Properties

Label 650.2.l.a
Level 650650
Weight 22
Character orbit 650.l
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(131,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.131"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.l (of order 55, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ103+ζ102++1)q2+(ζ1032ζ10+2)q3ζ103q4+(ζ1032ζ10+2)q5+(2ζ103+2ζ10)q6++(2ζ103+2ζ1024)q99+O(q100) q + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 1) q^{2} + ( - \zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{3} - \zeta_{10}^{3} q^{4} + ( - \zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{5} + ( - 2 \zeta_{10}^{3} + \cdots - 2 \zeta_{10}) q^{6} + \cdots + ( - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 4) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2+5q3q4+5q55q6+q82q95q105q12+q135q15q163q178q18+8q195q205q229q235q25+4q26+20q99+O(q100) 4 q + q^{2} + 5 q^{3} - q^{4} + 5 q^{5} - 5 q^{6} + q^{8} - 2 q^{9} - 5 q^{10} - 5 q^{12} + q^{13} - 5 q^{15} - q^{16} - 3 q^{17} - 8 q^{18} + 8 q^{19} - 5 q^{20} - 5 q^{22} - 9 q^{23} - 5 q^{25} + 4 q^{26}+ \cdots - 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) ζ103-\zeta_{10}^{3} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
131.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
−0.309017 0.951057i 1.80902 1.31433i −0.809017 + 0.587785i 1.80902 1.31433i −1.80902 1.31433i 0 0.809017 + 0.587785i 0.618034 1.90211i −1.80902 1.31433i
261.1 0.809017 0.587785i 0.690983 2.12663i 0.309017 0.951057i 0.690983 2.12663i −0.690983 2.12663i 0 −0.309017 0.951057i −1.61803 1.17557i −0.690983 2.12663i
391.1 0.809017 + 0.587785i 0.690983 + 2.12663i 0.309017 + 0.951057i 0.690983 + 2.12663i −0.690983 + 2.12663i 0 −0.309017 + 0.951057i −1.61803 + 1.17557i −0.690983 + 2.12663i
521.1 −0.309017 + 0.951057i 1.80902 + 1.31433i −0.809017 0.587785i 1.80902 + 1.31433i −1.80902 + 1.31433i 0 0.809017 0.587785i 0.618034 + 1.90211i −1.80902 + 1.31433i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.l.a 4
25.d even 5 1 inner 650.2.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.l.a 4 1.a even 1 1 trivial
650.2.l.a 4 25.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T345T33+15T3225T3+25 T_{3}^{4} - 5T_{3}^{3} + 15T_{3}^{2} - 25T_{3} + 25 acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
33 T45T3++25 T^{4} - 5 T^{3} + \cdots + 25 Copy content Toggle raw display
55 T45T3++25 T^{4} - 5 T^{3} + \cdots + 25 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+10T2++25 T^{4} + 10 T^{2} + \cdots + 25 Copy content Toggle raw display
1313 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
1717 T4+3T3++81 T^{4} + 3 T^{3} + \cdots + 81 Copy content Toggle raw display
1919 T48T3++121 T^{4} - 8 T^{3} + \cdots + 121 Copy content Toggle raw display
2323 T4+9T3++361 T^{4} + 9 T^{3} + \cdots + 361 Copy content Toggle raw display
2929 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
3131 T49T3++121 T^{4} - 9 T^{3} + \cdots + 121 Copy content Toggle raw display
3737 T416T3++361 T^{4} - 16 T^{3} + \cdots + 361 Copy content Toggle raw display
4141 T4+5T3++25 T^{4} + 5 T^{3} + \cdots + 25 Copy content Toggle raw display
4343 (T210T+5)2 (T^{2} - 10 T + 5)^{2} Copy content Toggle raw display
4747 T4+22T3++1681 T^{4} + 22 T^{3} + \cdots + 1681 Copy content Toggle raw display
5353 T411T3++961 T^{4} - 11 T^{3} + \cdots + 961 Copy content Toggle raw display
5959 T4+13T3++121 T^{4} + 13 T^{3} + \cdots + 121 Copy content Toggle raw display
6161 T422T3++10201 T^{4} - 22 T^{3} + \cdots + 10201 Copy content Toggle raw display
6767 T419T3++6241 T^{4} - 19 T^{3} + \cdots + 6241 Copy content Toggle raw display
7171 T4+18T3++1296 T^{4} + 18 T^{3} + \cdots + 1296 Copy content Toggle raw display
7373 T45T3++625 T^{4} - 5 T^{3} + \cdots + 625 Copy content Toggle raw display
7979 T413T3++961 T^{4} - 13 T^{3} + \cdots + 961 Copy content Toggle raw display
8383 T4+13T3++1681 T^{4} + 13 T^{3} + \cdots + 1681 Copy content Toggle raw display
8989 T410T3++400 T^{4} - 10 T^{3} + \cdots + 400 Copy content Toggle raw display
9797 T4+34T3++26896 T^{4} + 34 T^{3} + \cdots + 26896 Copy content Toggle raw display
show more
show less