \(=\) | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 650.r (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 325 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(210\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(650, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 432 | 144 | 288 |
Cusp forms | 400 | 144 | 256 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(650, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
650.2.r.a | $72$ | $5.190$ | None | \(-18\) | \(0\) | \(3\) | \(-16\) | ||
650.2.r.b | $72$ | $5.190$ | None | \(18\) | \(0\) | \(-3\) | \(16\) |
Decomposition of \(S_{2}^{\mathrm{old}}(650, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)