Properties

Label 650.2.b.e.599.1
Level $650$
Weight $2$
Character 650.599
Analytic conductor $5.190$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(599,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.599"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 650.599
Dual form 650.2.b.e.599.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{8} +3.00000 q^{9} +1.00000i q^{13} +1.00000 q^{16} -2.00000i q^{17} -3.00000i q^{18} +8.00000 q^{19} -4.00000i q^{23} +1.00000 q^{26} +2.00000 q^{29} -4.00000 q^{31} -1.00000i q^{32} -2.00000 q^{34} -3.00000 q^{36} -6.00000i q^{37} -8.00000i q^{38} +10.0000 q^{41} -4.00000 q^{46} -8.00000i q^{47} +7.00000 q^{49} -1.00000i q^{52} +6.00000i q^{53} -2.00000i q^{58} -8.00000 q^{59} -2.00000 q^{61} +4.00000i q^{62} -1.00000 q^{64} -4.00000i q^{67} +2.00000i q^{68} -12.0000 q^{71} +3.00000i q^{72} +10.0000i q^{73} -6.00000 q^{74} -8.00000 q^{76} +8.00000 q^{79} +9.00000 q^{81} -10.0000i q^{82} +12.0000i q^{83} -10.0000 q^{89} +4.00000i q^{92} -8.00000 q^{94} +14.0000i q^{97} -7.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{9} + 2 q^{16} + 16 q^{19} + 2 q^{26} + 4 q^{29} - 8 q^{31} - 4 q^{34} - 6 q^{36} + 20 q^{41} - 8 q^{46} + 14 q^{49} - 16 q^{59} - 4 q^{61} - 2 q^{64} - 24 q^{71} - 12 q^{74} - 16 q^{76}+ \cdots - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) − 3.00000i − 0.707107i
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) − 8.00000i − 1.29777i
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) − 1.00000i − 0.138675i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) − 2.00000i − 0.262613i
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) −8.00000 −0.917663
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) − 10.0000i − 1.10432i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) − 7.00000i − 0.707107i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 14.0000i − 1.31701i −0.752577 0.658505i \(-0.771189\pi\)
0.752577 0.658505i \(-0.228811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 3.00000i 0.277350i
\(118\) 8.00000i 0.736460i
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 20.0000i 1.77471i 0.461084 + 0.887357i \(0.347461\pi\)
−0.461084 + 0.887357i \(0.652539\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000i 1.00702i
\(143\) 0 0
\(144\) 3.00000 0.250000
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 8.00000i 0.648886i
\(153\) − 6.00000i − 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) − 8.00000i − 0.636446i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) − 9.00000i − 0.707107i
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) − 16.0000i − 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 24.0000 1.83533
\(172\) 0 0
\(173\) − 18.0000i − 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 10.0000i 0.749532i
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 18.0000i 1.29567i 0.761781 + 0.647834i \(0.224325\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 26.0000i 1.85242i 0.377004 + 0.926212i \(0.376954\pi\)
−0.377004 + 0.926212i \(0.623046\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 6.00000i − 0.422159i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) − 12.0000i − 0.834058i
\(208\) 1.00000i 0.0693375i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 2.00000i − 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) − 8.00000i − 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) − 20.0000i − 1.32745i −0.747978 0.663723i \(-0.768975\pi\)
0.747978 0.663723i \(-0.231025\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.00000i 0.131306i
\(233\) − 6.00000i − 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 3.00000 0.196116
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) − 4.00000i − 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 2.00000i − 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) − 4.00000i − 0.247121i
\(263\) − 28.0000i − 1.72655i −0.504730 0.863277i \(-0.668408\pi\)
0.504730 0.863277i \(-0.331592\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) − 2.00000i − 0.121268i
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) − 22.0000i − 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 4.00000i 0.239904i
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) − 3.00000i − 0.176777i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) − 10.0000i − 0.585206i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) 0 0
\(302\) 20.0000i 1.15087i
\(303\) 0 0
\(304\) 8.00000 0.458831
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) − 28.0000i − 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) − 6.00000i − 0.339140i −0.985518 0.169570i \(-0.945762\pi\)
0.985518 0.169570i \(-0.0542379\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 16.0000i − 0.890264i
\(324\) −9.00000 −0.500000
\(325\) 0 0
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) 10.0000i 0.552158i
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) − 12.0000i − 0.658586i
\(333\) − 18.0000i − 0.986394i
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) − 18.0000i − 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 1.00000i 0.0543928i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) − 24.0000i − 1.29777i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) − 32.0000i − 1.71785i −0.512101 0.858925i \(-0.671133\pi\)
0.512101 0.858925i \(-0.328867\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 30.0000i − 1.59674i −0.602168 0.798369i \(-0.705696\pi\)
