Properties

Label 650.2.m.c.101.3
Level $650$
Weight $2$
Character 650.101
Analytic conductor $5.190$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(101,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,4,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.3
Root \(0.665665 - 1.24775i\) of defining polynomial
Character \(\chi\) \(=\) 650.101
Dual form 650.2.m.c.251.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.913419 - 1.58209i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.58209 - 0.913419i) q^{6} +(-3.45632 - 1.99551i) q^{7} -1.00000i q^{8} +(-0.168669 + 0.292144i) q^{9} +(-4.24026 + 2.44811i) q^{11} -1.82684 q^{12} +(2.87423 - 2.17688i) q^{13} -3.99102 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.31414 + 5.74026i) q^{17} +0.337339i q^{18} +(1.81414 + 1.04739i) q^{19} +7.29094i q^{21} +(-2.44811 + 4.24026i) q^{22} +(0.495508 + 0.858244i) q^{23} +(-1.58209 + 0.913419i) q^{24} +(1.40072 - 3.32235i) q^{26} -4.86425 q^{27} +(-3.45632 + 1.99551i) q^{28} +(-2.92163 - 5.06040i) q^{29} -10.8179i q^{31} +(-0.866025 - 0.500000i) q^{32} +(7.74627 + 4.47231i) q^{33} +6.62828i q^{34} +(0.168669 + 0.292144i) q^{36} +(2.85782 - 1.64996i) q^{37} +2.09479 q^{38} +(-6.06939 - 2.55889i) q^{39} +(-4.48652 + 2.59030i) q^{41} +(3.64547 + 6.31414i) q^{42} +(-0.567874 + 0.983586i) q^{43} +4.89623i q^{44} +(0.858244 + 0.495508i) q^{46} -1.61186i q^{47} +(-0.913419 + 1.58209i) q^{48} +(4.46410 + 7.73205i) q^{49} +12.1088 q^{51} +(-0.448114 - 3.57760i) q^{52} +0.549905 q^{53} +(-4.21257 + 2.43213i) q^{54} +(-1.99551 + 3.45632i) q^{56} -3.82684i q^{57} +(-5.06040 - 2.92163i) q^{58} +(-3.00000 - 1.73205i) q^{59} +(0.685861 - 1.18795i) q^{61} +(-5.40893 - 9.36854i) q^{62} +(1.16595 - 0.673162i) q^{63} -1.00000 q^{64} +8.94462 q^{66} +(-3.13575 + 1.81042i) q^{67} +(3.31414 + 5.74026i) q^{68} +(0.905212 - 1.56787i) q^{69} +(-5.19615 - 3.00000i) q^{71} +(0.292144 + 0.168669i) q^{72} -8.94462i q^{73} +(1.64996 - 2.85782i) q^{74} +(1.81414 - 1.04739i) q^{76} +19.5409 q^{77} +(-6.53569 + 0.818632i) q^{78} +2.55231 q^{79} +(4.94911 + 8.57211i) q^{81} +(-2.59030 + 4.48652i) q^{82} -16.4207i q^{83} +(6.31414 + 3.64547i) q^{84} +1.13575i q^{86} +(-5.33734 + 9.24454i) q^{87} +(2.44811 + 4.24026i) q^{88} +(2.98652 - 1.72427i) q^{89} +(-14.2782 + 1.78843i) q^{91} +0.991015 q^{92} +(-17.1148 + 9.88124i) q^{93} +(-0.805932 - 1.39592i) q^{94} +1.82684i q^{96} +(10.0910 + 5.82606i) q^{97} +(7.73205 + 4.46410i) q^{98} -1.65169i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 4 q^{4} - 6 q^{6} - 4 q^{9} - 6 q^{11} + 4 q^{12} + 2 q^{13} - 4 q^{16} - 6 q^{17} - 6 q^{19} - 6 q^{22} - 12 q^{23} - 6 q^{24} - 40 q^{27} + 42 q^{33} + 4 q^{36} + 30 q^{37} + 12 q^{38}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.913419 1.58209i −0.527363 0.913419i −0.999491 0.0318895i \(-0.989848\pi\)
0.472129 0.881530i \(-0.343486\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) −1.58209 0.913419i −0.645885 0.372902i
\(7\) −3.45632 1.99551i −1.30637 0.754231i −0.324879 0.945756i \(-0.605323\pi\)
−0.981488 + 0.191525i \(0.938657\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.168669 + 0.292144i −0.0562231 + 0.0973812i
\(10\) 0 0
\(11\) −4.24026 + 2.44811i −1.27849 + 0.738134i −0.976570 0.215200i \(-0.930960\pi\)
−0.301916 + 0.953335i \(0.597626\pi\)
\(12\) −1.82684 −0.527363
\(13\) 2.87423 2.17688i 0.797169 0.603757i
\(14\) −3.99102 −1.06664
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.31414 + 5.74026i −0.803797 + 1.39222i 0.113303 + 0.993560i \(0.463857\pi\)
−0.917100 + 0.398657i \(0.869477\pi\)
\(18\) 0.337339i 0.0795115i
\(19\) 1.81414 + 1.04739i 0.416192 + 0.240289i 0.693447 0.720508i \(-0.256091\pi\)
−0.277255 + 0.960796i \(0.589425\pi\)
\(20\) 0 0
\(21\) 7.29094i 1.59101i
\(22\) −2.44811 + 4.24026i −0.521940 + 0.904026i
\(23\) 0.495508 + 0.858244i 0.103320 + 0.178956i 0.913051 0.407846i \(-0.133720\pi\)
−0.809730 + 0.586802i \(0.800387\pi\)
\(24\) −1.58209 + 0.913419i −0.322942 + 0.186451i
\(25\) 0 0
\(26\) 1.40072 3.32235i 0.274704 0.651566i
\(27\) −4.86425 −0.936126
\(28\) −3.45632 + 1.99551i −0.653183 + 0.377115i
\(29\) −2.92163 5.06040i −0.542532 0.939694i −0.998758 0.0498293i \(-0.984132\pi\)
0.456225 0.889864i \(-0.349201\pi\)
\(30\) 0 0
\(31\) 10.8179i 1.94294i −0.237155 0.971472i \(-0.576215\pi\)
0.237155 0.971472i \(-0.423785\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 7.74627 + 4.47231i 1.34845 + 0.778529i
\(34\) 6.62828i 1.13674i
\(35\) 0 0
\(36\) 0.168669 + 0.292144i 0.0281115 + 0.0486906i
\(37\) 2.85782 1.64996i 0.469822 0.271252i −0.246343 0.969183i \(-0.579229\pi\)
0.716165 + 0.697931i \(0.245896\pi\)
\(38\) 2.09479 0.339819
\(39\) −6.06939 2.55889i −0.971880 0.409750i
\(40\) 0 0
\(41\) −4.48652 + 2.59030i −0.700677 + 0.404536i −0.807600 0.589731i \(-0.799234\pi\)
0.106922 + 0.994267i \(0.465900\pi\)
\(42\) 3.64547 + 6.31414i 0.562508 + 0.974293i
\(43\) −0.567874 + 0.983586i −0.0866000 + 0.149996i −0.906072 0.423124i \(-0.860934\pi\)
0.819472 + 0.573119i \(0.194267\pi\)
\(44\) 4.89623i 0.738134i
\(45\) 0 0
\(46\) 0.858244 + 0.495508i 0.126541 + 0.0730586i
\(47\) 1.61186i 0.235115i −0.993066 0.117557i \(-0.962494\pi\)
0.993066 0.117557i \(-0.0375064\pi\)
\(48\) −0.913419 + 1.58209i −0.131841 + 0.228355i
\(49\) 4.46410 + 7.73205i 0.637729 + 1.10458i
\(50\) 0 0
\(51\) 12.1088 1.69557
\(52\) −0.448114 3.57760i −0.0621422 0.496123i
\(53\) 0.549905 0.0755352 0.0377676 0.999287i \(-0.487975\pi\)
0.0377676 + 0.999287i \(0.487975\pi\)
\(54\) −4.21257 + 2.43213i −0.573258 + 0.330970i
\(55\) 0 0
\(56\) −1.99551 + 3.45632i −0.266661 + 0.461870i
\(57\) 3.82684i 0.506877i
\(58\) −5.06040 2.92163i −0.664464 0.383628i
\(59\) −3.00000 1.73205i −0.390567 0.225494i 0.291839 0.956467i \(-0.405733\pi\)
−0.682406 + 0.730974i \(0.739066\pi\)
\(60\) 0 0
\(61\) 0.685861 1.18795i 0.0878155 0.152101i −0.818772 0.574119i \(-0.805345\pi\)
0.906587 + 0.422018i \(0.138678\pi\)
\(62\) −5.40893 9.36854i −0.686934 1.18981i
\(63\) 1.16595 0.673162i 0.146896 0.0848104i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 8.94462 1.10101
\(67\) −3.13575 + 1.81042i −0.383093 + 0.221179i −0.679163 0.733988i \(-0.737657\pi\)
0.296070 + 0.955166i \(0.404324\pi\)
\(68\) 3.31414 + 5.74026i 0.401898 + 0.696108i
\(69\) 0.905212 1.56787i 0.108975 0.188750i
\(70\) 0 0
\(71\) −5.19615 3.00000i −0.616670 0.356034i 0.158901 0.987294i \(-0.449205\pi\)
−0.775571 + 0.631260i \(0.782538\pi\)
\(72\) 0.292144 + 0.168669i 0.0344295 + 0.0198779i
\(73\) 8.94462i 1.04689i −0.852060 0.523444i \(-0.824647\pi\)
0.852060 0.523444i \(-0.175353\pi\)
\(74\) 1.64996 2.85782i 0.191804 0.332215i
\(75\) 0 0
\(76\) 1.81414 1.04739i 0.208096 0.120144i
\(77\) 19.5409 2.22689
\(78\) −6.53569 + 0.818632i −0.740021 + 0.0926918i
\(79\) 2.55231 0.287158 0.143579 0.989639i \(-0.454139\pi\)
0.143579 + 0.989639i \(0.454139\pi\)
\(80\) 0 0
\(81\) 4.94911 + 8.57211i 0.549901 + 0.952456i
\(82\) −2.59030 + 4.48652i −0.286050 + 0.495454i
\(83\) 16.4207i 1.80241i −0.433393 0.901205i \(-0.642684\pi\)
0.433393 0.901205i \(-0.357316\pi\)
\(84\) 6.31414 + 3.64547i 0.688929 + 0.397753i
\(85\) 0 0
\(86\) 1.13575i 0.122471i
\(87\) −5.33734 + 9.24454i −0.572223 + 0.991119i
\(88\) 2.44811 + 4.24026i 0.260970 + 0.452013i
\(89\) 2.98652 1.72427i 0.316571 0.182772i −0.333292 0.942824i \(-0.608160\pi\)
0.649863 + 0.760051i \(0.274826\pi\)
\(90\) 0 0
\(91\) −14.2782 + 1.78843i −1.49677 + 0.187478i
\(92\) 0.991015 0.103320
\(93\) −17.1148 + 9.88124i −1.77472 + 1.02464i
\(94\) −0.805932 1.39592i −0.0831256 0.143978i
\(95\) 0 0
\(96\) 1.82684i 0.186451i
\(97\) 10.0910 + 5.82606i 1.02459 + 0.591547i 0.915430 0.402477i \(-0.131851\pi\)
0.109159 + 0.994024i \(0.465184\pi\)
\(98\) 7.73205 + 4.46410i 0.781055 + 0.450942i
\(99\) 1.65169i 0.166001i
\(100\) 0 0
\(101\) 1.03961 + 1.80066i 0.103445 + 0.179173i 0.913102 0.407731i \(-0.133680\pi\)
−0.809657 + 0.586904i \(0.800347\pi\)
\(102\) 10.4865 6.05440i 1.03832 0.599475i
\(103\) 2.26795 0.223468 0.111734 0.993738i \(-0.464360\pi\)
0.111734 + 0.993738i \(0.464360\pi\)
\(104\) −2.17688 2.87423i −0.213460 0.281842i
\(105\) 0 0
\(106\) 0.476231 0.274952i 0.0462557 0.0267057i
\(107\) −1.25076 2.16638i −0.120915 0.209431i 0.799214 0.601047i \(-0.205250\pi\)
−0.920129 + 0.391616i \(0.871916\pi\)
\(108\) −2.43213 + 4.21257i −0.234031 + 0.405354i
\(109\) 15.6357i 1.49763i −0.662780 0.748815i \(-0.730623\pi\)
0.662780 0.748815i \(-0.269377\pi\)
\(110\) 0 0
\(111\) −5.22077 3.01421i −0.495534 0.286097i
\(112\) 3.99102i 0.377115i
\(113\) 8.55889 14.8244i 0.805153 1.39457i −0.111035 0.993816i \(-0.535417\pi\)
0.916188 0.400749i \(-0.131250\pi\)
\(114\) −1.91342 3.31414i −0.179208 0.310398i
\(115\) 0 0
\(116\) −5.84325 −0.542532
\(117\) 0.151166 + 1.20686i 0.0139753 + 0.111574i
\(118\) −3.46410 −0.318896
\(119\) 22.9095 13.2268i 2.10011 1.21250i
\(120\) 0 0
\(121\) 6.48652 11.2350i 0.589684 1.02136i
\(122\) 1.37172i 0.124190i
\(123\) 8.19615 + 4.73205i 0.739022 + 0.426675i
\(124\) −9.36854 5.40893i −0.841319 0.485736i
\(125\) 0 0
\(126\) 0.673162 1.16595i 0.0599700 0.103871i
\(127\) −4.06218 7.03590i −0.360460 0.624335i 0.627577 0.778555i \(-0.284047\pi\)
−0.988037 + 0.154220i \(0.950714\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 2.07483 0.182678
\(130\) 0 0
\(131\) 14.1773 1.23868 0.619340 0.785123i \(-0.287400\pi\)
0.619340 + 0.785123i \(0.287400\pi\)
\(132\) 7.74627 4.47231i 0.674226 0.389264i
\(133\) −4.18016 7.24026i −0.362466 0.627810i
\(134\) −1.81042 + 3.13575i −0.156397 + 0.270887i
\(135\) 0 0
\(136\) 5.74026 + 3.31414i 0.492223 + 0.284185i
\(137\) −12.1386 7.00821i −1.03707 0.598752i −0.118067 0.993006i \(-0.537670\pi\)
−0.919001 + 0.394254i \(0.871003\pi\)
\(138\) 1.81042i 0.154114i
\(139\) −7.99473 + 13.8473i −0.678104 + 1.17451i 0.297447 + 0.954738i \(0.403865\pi\)
−0.975551 + 0.219772i \(0.929469\pi\)
\(140\) 0 0
\(141\) −2.55011 + 1.47231i −0.214758 + 0.123991i
\(142\) −6.00000 −0.503509
\(143\) −6.85824 + 16.2670i −0.573515 + 1.36031i
\(144\) 0.337339 0.0281115
\(145\) 0 0
\(146\) −4.47231 7.74627i −0.370131 0.641085i
\(147\) 8.15519 14.1252i 0.672629 1.16503i
\(148\) 3.29992i 0.271252i
\(149\) 6.49253 + 3.74846i 0.531889 + 0.307086i 0.741785 0.670637i \(-0.233979\pi\)
−0.209896 + 0.977724i \(0.567313\pi\)
\(150\) 0 0
\(151\) 4.24913i 0.345789i 0.984940 + 0.172895i \(0.0553120\pi\)
−0.984940 + 0.172895i \(0.944688\pi\)
\(152\) 1.04739 1.81414i 0.0849549 0.147146i
\(153\) −1.11799 1.93641i −0.0903839 0.156549i
\(154\) 16.9229 9.77046i 1.36369 0.787326i
\(155\) 0 0
\(156\) −5.25076 + 3.97680i −0.420397 + 0.318399i
\(157\) 22.7526 1.81586 0.907929 0.419124i \(-0.137663\pi\)
0.907929 + 0.419124i \(0.137663\pi\)
\(158\) 2.21037 1.27616i 0.175847 0.101526i
\(159\) −0.502293 0.869998i −0.0398345 0.0689953i
\(160\) 0 0
\(161\) 3.95516i 0.311710i
\(162\) 8.57211 + 4.94911i 0.673488 + 0.388839i
\(163\) −4.51630 2.60749i −0.353744 0.204234i 0.312589 0.949888i \(-0.398804\pi\)
−0.666333 + 0.745654i \(0.732137\pi\)
\(164\) 5.18059i 0.404536i
\(165\) 0 0
\(166\) −8.21037 14.2208i −0.637248 1.10375i
\(167\) 5.80624 3.35224i 0.449301 0.259404i −0.258234 0.966082i \(-0.583141\pi\)
0.707535 + 0.706679i \(0.249807\pi\)
\(168\) 7.29094 0.562508
\(169\) 3.52242 12.5137i 0.270955 0.962592i
\(170\) 0 0
\(171\) −0.611979 + 0.353326i −0.0467992 + 0.0270195i
\(172\) 0.567874 + 0.983586i 0.0433000 + 0.0749978i
\(173\) −9.77046 + 16.9229i −0.742834 + 1.28663i 0.208365 + 0.978051i \(0.433186\pi\)
−0.951200 + 0.308576i \(0.900148\pi\)
\(174\) 10.6747i 0.809245i
\(175\) 0 0
\(176\) 4.24026 + 2.44811i 0.319621 + 0.184534i
\(177\) 6.32835i 0.475668i
\(178\) 1.72427 2.98652i 0.129239 0.223849i
\(179\) 4.48950 + 7.77604i 0.335561 + 0.581209i 0.983592 0.180405i \(-0.0577408\pi\)
−0.648031 + 0.761614i \(0.724407\pi\)
\(180\) 0 0
\(181\) −5.55648 −0.413010 −0.206505 0.978446i \(-0.566209\pi\)
−0.206505 + 0.978446i \(0.566209\pi\)
\(182\) −11.4711 + 8.68795i −0.850295 + 0.643993i
\(183\) −2.50591 −0.185242
\(184\) 0.858244 0.495508i 0.0632706 0.0365293i
\(185\) 0 0
\(186\) −9.88124 + 17.1148i −0.724527 + 1.25492i
\(187\) 32.4536i 2.37324i
\(188\) −1.39592 0.805932i −0.101808 0.0587787i
\(189\) 16.8124 + 9.70665i 1.22292 + 0.706055i
\(190\) 0 0
\(191\) −5.09316 + 8.82161i −0.368528 + 0.638309i −0.989336 0.145654i \(-0.953471\pi\)
0.620808 + 0.783963i \(0.286805\pi\)
\(192\) 0.913419 + 1.58209i 0.0659204 + 0.114177i
\(193\) −7.04839 + 4.06939i −0.507354 + 0.292921i −0.731745 0.681578i \(-0.761294\pi\)
0.224391 + 0.974499i \(0.427961\pi\)
\(194\) 11.6521 0.836574
\(195\) 0 0
\(196\) 8.92820 0.637729
\(197\) −12.5405 + 7.24026i −0.893473 + 0.515847i −0.875077 0.483984i \(-0.839189\pi\)
−0.0183962 + 0.999831i \(0.505856\pi\)
\(198\) −0.825843 1.43040i −0.0586901 0.101654i
\(199\) −5.62828 + 9.74846i −0.398978 + 0.691050i −0.993600 0.112955i \(-0.963968\pi\)
0.594622 + 0.804005i \(0.297302\pi\)
\(200\) 0 0
\(201\) 5.72850 + 3.30735i 0.404058 + 0.233283i
\(202\) 1.80066 + 1.03961i 0.126694 + 0.0731469i