0.602168 0.798369i \(-0.294304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) 4.00000i 0.211407i
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) − 22.0000i − 1.15629i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 12.0000i 0.626395i 0.949688 + 0.313197i \(0.101400\pi\)
−0.949688 + 0.313197i \(0.898600\pi\)
\(368\) − 4.00000i − 0.208514i
\(369\) 30.0000 1.56174
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6.00000i 0.310668i 0.987862 + 0.155334i \(0.0496454\pi\)
−0.987862 + 0.155334i \(0.950355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.00000i 0.408781i 0.978889 + 0.204390i \(0.0655212\pi\)
−0.978889 + 0.204390i \(0.934479\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) 0 0
\(388\) − 14.0000i − 0.710742i
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 7.00000i 0.353553i
\(393\) 0 0
\(394\) 26.0000 1.30986
\(395\) 0 0
\(396\) 0 0
\(397\) 18.0000i 0.903394i 0.892171 + 0.451697i \(0.149181\pi\)
−0.892171 + 0.451697i \(0.850819\pi\)
\(398\) 24.0000i 1.20301i
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.00000i 0.197066i
\(413\) 0 0
\(414\) −12.0000 −0.589768
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) − 4.00000i − 0.194717i
\(423\) − 24.0000i − 1.16692i
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) − 32.0000i − 1.53077i
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) − 2.00000i − 0.0951303i
\(443\) 24.0000i 1.14027i 0.821549 + 0.570137i \(0.193110\pi\)
−0.821549 + 0.570137i \(0.806890\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −8.00000 −0.378811
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 14.0000i 0.658505i
\(453\) 0 0
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 38.0000i 1.77757i 0.458329 + 0.888783i \(0.348448\pi\)
−0.458329 + 0.888783i \(0.651552\pi\)
\(458\) − 10.0000i − 0.467269i
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) − 16.0000i − 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) 16.0000i 0.740392i 0.928954 + 0.370196i \(0.120709\pi\)
−0.928954 + 0.370196i \(0.879291\pi\)
\(468\) − 3.00000i − 0.138675i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) − 8.00000i − 0.368230i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 18.0000i 0.824163i
\(478\) 20.0000i 0.914779i
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) − 2.00000i − 0.0910975i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) 0 0
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) − 2.00000i − 0.0905357i
\(489\) 0 0
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) − 4.00000i − 0.180151i
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −8.00000 −0.358129 −0.179065 0.983837i \(-0.557307\pi\)
−0.179065 + 0.983837i \(0.557307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 28.0000i 1.24970i
\(503\) 20.0000i 0.891756i 0.895094 + 0.445878i \(0.147108\pi\)
−0.895094 + 0.445878i \(0.852892\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) − 20.0000i − 0.887357i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) − 6.00000i − 0.262613i
\(523\) − 8.00000i − 0.349816i −0.984585 0.174908i \(-0.944037\pi\)
0.984585 0.174908i \(-0.0559627\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −28.0000 −1.22086
\(527\) 8.00000i 0.348485i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) −24.0000 −1.04151
\(532\) 0 0
\(533\) 10.0000i 0.433148i
\(534\) 0 0
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) − 18.0000i − 0.776035i
\(539\) 0 0
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 28.0000i 1.20270i
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) 40.0000i 1.71028i 0.518400 + 0.855138i \(0.326528\pi\)
−0.518400 + 0.855138i \(0.673472\pi\)
\(548\) − 6.00000i − 0.256307i
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) 16.0000 0.681623
\(552\) 0 0
\(553\) 0 0
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) − 14.0000i − 0.593199i −0.955002 0.296600i \(-0.904147\pi\)
0.955002 0.296600i \(-0.0958526\pi\)
\(558\) 12.0000i 0.508001i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 22.0000i 0.928014i
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) − 12.0000i − 0.503509i
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) − 2.00000i − 0.0832611i −0.999133 0.0416305i \(-0.986745\pi\)
0.999133 0.0416305i \(-0.0132552\pi\)
\(578\) − 13.0000i − 0.540729i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 20.0000i 0.825488i 0.910847 + 0.412744i \(0.135430\pi\)
−0.910847 + 0.412744i \(0.864570\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) 0 0
\(592\) − 6.00000i − 0.246598i
\(593\) 2.00000i 0.0821302i 0.999156 + 0.0410651i \(0.0130751\pi\)
−0.999156 + 0.0410651i \(0.986925\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) − 4.00000i − 0.163572i
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) − 12.0000i − 0.488678i
\(604\) 20.0000 0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) − 36.0000i − 1.46119i −0.682808 0.730597i \(-0.739242\pi\)
0.682808 0.730597i \(-0.260758\pi\)
\(608\) − 8.00000i − 0.324443i
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 6.00000i 0.242536i
\(613\) 38.0000i 1.53481i 0.641165 + 0.767403i \(0.278451\pi\)
−0.641165 + 0.767403i \(0.721549\pi\)
\(614\) −28.0000 −1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) − 26.0000i − 1.04672i −0.852111 0.523360i \(-0.824678\pi\)
0.852111 0.523360i \(-0.175322\pi\)
\(618\) 0 0
\(619\) 24.0000 0.964641 0.482321 0.875995i \(-0.339794\pi\)
0.482321 + 0.875995i \(0.339794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) − 18.0000i − 0.718278i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 8.00000i 0.318223i