\(203\) 23.3205i 1.63678i
\(204\) 6.05440 10.4865i 0.423893 0.734203i
\(205\) 0 0
\(206\) 1.96410 1.13397i 0.136845 0.0790078i
\(207\) −0.334308 −0.0232360
\(208\) −3.32235 1.40072i −0.230363 0.0971225i
\(209\) −10.2566 −0.709461
\(210\) 0 0
\(211\) −4.79257 8.30097i −0.329934 0.571463i 0.652564 0.757733i \(-0.273693\pi\)
−0.982498 + 0.186271i \(0.940360\pi\)
\(212\) 0.274952 0.476231i 0.0188838 0.0327077i
\(213\) 10.9610i 0.751037i
\(214\) −2.16638 1.25076i −0.148090 0.0855000i
\(215\) 0 0
\(216\) 4.86425i 0.330970i
\(217\) −21.5871 + 37.3900i −1.46543 + 2.53820i
\(218\) −7.81785 13.5409i −0.529492 0.917107i
\(219\) −14.1512 + 8.17018i −0.956248 + 0.552090i
\(220\) 0 0
\(221\) 2.97022 + 23.7133i 0.199799 + 1.59513i
\(222\) −6.02843 −0.404602
\(223\) 23.5660 13.6058i 1.57809 0.911113i 0.582968 0.812495i \(-0.301891\pi\)
0.995125 0.0986181i \(-0.0314422\pi\)
\(224\) 1.99551 + 3.45632i 0.133330 + 0.230935i
\(225\) 0 0
\(226\) 17.1178i 1.13866i
\(227\) −5.48052 3.16418i −0.363755 0.210014i 0.306972 0.951719i \(-0.400684\pi\)
−0.670726 + 0.741705i \(0.734018\pi\)
\(228\) −3.31414 1.91342i −0.219484 0.126719i
\(229\) 2.50152i 0.165305i 0.996578 + 0.0826524i \(0.0263391\pi\)
−0.996578 + 0.0826524i \(0.973661\pi\)
\(230\) 0 0
\(231\) −17.8491 30.9155i −1.17438 2.03409i
\(232\) −5.06040 + 2.92163i −0.332232 + 0.191814i
\(233\) −9.17903 −0.601339 −0.300669 0.953728i \(-0.597210\pi\)
−0.300669 + 0.953728i \(0.597210\pi\)
\(234\) 0.734344 + 0.969589i 0.0480056 + 0.0633840i
\(235\) 0 0
\(236\) −3.00000 + 1.73205i −0.195283 + 0.112747i
\(237\) −2.33133 4.03798i −0.151436 0.262295i
\(238\) 13.2268 22.9095i 0.857365 1.48500i
\(239\) 6.54030i 0.423057i 0.977372 + 0.211528i \(0.0678441\pi\)
−0.977372 + 0.211528i \(0.932156\pi\)
\(240\) 0 0
\(241\) 7.86571 + 4.54127i 0.506675 + 0.292529i 0.731466 0.681878i \(-0.238837\pi\)
−0.224791 + 0.974407i \(0.572170\pi\)
\(242\) 12.9730i 0.833939i
\(243\) 1.74484 3.02216i 0.111932 0.193872i
\(244\) −0.685861 1.18795i −0.0439077 0.0760504i
\(245\) 0 0
\(246\) 9.46410 0.603409
\(247\) 7.49430 0.938703i 0.476851 0.0597283i
\(248\) −10.8179 −0.686934
\(249\) −25.9791 + 14.9990i −1.64636 + 0.950524i
\(250\) 0 0
\(251\) −4.81414 + 8.33833i −0.303866 + 0.526311i −0.977008 0.213202i \(-0.931611\pi\)
0.673142 + 0.739513i \(0.264944\pi\)
\(252\) 1.34632i 0.0848104i
\(253\) −4.20216 2.42612i −0.264188 0.152529i
\(254\) −7.03590 4.06218i −0.441472 0.254884i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.41113 + 12.8364i 0.462293 + 0.800716i 0.999075 0.0430058i \(-0.0136934\pi\)
−0.536781 + 0.843721i \(0.680360\pi\)
\(258\) 1.79685 1.03741i 0.111867 0.0645866i
\(259\) −13.1700 −0.818347
\(260\) 0 0
\(261\) 1.97115 0.122011
\(262\) 12.2779 7.08867i 0.758533 0.437939i
\(263\) 5.51673 + 9.55525i 0.340176 + 0.589202i 0.984465 0.175580i \(-0.0561801\pi\)
−0.644289 + 0.764782i \(0.722847\pi\)
\(264\) 4.47231 7.74627i 0.275252 0.476750i
\(265\) 0 0
\(266\) −7.24026 4.18016i −0.443929 0.256302i
\(267\) −5.45589 3.14996i −0.333895 0.192775i
\(268\) 3.62085i 0.221179i
\(269\) 1.30515 2.26059i 0.0795767 0.137831i −0.823491 0.567330i \(-0.807976\pi\)
0.903067 + 0.429499i \(0.141310\pi\)
\(270\) 0 0
\(271\) 24.8459 14.3448i 1.50928 0.871383i 0.509337 0.860567i \(-0.329891\pi\)
0.999942 0.0108156i \(-0.00344279\pi\)
\(272\) 6.62828 0.401898
\(273\) 15.8715 + 20.9559i 0.960585 + 1.26831i
\(274\) −14.0164 −0.846763
\(275\) 0 0
\(276\) −0.905212 1.56787i −0.0544874 0.0943749i
\(277\) −2.35035 + 4.07092i −0.141219 + 0.244598i −0.927956 0.372690i \(-0.878435\pi\)
0.786737 + 0.617288i \(0.211769\pi\)
\(278\) 15.9895i 0.958984i
\(279\) 3.16037 + 1.82464i 0.189206 + 0.109238i
\(280\) 0 0
\(281\) 3.32418i 0.198304i 0.995072 + 0.0991521i \(0.0316130\pi\)
−0.995072 + 0.0991521i \(0.968387\pi\)
\(282\) −1.47231 + 2.55011i −0.0876747 + 0.151857i
\(283\) −12.9886 22.4969i −0.772093 1.33730i −0.936414 0.350897i \(-0.885877\pi\)
0.164322 0.986407i \(-0.447457\pi\)
\(284\) −5.19615 + 3.00000i −0.308335 + 0.178017i
\(285\) 0 0
\(286\) 2.19407 + 17.5167i 0.129738 + 1.03579i
\(287\) 20.6758 1.22045
\(288\) 0.292144 0.168669i 0.0172147 0.00993893i
\(289\) −13.4670 23.3256i −0.792179 1.37209i
\(290\) 0 0
\(291\) 21.2865i 1.24784i
\(292\) −7.74627 4.47231i −0.453316 0.261722i
\(293\) −0.824857 0.476231i −0.0481886 0.0278217i 0.475712 0.879601i \(-0.342190\pi\)
−0.523901 + 0.851779i \(0.675524\pi\)
\(294\) 16.3104i 0.951241i
\(295\) 0 0
\(296\) −1.64996 2.85782i −0.0959021 0.166107i
\(297\) 20.6257 11.9082i 1.19682 0.690986i
\(298\) 7.49693 0.434285
\(299\) 3.29250 + 1.38814i 0.190410 + 0.0802779i
\(300\) 0 0
\(301\) 3.92551 2.26639i 0.226263 0.130633i
\(302\) 2.12456 + 3.67985i 0.122255 + 0.211752i
\(303\) 1.89920 3.28952i 0.109106 0.188978i
\(304\) 2.09479i 0.120144i
\(305\) 0 0
\(306\) −1.93641 1.11799i −0.110697 0.0639111i
\(307\) 32.5819i 1.85955i 0.368133 + 0.929773i \(0.379997\pi\)
−0.368133 + 0.929773i \(0.620003\pi\)
\(308\) 9.77046 16.9229i 0.556724 0.964274i
\(309\) −2.07159 3.58810i −0.117849 0.204120i
\(310\) 0 0
\(311\) 18.2831 1.03674 0.518370 0.855157i \(-0.326539\pi\)
0.518370 + 0.855157i \(0.326539\pi\)
\(312\) −2.55889 + 6.06939i −0.144869 + 0.343612i
\(313\) 16.0968 0.909844 0.454922 0.890531i \(-0.349667\pi\)
0.454922 + 0.890531i \(0.349667\pi\)
\(314\) 19.7044 11.3763i 1.11198 0.642003i
\(315\) 0 0
\(316\) 1.27616 2.21037i 0.0717894 0.124343i
\(317\) 7.38961i 0.415042i 0.978231 + 0.207521i \(0.0665395\pi\)
−0.978231 + 0.207521i \(0.933460\pi\)
\(318\) −0.869998 0.502293i −0.0487870 0.0281672i
\(319\) 24.7769 + 14.3049i 1.38724 + 0.800923i
\(320\) 0 0
\(321\) −2.28493 + 3.95762i −0.127532 + 0.220893i
\(322\) −1.97758 3.42527i −0.110206 0.190883i
\(323\) −12.0246 + 6.94242i −0.669068 + 0.386286i
\(324\) 9.89822 0.549901
\(325\) 0 0
\(326\) −5.21497 −0.288831
\(327\) −24.7371 + 14.2820i −1.36796 + 0.789794i
\(328\) 2.59030 + 4.48652i 0.143025 + 0.247727i
\(329\) −3.21649 + 5.57112i −0.177331 + 0.307146i
\(330\) 0 0
\(331\) −16.8848 9.74846i −0.928074 0.535824i −0.0418724 0.999123i \(-0.513332\pi\)
−0.886202 + 0.463299i \(0.846666\pi\)
\(332\) −14.2208 8.21037i −0.780466 0.450602i
\(333\) 1.11319i 0.0610025i
\(334\) 3.35224 5.80624i 0.183426 0.317704i
\(335\) 0 0
\(336\) 6.31414 3.64547i 0.344465 0.198877i
\(337\) −27.8865 −1.51908 −0.759538 0.650463i \(-0.774575\pi\)
−0.759538 + 0.650463i \(0.774575\pi\)
\(338\) −3.20634 12.5984i −0.174402 0.685262i
\(339\) −31.2714 −1.69843
\(340\) 0 0
\(341\) 26.4833 + 45.8705i 1.43415 + 2.48403i
\(342\) −0.353326 + 0.611979i −0.0191057 + 0.0330920i
\(343\) 7.69549i 0.415517i
\(344\) 0.983586 + 0.567874i 0.0530314 + 0.0306177i
\(345\) 0 0
\(346\) 19.5409i 1.05053i
\(347\) 10.0940 17.4833i 0.541875 0.938555i −0.456922 0.889507i \(-0.651048\pi\)
0.998796 0.0490478i \(-0.0156187\pi\)
\(348\) 5.33734 + 9.24454i 0.286111 + 0.495559i
\(349\) −30.8885 + 17.8335i −1.65342 + 0.954605i −0.677774 + 0.735270i \(0.737055\pi\)
−0.975650 + 0.219335i \(0.929611\pi\)
\(350\) 0 0
\(351\) −13.9810 + 10.5889i −0.746250 + 0.565192i
\(352\) 4.89623 0.260970
\(353\) 22.1506 12.7886i 1.17896 0.680671i 0.223184 0.974776i \(-0.428355\pi\)
0.955773 + 0.294105i \(0.0950217\pi\)
\(354\) 3.16418 + 5.48052i 0.168174 + 0.291286i
\(355\) 0 0
\(356\) 3.44854i 0.182772i
\(357\) −41.8519 24.1632i −2.21504 1.27885i
\(358\) 7.77604 + 4.48950i 0.410977 + 0.237277i
\(359\) 24.2487i 1.27980i −0.768459 0.639899i \(-0.778976\pi\)
0.768459 0.639899i \(-0.221024\pi\)
\(360\) 0 0
\(361\) −7.30593 12.6542i −0.384523 0.666013i
\(362\) −4.81205 + 2.77824i −0.252916 + 0.146021i
\(363\) −23.6997 −1.24391
\(364\) −5.59030 + 13.2595i −0.293011 + 0.694988i
\(365\) 0 0
\(366\) −2.17018 + 1.25296i −0.113437 + 0.0654931i
\(367\) 1.47966 + 2.56285i 0.0772378 + 0.133780i 0.902057 0.431616i \(-0.142057\pi\)
−0.824819 + 0.565396i \(0.808723\pi\)
\(368\) 0.495508 0.858244i 0.0258301 0.0447391i
\(369\) 1.74761i 0.0909771i
\(370\) 0 0
\(371\) −1.90065 1.09734i −0.0986766 0.0569710i
\(372\) 19.7625i 1.02464i
\(373\) −2.91179 + 5.04337i −0.150767 + 0.261136i −0.931510 0.363717i \(-0.881508\pi\)
0.780743 + 0.624853i \(0.214841\pi\)
\(374\) −16.2268 28.1056i −0.839067 1.45331i
\(375\) 0 0
\(376\) −1.61186 −0.0831256
\(377\) −19.4133 8.18476i −0.999836 0.421537i
\(378\) 19.4133 0.998513
\(379\) −0.503185 + 0.290514i −0.0258469 + 0.0149227i −0.512868 0.858468i \(-0.671417\pi\)
0.487021 + 0.873390i \(0.338084\pi\)
\(380\) 0 0
\(381\) −7.42094 + 12.8534i −0.380186 + 0.658502i
\(382\) 10.1863i 0.521177i
\(383\) 13.2514 + 7.65070i 0.677115 + 0.390933i 0.798767 0.601640i \(-0.205486\pi\)
−0.121652 + 0.992573i \(0.538819\pi\)
\(384\) 1.58209 + 0.913419i 0.0807356 + 0.0466127i
\(385\) 0 0
\(386\) −4.06939 + 7.04839i −0.207126 + 0.358754i
\(387\) −0.191566 0.331802i −0.00973783 0.0168664i
\(388\) 10.0910 5.82606i 0.512295 0.295773i
\(389\) −19.7281 −1.00025 −0.500127 0.865952i \(-0.666713\pi\)
−0.500127 + 0.865952i \(0.666713\pi\)
\(390\) 0 0
\(391\) −6.56873 −0.332195
\(392\) 7.73205 4.46410i 0.390528 0.225471i
\(393\) −12.9498 22.4298i −0.653233 1.13143i
\(394\) −7.24026 + 12.5405i −0.364759 + 0.631781i
\(395\) 0 0
\(396\) −1.43040 0.825843i −0.0718804 0.0415002i
\(397\) 0.716063 + 0.413419i 0.0359382 + 0.0207489i 0.517861 0.855465i \(-0.326728\pi\)
−0.481923 + 0.876213i \(0.660062\pi\)
\(398\) 11.2566i 0.564240i
\(399\) −7.63649 + 13.2268i −0.382302 + 0.662167i
\(400\) 0 0
\(401\) 27.3668 15.8002i 1.36663 0.789026i 0.376137 0.926564i \(-0.377252\pi\)
0.990496 + 0.137538i \(0.0439189\pi\)
\(402\) 6.61471 0.329912
\(403\) −23.5491 31.0930i −1.17307 1.54885i
\(404\) 2.07923 0.103445
\(405\) 0 0
\(406\) 11.6603 + 20.1962i 0.578689 + 1.00232i
\(407\) −8.07859 + 13.9925i −0.400441 + 0.693584i
\(408\) 12.1088i 0.599475i
\(409\) 18.9951 + 10.9668i 0.939247 + 0.542274i 0.889724 0.456499i \(-0.150897\pi\)
0.0495227 + 0.998773i \(0.484230\pi\)
\(410\) 0 0
\(411\) 25.6057i 1.26304i
\(412\) 1.13397 1.96410i 0.0558669 0.0967643i
\(413\) 6.91264 + 11.9730i 0.340149 + 0.589155i
\(414\) −0.289519 + 0.167154i −0.0142291 + 0.00821516i
\(415\) 0 0
\(416\) −3.57760 + 0.448114i −0.175406 + 0.0219706i
\(417\) 29.2102 1.43043
\(418\) −8.88244 + 5.12828i −0.434454 + 0.250832i
\(419\) 15.2814 + 26.4681i 0.746545 + 1.29305i 0.949470 + 0.313859i \(0.101622\pi\)
−0.202925 + 0.979194i \(0.565045\pi\)
\(420\) 0 0
\(421\) 21.4565i 1.04573i −0.852417 0.522863i \(-0.824864\pi\)
0.852417 0.522863i \(-0.175136\pi\)
\(422\) −8.30097 4.79257i −0.404085 0.233299i
\(423\) 0.470896 + 0.271872i 0.0228958 + 0.0132189i
\(424\) 0.549905i 0.0267057i
\(425\) 0 0
\(426\) 5.48052 + 9.49253i 0.265532 + 0.459915i
\(427\) −4.74111 + 2.73728i −0.229438 + 0.132466i
\(428\) −2.50152 −0.120915
\(429\) 32.0002 4.00821i 1.54499 0.193518i
\(430\) 0 0
\(431\) −7.93641 + 4.58209i −0.382283 + 0.220711i −0.678811 0.734313i \(-0.737505\pi\)
0.296528 + 0.955024i \(0.404171\pi\)
\(432\) 2.43213 + 4.21257i 0.117016 + 0.202677i
\(433\) −5.04839 + 8.74407i −0.242610 + 0.420213i −0.961457 0.274955i \(-0.911337\pi\)
0.718847 + 0.695168i \(0.244670\pi\)
\(434\) 43.1742i 2.07243i
\(435\) 0 0
\(436\) −13.5409 7.81785i −0.648492 0.374407i
\(437\) 2.07597i 0.0993069i
\(438\) −8.17018 + 14.1512i −0.390387 + 0.676169i
\(439\) 13.2648 + 22.9752i 0.633093 + 1.09655i 0.986916 + 0.161236i \(0.0515481\pi\)
−0.353823 + 0.935312i \(0.615119\pi\)
\(440\) 0 0
\(441\) −3.01183 −0.143420
\(442\) 14.4289 + 19.0512i 0.686315 + 0.906174i
\(443\) −12.9851 −0.616939 −0.308469 0.951234i \(-0.599817\pi\)
−0.308469 + 0.951234i \(0.599817\pi\)
\(444\) −5.22077 + 3.01421i −0.247767 + 0.143048i
\(445\) 0 0
\(446\) 13.6058 23.5660i 0.644254 1.11588i
\(447\) 13.6957i 0.647783i
\(448\) 3.45632 + 1.99551i 0.163296 + 0.0942789i
\(449\) −27.5283 15.8935i −1.29914 0.750059i −0.318885 0.947793i \(-0.603308\pi\)
−0.980256 + 0.197734i \(0.936642\pi\)
\(450\) 0 0
\(451\) 12.6827 21.9670i 0.597204 1.03439i
\(452\) −8.55889 14.8244i −0.402576 0.697283i
\(453\) 6.72250 3.88124i 0.315850 0.182356i
\(454\) −6.32835 −0.297004
\(455\) 0 0
\(456\) −3.82684 −0.179208
\(457\) 6.42293 3.70828i 0.300452 0.173466i −0.342194 0.939629i \(-0.611170\pi\)
0.642646 + 0.766163i \(0.277837\pi\)
\(458\) 1.25076 + 2.16638i 0.0584441 + 0.101228i
\(459\) 16.1208 27.9221i 0.752455 1.30329i
\(460\) 0 0
\(461\) −34.6924 20.0296i −1.61578 0.932873i −0.987994 0.154491i \(-0.950626\pi\)
−0.627790 0.778383i \(-0.716040\pi\)
\(462\) −30.9155 17.8491i −1.43832 0.830413i
\(463\) 22.6119i 1.05086i 0.850836 + 0.525431i \(0.176096\pi\)
−0.850836 + 0.525431i \(0.823904\pi\)
\(464\) −2.92163 + 5.06040i −0.135633 + 0.234923i
\(465\) 0 0
\(466\) −7.94928 + 4.58952i −0.368243 + 0.212605i
\(467\) 7.72244 0.357352 0.178676 0.983908i \(-0.442819\pi\)
0.178676 + 0.983908i \(0.442819\pi\)
\(468\) 1.12076 + 0.472517i 0.0518069 + 0.0218421i
\(469\) 14.4509 0.667279
\(470\) 0 0
\(471\) −20.7827 35.9967i −0.957616 1.65864i
\(472\) −1.73205 + 3.00000i −0.0797241 + 0.138086i
\(473\) 5.56088i 0.255690i
\(474\) −4.03798 2.33133i −0.185471 0.107082i
\(475\) 0 0
\(476\) 26.4536i 1.21250i
\(477\) −0.0927520 + 0.160651i −0.00424682 + 0.00735571i
\(478\) 3.27015 + 5.66406i 0.149573 + 0.259068i
\(479\) 4.32100 2.49473i 0.197431 0.113987i −0.398025 0.917374i \(-0.630304\pi\)
0.595457 + 0.803387i \(0.296971\pi\)
\(480\) 0 0
\(481\) 4.62227 10.9635i 0.210757 0.499892i
\(482\) 9.08254 0.413699
\(483\) −6.25741 + 3.61272i −0.284722 + 0.164384i
\(484\) −6.48652 11.2350i −0.294842 0.510681i
\(485\) 0 0
\(486\) 3.48969i 0.158295i
\(487\) −22.3741 12.9177i −1.01387 0.585357i −0.101546 0.994831i \(-0.532379\pi\)
−0.912322 + 0.409474i \(0.865712\pi\)
\(488\) −1.18795 0.685861i −0.0537758 0.0310475i
\(489\) 9.52691i 0.430822i
\(490\) 0 0
\(491\) 8.75076 + 15.1568i 0.394916 + 0.684015i 0.993090 0.117351i \(-0.0374403\pi\)
−0.598174 + 0.801366i \(0.704107\pi\)
\(492\) 8.19615 4.73205i 0.369511 0.213337i
\(493\) 38.7307 1.74434
\(494\) 6.02091 4.56009i 0.270893 0.205168i
\(495\) 0 0
\(496\) −9.36854 + 5.40893i −0.420660 + 0.242868i
\(497\) 11.9730 + 20.7379i 0.537065 + 0.930223i
\(498\) −14.9990 + 25.9791i −0.672122 + 1.16415i
\(499\) 19.0519i 0.852878i −0.904516 0.426439i \(-0.859768\pi\)
0.904516 0.426439i \(-0.140232\pi\)
\(500\) 0 0
\(501\) −10.6071 6.12399i −0.473889 0.273600i
\(502\) 9.62828i 0.429731i
\(503\) −1.96384 + 3.40148i −0.0875635 + 0.151664i −0.906481 0.422247i \(-0.861241\pi\)
0.818917 + 0.573912i \(0.194575\pi\)
\(504\) −0.673162 1.16595i −0.0299850 0.0519355i
\(505\) 0 0
\(506\) −4.85224 −0.215708
\(507\) −23.0152 + 5.85747i −1.02214 + 0.260139i
\(508\) −8.12436 −0.360460
\(509\) −36.9221 + 21.3170i −1.63654 + 0.944858i −0.654530 + 0.756036i \(0.727134\pi\)
−0.982011 + 0.188822i \(0.939533\pi\)
\(510\) 0 0
\(511\) −17.8491 + 30.9155i −0.789596 + 1.36762i
\(512\) 1.00000i 0.0441942i
\(513\) −8.82443 5.09479i −0.389608 0.224940i
\(514\) 12.8364 + 7.41113i 0.566191 + 0.326891i
\(515\) 0 0
\(516\) 1.03741 1.79685i 0.0456696 0.0791021i
\(517\) 3.94603 + 6.83472i 0.173546 + 0.300591i
\(518\) −11.4056 + 6.58502i −0.501133 + 0.289329i
\(519\) 35.6981 1.56697
\(520\) 0 0
\(521\) 32.4921 1.42351 0.711753 0.702430i \(-0.247902\pi\)
0.711753 + 0.702430i \(0.247902\pi\)
\(522\) 1.70707 0.985577i 0.0747164 0.0431375i
\(523\) 5.31194 + 9.20055i 0.232275 + 0.402312i 0.958477 0.285169i \(-0.0920498\pi\)
−0.726202 + 0.687481i \(0.758716\pi\)
\(524\) 7.08867 12.2779i 0.309670 0.536364i
\(525\) 0 0
\(526\) 9.55525 + 5.51673i 0.416629 + 0.240541i
\(527\) 62.0973 + 35.8519i 2.70500 + 1.56173i
\(528\) 8.94462i 0.389264i
\(529\) 11.0089 19.0681i 0.478650 0.829046i
\(530\) 0 0
\(531\) 1.01202 0.584287i 0.0439177 0.0253559i
\(532\) −8.36033 −0.362466
\(533\) −7.25656 + 17.2117i −0.314316 + 0.745522i
\(534\) −6.29992 −0.272624
\(535\) 0 0
\(536\) 1.81042 + 3.13575i 0.0781984 + 0.135444i
\(537\) 8.20159 14.2056i 0.353925 0.613016i
\(538\) 2.61031i 0.112538i
\(539\) −37.8579 21.8573i −1.63065 0.941459i
\(540\) 0 0
\(541\) 36.2860i 1.56006i −0.625743 0.780029i \(-0.715204\pi\)
0.625743 0.780029i \(-0.284796\pi\)
\(542\) 14.3448 24.8459i 0.616161 1.06722i
\(543\) 5.07540 + 8.79085i 0.217806 + 0.377251i
\(544\) 5.74026 3.31414i 0.246112 0.142093i
\(545\) 0 0
\(546\) 24.2230 + 10.2126i 1.03665 + 0.437057i
\(547\) 21.3774 0.914030 0.457015 0.889459i \(-0.348919\pi\)
0.457015 + 0.889459i \(0.348919\pi\)
\(548\) −12.1386 + 7.00821i −0.518534 + 0.299376i
\(549\) 0.231367 + 0.400740i 0.00987451 + 0.0171032i
\(550\) 0 0
\(551\) 12.2404i 0.521457i
\(552\) −1.56787 0.905212i −0.0667331 0.0385284i
\(553\) −8.82161 5.09316i −0.375133 0.216583i
\(554\) 4.70070i 0.199714i
\(555\) 0 0
\(556\) 7.99473 + 13.8473i 0.339052 + 0.587255i
\(557\) −25.0600 + 14.4684i −1.06183 + 0.613045i −0.925937 0.377679i \(-0.876722\pi\)
−0.135889 + 0.990724i \(0.543389\pi\)
\(558\) 3.64928 0.154486
\(559\) 0.508944 + 4.06325i 0.0215261 + 0.171857i
\(560\) 0 0
\(561\) −51.3444 + 29.6437i −2.16776 + 1.25156i
\(562\) 1.66209 + 2.87883i 0.0701111 + 0.121436i
\(563\) 9.18717 15.9126i 0.387193 0.670638i −0.604878 0.796318i \(-0.706778\pi\)
0.992071 + 0.125680i \(0.0401114\pi\)
\(564\) 2.94462i 0.123991i
\(565\) 0 0
\(566\) −22.4969 12.9886i −0.945616 0.545952i
\(567\) 39.5039i 1.65901i
\(568\) −3.00000 + 5.19615i −0.125877 + 0.218026i
\(569\) −1.40280 2.42973i −0.0588086 0.101860i 0.835122 0.550064i \(-0.185397\pi\)
−0.893931 + 0.448205i \(0.852064\pi\)
\(570\) 0 0
\(571\) −0.119334 −0.00499398 −0.00249699 0.999997i \(-0.500795\pi\)
−0.00249699 + 0.999997i \(0.500795\pi\)
\(572\) 10.6585 + 14.0729i 0.445653 + 0.588417i
\(573\) 18.6088 0.777392
\(574\) 17.9058 10.3379i 0.747373 0.431496i
\(575\) 0 0
\(576\) 0.168669 0.292144i 0.00702789 0.0121727i
\(577\) 27.6701i 1.15192i −0.817478 0.575960i \(-0.804628\pi\)
0.817478 0.575960i \(-0.195372\pi\)
\(578\) −23.3256 13.4670i −0.970217 0.560155i
\(579\) 12.8763 + 7.43412i 0.535119 + 0.308951i
\(580\) 0 0
\(581\) −32.7677 + 56.7553i −1.35943 + 2.35461i
\(582\) −10.6433 18.4347i −0.441178 0.764142i
\(583\) −2.33174 + 1.34623i −0.0965707 + 0.0557551i
\(584\) −8.94462 −0.370131
\(585\) 0 0
\(586\) −0.952463 −0.0393459
\(587\) −15.5195 + 8.96018i −0.640558 + 0.369826i −0.784829 0.619712i \(-0.787249\pi\)
0.144272 + 0.989538i \(0.453916\pi\)
\(588\) −8.15519 14.1252i −0.336314 0.582514i
\(589\) 11.3306 19.6251i 0.466867 0.808638i
\(590\) 0 0
\(591\) 22.9095 + 13.2268i 0.942369 + 0.544077i
\(592\) −2.85782 1.64996i −0.117456 0.0678130i
\(593\) 22.0640i 0.906058i −0.891496 0.453029i \(-0.850343\pi\)
0.891496 0.453029i \(-0.149657\pi\)
\(594\) 11.9082 20.6257i 0.488601 0.846282i
\(595\) 0 0
\(596\) 6.49253 3.74846i 0.265944 0.153543i
\(597\) 20.5639 0.841625
\(598\) 3.54545 0.444088i 0.144984 0.0181601i
\(599\) 47.3354 1.93407 0.967035 0.254642i \(-0.0819577\pi\)
0.967035 + 0.254642i \(0.0819577\pi\)
\(600\) 0 0
\(601\) 13.4610 + 23.3152i 0.549087 + 0.951046i 0.998337 + 0.0576406i \(0.0183577\pi\)
−0.449251 + 0.893406i \(0.648309\pi\)
\(602\) 2.26639 3.92551i 0.0923713 0.159992i
\(603\) 1.22145i 0.0497414i
\(604\) 3.67985 + 2.12456i 0.149731 + 0.0864473i
\(605\) 0 0
\(606\) 3.79841i 0.154300i
\(607\) 9.85548 17.0702i 0.400022 0.692858i −0.593706 0.804682i \(-0.702336\pi\)
0.993728 + 0.111824i \(0.0356692\pi\)
\(608\) −1.04739 1.81414i −0.0424774 0.0735731i
\(609\) 36.8951 21.3014i 1.49507 0.863176i
\(610\) 0 0
\(611\) −3.50883 4.63287i −0.141952 0.187426i
\(612\) −2.23597 −0.0903839
\(613\) −12.6840 + 7.32308i −0.512300 + 0.295777i −0.733779 0.679389i \(-0.762245\pi\)
0.221479 + 0.975165i \(0.428912\pi\)
\(614\) 16.2909 + 28.2167i 0.657449 + 1.13873i
\(615\) 0 0
\(616\) 19.5409i 0.787326i
\(617\) 4.08821 + 2.36033i 0.164585 + 0.0950233i 0.580030 0.814595i \(-0.303041\pi\)
−0.415445 + 0.909618i \(0.636374\pi\)
\(618\) −3.58810 2.07159i −0.144334 0.0833315i
\(619\) 25.6874i 1.03246i −0.856449 0.516231i \(-0.827335\pi\)
0.856449 0.516231i \(-0.172665\pi\)
\(620\) 0 0
\(621\) −2.41027 4.17472i −0.0967210 0.167526i
\(622\) 15.8336 9.14155i 0.634870 0.366543i
\(623\) −13.7632 −0.551410
\(624\) 0.818632 + 6.53569i 0.0327715 + 0.261637i
\(625\) 0 0
\(626\) 13.9402 8.04839i 0.557163 0.321678i
\(627\) 9.36854 + 16.2268i 0.374143 + 0.648035i
\(628\) 11.3763 19.7044i 0.453964 0.786290i
\(629\) 21.8728i 0.872126i
\(630\) 0 0
\(631\) 24.3662 + 14.0678i 0.970003 + 0.560032i 0.899237 0.437461i \(-0.144122\pi\)
0.0707660 + 0.997493i \(0.477456\pi\)
\(632\) 2.55231i 0.101526i
\(633\) −8.75525 + 15.1645i −0.347990 + 0.602736i
\(634\) 3.69481 + 6.39959i 0.146739 + 0.254160i
\(635\) 0 0
\(636\) −1.00459 −0.0398345
\(637\) 29.6626 + 12.5059i 1.17527 + 0.495502i
\(638\) 28.6099 1.13268
\(639\) 1.75286 1.01202i 0.0693422 0.0400347i
\(640\) 0 0
\(641\) 6.86874 11.8970i 0.271299 0.469904i −0.697896 0.716199i \(-0.745880\pi\)
0.969195 + 0.246296i \(0.0792134\pi\)
\(642\) 4.56986i 0.180358i
\(643\) −10.0859 5.82308i −0.397748 0.229640i 0.287764 0.957701i \(-0.407088\pi\)
−0.685512 + 0.728061i \(0.740422\pi\)
\(644\) −3.42527 1.97758i −0.134974 0.0779275i
\(645\) 0 0
\(646\) −6.94242 + 12.0246i −0.273146 + 0.473102i
\(647\) −17.2324 29.8473i −0.677474 1.17342i −0.975739 0.218936i \(-0.929741\pi\)
0.298265 0.954483i \(-0.403592\pi\)
\(648\) 8.57211 4.94911i 0.336744 0.194419i
\(649\) 16.9610 0.665779
\(650\) 0 0
\(651\) 78.8723 3.09125
\(652\) −4.51630 + 2.60749i −0.176872 + 0.102117i
\(653\) −2.43255 4.21330i −0.0951931 0.164879i 0.814496 0.580169i \(-0.197014\pi\)
−0.909689 + 0.415290i \(0.863680\pi\)
\(654\) −14.2820 + 24.7371i −0.558469 + 0.967296i
\(655\) 0 0
\(656\) 4.48652 + 2.59030i 0.175169 + 0.101134i
\(657\) 2.61311 + 1.50868i 0.101947 + 0.0588593i
\(658\) 6.43298i 0.250784i
\(659\) 8.82145 15.2792i 0.343635 0.595193i −0.641470 0.767148i \(-0.721675\pi\)
0.985105 + 0.171955i \(0.0550083\pi\)
\(660\) 0 0
\(661\) 3.16552 1.82762i 0.123125 0.0710860i −0.437173 0.899378i \(-0.644020\pi\)
0.560297 + 0.828292i \(0.310687\pi\)
\(662\) −19.4969 −0.757770
\(663\) 34.8035 26.3593i 1.35166 1.02371i
\(664\) −16.4207 −0.637248
\(665\) 0 0
\(666\) 0.556596 + 0.964052i 0.0215677 + 0.0373563i
\(667\) 2.89538 5.01494i 0.112109 0.194179i
\(668\) 6.70447i 0.259404i
\(669\) −43.0512 24.8556i −1.66446 0.960974i
\(670\) 0 0
\(671\) 6.71626i 0.259278i
\(672\) 3.64547 6.31414i 0.140627 0.243573i
\(673\) −15.4685 26.7922i −0.596267 1.03276i −0.993367 0.114989i \(-0.963317\pi\)
0.397100 0.917775i \(-0.370017\pi\)
\(674\) −24.1505 + 13.9433i −0.930241 + 0.537075i
\(675\) 0 0
\(676\) −9.07597 9.30735i −0.349076 0.357975i
\(677\) 25.6685 0.986522 0.493261 0.869881i \(-0.335805\pi\)
0.493261 + 0.869881i \(0.335805\pi\)
\(678\) −27.0818 + 15.6357i −1.04007 + 0.600486i
\(679\) −23.2519 40.2735i −0.892326 1.54555i
\(680\) 0 0
\(681\) 11.5609i 0.443014i
\(682\) 45.8705 + 26.4833i 1.75647 + 1.01410i
\(683\) 26.3774 + 15.2290i 1.00930 + 0.582721i 0.910987 0.412435i \(-0.135321\pi\)
0.0983147 + 0.995155i \(0.468655\pi\)
\(684\) 0.706653i 0.0270195i
\(685\) 0 0
\(686\) −3.84774 6.66449i −0.146908 0.254451i
\(687\) 3.95762 2.28493i 0.150993 0.0871756i
\(688\) 1.13575 0.0433000
\(689\) 1.58055 1.19707i 0.0602143 0.0456049i
\(690\) 0 0
\(691\) −5.41546 + 3.12662i −0.206014 + 0.118942i −0.599458 0.800407i \(-0.704617\pi\)
0.393444 + 0.919349i \(0.371284\pi\)
\(692\) 9.77046 + 16.9229i 0.371417 + 0.643313i
\(693\) −3.29595 + 5.70876i −0.125203 + 0.216858i
\(694\) 20.1880i 0.766327i
\(695\) 0 0
\(696\) 9.24454 + 5.33734i 0.350413 + 0.202311i
\(697\) 34.3384i 1.30066i
\(698\) −17.8335 + 30.8885i −0.675008 + 1.16915i
\(699\) 8.38431 + 14.5220i 0.317124 + 0.549274i
\(700\) 0 0
\(701\) 9.17903 0.346687 0.173344 0.984861i \(-0.444543\pi\)
0.173344 + 0.984861i \(0.444543\pi\)
\(702\) −6.81346 + 16.1607i −0.257157 + 0.609947i
\(703\) 6.91264 0.260715
\(704\) 4.24026 2.44811i 0.159811 0.0922668i
\(705\) 0 0
\(706\) 12.7886 22.1506i 0.481307 0.833648i
\(707\) 8.29822i 0.312087i
\(708\) 5.48052 + 3.16418i 0.205970 + 0.118917i
\(709\) 30.0521 + 17.3506i 1.12863 + 0.651614i 0.943590 0.331117i \(-0.107425\pi\)
0.185039 + 0.982731i \(0.440759\pi\)
\(710\) 0 0
\(711\) −0.430497 + 0.745642i −0.0161449 + 0.0279638i
\(712\) −1.72427 2.98652i −0.0646197 0.111925i
\(713\) 9.28436 5.36033i 0.347702 0.200746i
\(714\) −48.3264 −1.80857
\(715\) 0 0
\(716\) 8.97900 0.335561
\(717\) 10.3473 5.97403i 0.386428 0.223104i
\(718\) −12.1244 21.0000i −0.452477 0.783713i
\(719\) 9.12761 15.8095i 0.340403 0.589595i −0.644105 0.764937i \(-0.722770\pi\)
0.984507 + 0.175343i \(0.0561033\pi\)
\(720\) 0 0
\(721\) −7.83876 4.52571i −0.291931 0.168546i
\(722\) −12.6542 7.30593i −0.470942 0.271899i
\(723\) 16.5923i 0.617076i
\(724\) −2.77824 + 4.81205i −0.103253 + 0.178839i
\(725\) 0 0
\(726\) −20.5245 + 11.8498i −0.761736 + 0.439788i
\(727\) −4.76025 −0.176548 −0.0882740 0.996096i \(-0.528135\pi\)
−0.0882740 + 0.996096i \(0.528135\pi\)
\(728\) 1.78843 + 14.2782i 0.0662836 + 0.529187i
\(729\) 23.3196 0.863687
\(730\) 0 0
\(731\) −3.76403 6.51948i −0.139218 0.241132i
\(732\) −1.25296 + 2.17018i −0.0463106 + 0.0802123i
\(733\) 1.44352i 0.0533176i −0.999645 0.0266588i \(-0.991513\pi\)
0.999645 0.0266588i \(-0.00848676\pi\)
\(734\) 2.56285 + 1.47966i 0.0945966 + 0.0546154i
\(735\) 0 0
\(736\) 0.991015i 0.0365293i
\(737\) 8.86425 15.3533i 0.326519 0.565547i
\(738\) −0.873806 1.51348i −0.0321653 0.0557119i
\(739\) −27.0111 + 15.5949i −0.993621 + 0.573667i −0.906355 0.422518i \(-0.861146\pi\)
−0.0872663 + 0.996185i \(0.527813\pi\)
\(740\) 0 0
\(741\) −8.33055 10.9992i −0.306031 0.404067i
\(742\) −2.19468 −0.0805691
\(743\) 20.8591 12.0430i 0.765246 0.441815i −0.0659301 0.997824i \(-0.521001\pi\)
0.831176 + 0.556009i \(0.187668\pi\)
\(744\) 9.88124 + 17.1148i 0.362264 + 0.627459i
\(745\) 0 0
\(746\) 5.82358i 0.213216i
\(747\) 4.79721 + 2.76967i 0.175521 + 0.101337i
\(748\) −28.1056 16.2268i −1.02764 0.593310i
\(749\) 9.98359i 0.364792i
\(750\) 0 0
\(751\) −0.944617 1.63612i −0.0344696 0.0597030i 0.848276 0.529554i \(-0.177641\pi\)
−0.882746 + 0.469851i \(0.844308\pi\)
\(752\) −1.39592 + 0.805932i −0.0509038 + 0.0293893i
\(753\) 17.5893 0.640990
\(754\) −20.9048 + 2.61844i −0.761308 + 0.0953580i
\(755\) 0 0
\(756\) 16.8124 9.70665i 0.611462 0.353028i
\(757\) −11.7385 20.3317i −0.426642 0.738966i 0.569930 0.821693i \(-0.306970\pi\)
−0.996572 + 0.0827270i \(0.973637\pi\)
\(758\) −0.290514 + 0.503185i −0.0105520 + 0.0182765i
\(759\) 8.86425i 0.321752i
\(760\) 0 0
\(761\) −20.4760 11.8218i −0.742253 0.428540i 0.0806347 0.996744i \(-0.474305\pi\)
−0.822888 + 0.568204i \(0.807639\pi\)
\(762\) 14.8419i 0.537665i
\(763\) −31.2012 + 54.0420i −1.12956 + 1.95645i
\(764\) 5.09316 + 8.82161i 0.184264 + 0.319155i
\(765\) 0 0
\(766\) 15.3014 0.552862
\(767\) −12.3932 + 1.55231i −0.447491 + 0.0560507i
\(768\) 1.82684 0.0659204
\(769\) 33.5563 19.3738i 1.21007 0.698636i 0.247298 0.968940i \(-0.420457\pi\)
0.962775 + 0.270304i \(0.0871241\pi\)
\(770\) 0 0
\(771\) 13.5389 23.4501i 0.487593 0.844535i
\(772\) 8.13878i 0.292921i
\(773\) 6.16020 + 3.55660i 0.221567 + 0.127922i 0.606676 0.794949i \(-0.292503\pi\)
−0.385109 + 0.922871i \(0.625836\pi\)
\(774\) −0.331802 0.191566i −0.0119264 0.00688569i
\(775\) 0 0
\(776\) 5.82606 10.0910i 0.209143 0.362247i
\(777\) 12.0298 + 20.8362i 0.431566 + 0.747494i
\(778\) −17.0850 + 9.86404i −0.612528 + 0.353643i
\(779\) −10.8522 −0.388822
\(780\) 0 0
\(781\) 29.3774 1.05120
\(782\) −5.68868 + 3.28436i −0.203427 + 0.117449i
\(783\) 14.2115 + 24.6151i 0.507878 + 0.879671i
\(784\) 4.46410 7.73205i 0.159432 0.276145i
\(785\) 0 0
\(786\) −22.4298 12.9498i −0.800044 0.461906i
\(787\) −2.28033 1.31655i −0.0812848 0.0469298i 0.458807 0.888536i \(-0.348277\pi\)
−0.540092 + 0.841606i \(0.681610\pi\)
\(788\) 14.4805i 0.515847i
\(789\) 10.0782 17.4559i 0.358792 0.621446i
\(790\) 0 0
\(791\) −59.1645 + 34.1587i −2.10365 + 1.21454i
\(792\) −1.65169 −0.0586901
\(793\) −0.614687 4.90747i −0.0218282 0.174269i
\(794\) 0.826838 0.0293434
\(795\) 0 0
\(796\) 5.62828 + 9.74846i 0.199489 + 0.345525i
\(797\) 1.25953 2.18158i 0.0446150 0.0772754i −0.842856 0.538140i \(-0.819127\pi\)
0.887471 + 0.460864i \(0.152461\pi\)
\(798\) 15.2730i 0.540657i
\(799\) 9.25252 + 5.34194i 0.327331 + 0.188984i
\(800\) 0 0
\(801\) 1.16333i 0.0411041i
\(802\) 15.8002 27.3668i 0.557926 0.966356i
\(803\) 21.8974 + 37.9275i 0.772744 + 1.33843i
\(804\) 5.72850 3.30735i 0.202029 0.116641i
\(805\) 0 0
\(806\) −35.9407 15.1528i −1.26596 0.533734i
\(807\) −4.76861 −0.167863
\(808\) 1.80066 1.03961i 0.0633471 0.0365735i
\(809\) −4.35078 7.53576i −0.152965 0.264943i 0.779351 0.626587i \(-0.215549\pi\)
−0.932316 + 0.361644i \(0.882216\pi\)
\(810\) 0 0
\(811\) 40.3063i 1.41535i 0.706540 + 0.707673i \(0.250255\pi\)
−0.706540 + 0.707673i \(0.749745\pi\)
\(812\) 20.1962 + 11.6603i 0.708746 + 0.409195i
\(813\) −45.3894 26.2056i −1.59188 0.919070i
\(814\) 16.1572i 0.566309i
\(815\) 0 0
\(816\) −6.05440 10.4865i −0.211946 0.367102i
\(817\) −2.06040 + 1.18958i −0.0720844 + 0.0416180i
\(818\) 21.9336 0.766892
\(819\) 1.88582 4.47295i 0.0658960 0.156298i
\(820\) 0 0
\(821\) 29.2880 16.9095i 1.02216 0.590144i 0.107431 0.994213i \(-0.465738\pi\)
0.914729 + 0.404068i \(0.132404\pi\)
\(822\) 12.8029 + 22.1752i 0.446551 + 0.773449i
\(823\) 24.1874 41.8938i 0.843119 1.46033i −0.0441253 0.999026i \(-0.514050\pi\)
0.887245 0.461299i \(-0.152617\pi\)
\(824\) 2.26795i 0.0790078i
\(825\) 0 0
\(826\) 11.9730 + 6.91264i 0.416596 + 0.240522i
\(827\) 15.1331i 0.526228i 0.964765 + 0.263114i \(0.0847495\pi\)
−0.964765 + 0.263114i \(0.915250\pi\)
\(828\) −0.167154 + 0.289519i −0.00580900 + 0.0100615i
\(829\) −4.22458 7.31719i −0.146726 0.254137i 0.783290 0.621657i \(-0.213540\pi\)
−0.930015 + 0.367520i \(0.880207\pi\)
\(830\) 0 0
\(831\) 8.58742 0.297894
\(832\) −2.87423 + 2.17688i −0.0996461 + 0.0754696i
\(833\) −59.1786 −2.05042
\(834\) 25.2967 14.6051i 0.875954 0.505733i
\(835\) 0 0
\(836\) −5.12828 + 8.88244i −0.177365 + 0.307206i
\(837\) 52.6208i 1.81884i
\(838\) 26.4681 + 15.2814i 0.914327 + 0.527887i
\(839\) −15.7792 9.11014i −0.544759 0.314517i 0.202246 0.979335i \(-0.435176\pi\)
−0.747006 + 0.664818i \(0.768509\pi\)
\(840\) 0 0
\(841\) −2.57180 + 4.45448i −0.0886826 + 0.153603i
\(842\) −10.7282 18.5819i −0.369720 0.640373i
\(843\) 5.25915 3.03637i 0.181135 0.104578i
\(844\) −9.58514 −0.329934
\(845\) 0 0
\(846\) 0.543744 0.0186943
\(847\) −44.8390 + 25.8878i −1.54069 + 0.889516i
\(848\) −0.274952 0.476231i −0.00944190 0.0163538i
\(849\) −23.7281 + 41.0983i −0.814346 + 1.41049i
\(850\) 0 0
\(851\) 2.83214 + 1.63514i 0.0970846 + 0.0560518i
\(852\) 9.49253 + 5.48052i 0.325209 + 0.187759i
\(853\) 37.4425i 1.28201i −0.767539 0.641003i \(-0.778519\pi\)
0.767539 0.641003i \(-0.221481\pi\)
\(854\) −2.73728 + 4.74111i −0.0936678 + 0.162237i
\(855\) 0 0
\(856\) −2.16638 + 1.25076i −0.0740452 + 0.0427500i
\(857\) 28.6086 0.977251 0.488626 0.872494i \(-0.337498\pi\)
0.488626 + 0.872494i \(0.337498\pi\)
\(858\) 25.7089 19.4713i 0.877688 0.664740i
\(859\) −22.4266 −0.765186 −0.382593 0.923917i \(-0.624969\pi\)
−0.382593 + 0.923917i \(0.624969\pi\)
\(860\) 0 0
\(861\) −18.8857 32.7110i −0.643622 1.11479i
\(862\) −4.58209 + 7.93641i −0.156067 + 0.270315i
\(863\) 3.08381i 0.104974i 0.998622 + 0.0524871i \(0.0167148\pi\)
−0.998622 + 0.0524871i \(0.983285\pi\)
\(864\) 4.21257 + 2.43213i 0.143314 + 0.0827426i
\(865\) 0 0
\(866\) 10.0968i 0.343102i
\(867\) −24.6021 + 42.6121i −0.835531 + 1.44718i
\(868\) 21.5871 + 37.3900i 0.732714 + 1.26910i
\(869\) −10.8225 + 6.24835i −0.367127 + 0.211961i
\(870\) 0 0
\(871\) −5.07180 + 12.0297i −0.171851 + 0.407611i
\(872\) −15.6357 −0.529492
\(873\) −3.40409 + 1.96535i −0.115211 + 0.0665172i
\(874\) 1.03798 + 1.79784i 0.0351103 + 0.0608128i
\(875\) 0 0
\(876\) 16.3404i 0.552090i
\(877\) −33.0587 19.0864i −1.11631 0.644503i −0.175855 0.984416i \(-0.556269\pi\)
−0.940457 + 0.339913i \(0.889602\pi\)
\(878\) 22.9752 + 13.2648i 0.775377 + 0.447664i
\(879\) 1.74000i 0.0586886i
\(880\) 0 0
\(881\) −11.9835 20.7561i −0.403736 0.699291i 0.590438 0.807083i \(-0.298955\pi\)
−0.994173 + 0.107792i \(0.965622\pi\)
\(882\) −2.60832 + 1.50591i −0.0878267 + 0.0507067i
\(883\) −19.7537 −0.664765 −0.332383 0.943145i \(-0.607853\pi\)
−0.332383 + 0.943145i \(0.607853\pi\)
\(884\) 22.0214 + 9.28436i 0.740661 + 0.312267i
\(885\) 0 0
\(886\) −11.2454 + 6.49253i −0.377796 + 0.218121i
\(887\) 10.0846 + 17.4670i 0.338608 + 0.586486i 0.984171 0.177221i \(-0.0567107\pi\)
−0.645563 + 0.763707i \(0.723377\pi\)
\(888\) −3.01421 + 5.22077i −0.101150 + 0.175198i
\(889\) 32.4244i 1.08748i
\(890\) 0 0
\(891\) −41.9710 24.2320i −1.40608 0.811801i
\(892\) 27.2116i 0.911113i
\(893\) 1.68826 2.92415i 0.0564954 0.0978529i
\(894\) −6.84784 11.8608i −0.229026 0.396685i
\(895\) 0 0
\(896\) 3.99102 0.133330
\(897\) −0.811276 6.47697i −0.0270877 0.216260i
\(898\) −31.7869 −1.06074
\(899\) −54.7427 + 31.6057i −1.82577 + 1.05411i
\(900\) 0 0
\(901\) −1.82246 + 3.15659i −0.0607150 + 0.105161i
\(902\) 25.3654i 0.844574i
\(903\) −7.17127 4.14033i −0.238645 0.137782i
\(904\) −14.8244 8.55889i −0.493053 0.284664i
\(905\) 0 0
\(906\) 3.88124 6.72250i 0.128945 0.223340i
\(907\) 11.9528 + 20.7029i 0.396887 + 0.687428i 0.993340 0.115220i \(-0.0367571\pi\)
−0.596453 + 0.802648i \(0.703424\pi\)
\(908\) −5.48052 + 3.16418i −0.181877 + 0.105007i
\(909\) −0.701403 −0.0232641
\(910\) 0 0
\(911\) −26.3025 −0.871439 −0.435720 0.900082i \(-0.643506\pi\)
−0.435720 + 0.900082i \(0.643506\pi\)
\(912\) −3.31414 + 1.91342i −0.109742 + 0.0633596i
\(913\) 40.1998 + 69.6281i 1.33042 + 2.30436i
\(914\) 3.70828 6.42293i 0.122659 0.212452i
\(915\) 0 0
\(916\) 2.16638 + 1.25076i 0.0715791 + 0.0413262i
\(917\) −49.0014 28.2910i −1.61817 0.934250i
\(918\) 32.2416i 1.06413i
\(919\) −12.8564 + 22.2679i −0.424094 + 0.734552i −0.996335 0.0855332i \(-0.972741\pi\)
0.572242 + 0.820085i \(0.306074\pi\)
\(920\) 0 0
\(921\) 51.5474 29.7609i 1.69855 0.980655i
\(922\) −40.0593 −1.31928
\(923\) −21.4656 + 2.68868i −0.706548 + 0.0884991i
\(924\) −35.6981 −1.17438
\(925\) 0 0
\(926\) 11.3059 + 19.5824i 0.371536 + 0.643519i
\(927\) −0.382533 + 0.662567i −0.0125640 + 0.0217616i
\(928\) 5.84325i 0.191814i
\(929\) 22.9610 + 13.2566i 0.753327 + 0.434934i 0.826895 0.562357i \(-0.190105\pi\)
−0.0735678 + 0.997290i \(0.523439\pi\)
\(930\) 0 0
\(931\) 18.7027i 0.612956i
\(932\) −4.58952 + 7.94928i −0.150335 + 0.260387i
\(933\) −16.7001 28.9255i −0.546738 0.946977i
\(934\) 6.68783 3.86122i 0.218833 0.126343i
\(935\) 0 0
\(936\) 1.20686 0.151166i 0.0394475 0.00494102i
\(937\) −24.3940 −0.796918 −0.398459 0.917186i \(-0.630455\pi\)
−0.398459 + 0.917186i \(0.630455\pi\)
\(938\) 12.5148 7.22543i 0.408623 0.235919i
\(939\) −14.7031 25.4665i −0.479818 0.831069i
\(940\) 0 0
\(941\) 3.13575i 0.102222i 0.998693 + 0.0511112i \(0.0162763\pi\)
−0.998693 + 0.0511112i \(0.983724\pi\)
\(942\) −35.9967 20.7827i −1.17284 0.677137i
\(943\) −4.44621 2.56702i −0.144789 0.0835937i
\(944\) 3.46410i 0.112747i
\(945\) 0 0
\(946\) −2.78044 4.81586i −0.0903999 0.156577i
\(947\) −16.2718 + 9.39450i −0.528761 + 0.305280i −0.740512 0.672043i \(-0.765417\pi\)
0.211751 + 0.977324i \(0.432084\pi\)
\(948\) −4.66266 −0.151436
\(949\) −19.4713 25.7089i −0.632066 0.834546i
\(950\) 0 0
\(951\) 11.6910 6.74981i 0.379107 0.218878i
\(952\) −13.2268 22.9095i −0.428682 0.742500i
\(953\) 3.80667 6.59335i 0.123310 0.213579i −0.797761 0.602974i \(-0.793982\pi\)
0.921071 + 0.389394i \(0.127316\pi\)
\(954\) 0.185504i 0.00600591i
\(955\) 0 0
\(956\) 5.66406 + 3.27015i 0.183189 + 0.105764i
\(957\) 52.2656i 1.68951i
\(958\) 2.49473 4.32100i 0.0806011 0.139605i
\(959\) 27.9699 + 48.4452i 0.903194 + 1.56438i
\(960\) 0 0
\(961\) −86.0260 −2.77503
\(962\) −1.47874 11.8058i −0.0476766 0.380634i
\(963\) 0.843858 0.0271929
\(964\) 7.86571 4.54127i 0.253338 0.146265i
\(965\) 0 0
\(966\) −3.61272 + 6.25741i −0.116237 + 0.201329i
\(967\) 22.5849i 0.726282i −0.931734 0.363141i \(-0.881704\pi\)
0.931734 0.363141i \(-0.118296\pi\)
\(968\) −11.2350 6.48652i −0.361106 0.208485i
\(969\) 21.9670 + 12.6827i 0.705683 + 0.407426i
\(970\) 0 0
\(971\) 16.3491 28.3174i 0.524666 0.908748i −0.474921 0.880028i \(-0.657524\pi\)
0.999587 0.0287200i \(-0.00914313\pi\)
\(972\) −1.74484 3.02216i −0.0559659 0.0969358i
\(973\) 55.2647 31.9071i 1.77170 1.02289i
\(974\) −25.8354 −0.827820
\(975\) 0 0
\(976\) −1.37172 −0.0439077
\(977\) −42.3066 + 24.4258i −1.35351 + 0.781449i −0.988739 0.149648i \(-0.952186\pi\)
−0.364770 + 0.931098i \(0.618853\pi\)
\(978\) 4.76346 + 8.25055i 0.152319 + 0.263823i
\(979\) −8.44242 + 14.6227i −0.269821 + 0.467343i
\(980\) 0 0
\(981\) 4.56787 + 2.63726i 0.145841 + 0.0842013i
\(982\) 15.1568 + 8.75076i 0.483672 + 0.279248i
\(983\) 16.3881i 0.522700i −0.965244 0.261350i \(-0.915832\pi\)
0.965244 0.261350i \(-0.0841677\pi\)
\(984\) 4.73205 8.19615i 0.150852 0.261284i
\(985\) 0 0
\(986\) 33.5418 19.3654i 1.06819 0.616718i
\(987\) 11.7520 0.374071
\(988\) 2.93421 6.95961i 0.0933497 0.221415i
\(989\) −1.12554 −0.0357902
\(990\) 0 0
\(991\) 21.8977 + 37.9279i 0.695603 + 1.20482i 0.969977 + 0.243197i \(0.0781962\pi\)
−0.274373 + 0.961623i \(0.588470\pi\)
\(992\) −5.40893 + 9.36854i −0.171734 + 0.297451i
\(993\) 35.6177i 1.13029i
\(994\) 20.7379 + 11.9730i 0.657767 + 0.379762i
\(995\) 0 0
\(996\) 29.9980i 0.950524i
\(997\) −22.5569 + 39.0697i −0.714384 + 1.23735i 0.248812 + 0.968552i \(0.419960\pi\)
−0.963196 + 0.268798i \(0.913373\pi\)
\(998\) −9.52593 16.4994i −0.301538 0.522279i
\(999\) −13.9012 + 8.02583i −0.439813 + 0.253926i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.m.c.101.3 8
5.2 odd 4 650.2.n.e.49.2 8
5.3 odd 4 650.2.n.d.49.3 8
5.4 even 2 130.2.l.b.101.2 8
13.2 odd 12 8450.2.a.cm.1.4 4
13.4 even 6 inner 650.2.m.c.251.3 8
13.11 odd 12 8450.2.a.ci.1.4 4
15.14 odd 2 1170.2.bs.g.361.4 8
20.19 odd 2 1040.2.da.d.881.1 8
65.4 even 6 130.2.l.b.121.2 yes 8
65.9 even 6 1690.2.l.j.1161.4 8
65.17 odd 12 650.2.n.d.199.3 8
65.19 odd 12 1690.2.e.t.191.4 8
65.24 odd 12 1690.2.a.u.1.1 4
65.29 even 6 1690.2.d.k.1351.1 8
65.34 odd 4 1690.2.e.s.991.4 8
65.43 odd 12 650.2.n.e.199.2 8
65.44 odd 4 1690.2.e.t.991.4 8
65.49 even 6 1690.2.d.k.1351.5 8
65.54 odd 12 1690.2.a.t.1.1 4
65.59 odd 12 1690.2.e.s.191.4 8
65.64 even 2 1690.2.l.j.361.4 8
195.134 odd 6 1170.2.bs.g.901.4 8
260.199 odd 6 1040.2.da.d.641.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.2 8 5.4 even 2
130.2.l.b.121.2 yes 8 65.4 even 6
650.2.m.c.101.3 8 1.1 even 1 trivial
650.2.m.c.251.3 8 13.4 even 6 inner
650.2.n.d.49.3 8 5.3 odd 4
650.2.n.d.199.3 8 65.17 odd 12
650.2.n.e.49.2 8 5.2 odd 4
650.2.n.e.199.2 8 65.43 odd 12
1040.2.da.d.641.1 8 260.199 odd 6
1040.2.da.d.881.1 8 20.19 odd 2
1170.2.bs.g.361.4 8 15.14 odd 2
1170.2.bs.g.901.4 8 195.134 odd 6
1690.2.a.t.1.1 4 65.54 odd 12
1690.2.a.u.1.1 4 65.24 odd 12
1690.2.d.k.1351.1 8 65.29 even 6
1690.2.d.k.1351.5 8 65.49 even 6
1690.2.e.s.191.4 8 65.59 odd 12
1690.2.e.s.991.4 8 65.34 odd 4
1690.2.e.t.191.4 8 65.19 odd 12
1690.2.e.t.991.4 8 65.44 odd 4
1690.2.l.j.361.4 8 65.64 even 2
1690.2.l.j.1161.4 8 65.9 even 6
8450.2.a.ci.1.4 4 13.11 odd 12
8450.2.a.cm.1.4 4 13.2 odd 12