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) 0 0
\(636\) 0 0
\(637\) 7.00000i 0.277350i
\(638\) 0 0
\(639\) −36.0000 −1.42414
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 28.0000i 1.10421i 0.833774 + 0.552106i \(0.186176\pi\)
−0.833774 + 0.552106i \(0.813824\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −16.0000 −0.629512
\(647\) 28.0000i 1.10079i 0.834903 + 0.550397i \(0.185524\pi\)
−0.834903 + 0.550397i \(0.814476\pi\)
\(648\) 9.00000i 0.353553i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) − 20.0000i − 0.783260i
\(653\) 46.0000i 1.80012i 0.435767 + 0.900060i \(0.356477\pi\)
−0.435767 + 0.900060i \(0.643523\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10.0000 0.390434
\(657\) 30.0000i 1.17041i
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) −18.0000 −0.697486
\(667\) − 8.00000i − 0.309761i
\(668\) 16.0000i 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 14.0000i − 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) −18.0000 −0.693334
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) − 22.0000i − 0.845529i −0.906240 0.422764i \(-0.861060\pi\)
0.906240 0.422764i \(-0.138940\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.0000i 1.07139i 0.844411 + 0.535695i \(0.179950\pi\)
−0.844411 + 0.535695i \(0.820050\pi\)
\(684\) −24.0000 −0.917663
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) 18.0000i 0.684257i
\(693\) 0 0
\(694\) −32.0000 −1.21470
\(695\) 0 0
\(696\) 0 0
\(697\) − 20.0000i − 0.757554i
\(698\) 14.0000i 0.529908i
\(699\) 0 0
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) − 48.0000i − 1.81035i
\(704\) 0 0
\(705\) 0 0
\(706\) −30.0000 −1.12906
\(707\) 0 0
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) − 10.0000i − 0.374766i
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) 4.00000i 0.149279i
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 45.0000i − 1.67473i
\(723\) 0 0
\(724\) −22.0000 −0.817624
\(725\) 0 0
\(726\) 0 0
\(727\) 28.0000i 1.03846i 0.854634 + 0.519231i \(0.173782\pi\)
−0.854634 + 0.519231i \(0.826218\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 34.0000i − 1.25582i −0.778287 0.627909i \(-0.783911\pi\)
0.778287 0.627909i \(-0.216089\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 0 0
\(738\) − 30.0000i − 1.10432i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000i 0.586983i 0.955962 + 0.293492i \(0.0948173\pi\)
−0.955962 + 0.293492i \(0.905183\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.00000 0.219676
\(747\) 36.0000i 1.31717i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) − 8.00000i − 0.291730i
\(753\) 0 0
\(754\) 2.00000 0.0728357
\(755\) 0 0
\(756\) 0 0
\(757\) − 22.0000i − 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 8.00000 0.289052
\(767\) − 8.00000i − 0.288863i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 18.0000i − 0.647834i
\(773\) − 26.0000i − 0.935155i −0.883952 0.467578i \(-0.845127\pi\)
0.883952 0.467578i \(-0.154873\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) 80.0000 2.86630
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) 0 0
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) − 26.0000i − 0.926212i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) − 2.00000i − 0.0710221i
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) 24.0000 0.850657
\(797\) 34.0000i 1.20434i 0.798367 + 0.602171i \(0.205697\pi\)
−0.798367 + 0.602171i \(0.794303\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) 30.0000i 1.05934i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) 6.00000i 0.211079i
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) 24.0000 0.842754 0.421377 0.906886i \(-0.361547\pi\)
0.421377 + 0.906886i \(0.361547\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 26.0000i 0.909069i
\(819\) 0 0
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) − 4.00000i − 0.139431i −0.997567 0.0697156i \(-0.977791\pi\)
0.997567 0.0697156i \(-0.0222092\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) − 36.0000i − 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 12.0000i 0.417029i
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1.00000i − 0.0346688i
\(833\) − 14.0000i − 0.485071i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) − 36.0000i − 1.24360i
\(839\) −4.00000 −0.138095 −0.0690477 0.997613i \(-0.521996\pi\)
−0.0690477 + 0.997613i \(0.521996\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 26.0000i 0.896019i
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −24.0000 −0.825137
\(847\) 0 0
\(848\) 6.00000i 0.206041i
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) 22.0000i 0.753266i 0.926363 + 0.376633i \(0.122918\pi\)
−0.926363 + 0.376633i \(0.877082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 12.0000i − 0.408722i
\(863\) 40.0000i 1.36162i 0.732462 + 0.680808i \(0.238371\pi\)
−0.732462 + 0.680808i \(0.761629\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 34.0000 1.15537
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 2.00000i 0.0677285i
\(873\) 42.0000i 1.42148i
\(874\) −32.0000 −1.08242
\(875\) 0 0
\(876\) 0 0
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) − 24.0000i − 0.809961i
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) − 21.0000i − 0.707107i
\(883\) − 8.00000i − 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) − 44.0000i − 1.47738i −0.674048 0.738688i \(-0.735446\pi\)
0.674048 0.738688i \(-0.264554\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 8.00000i 0.267860i
\(893\) − 64.0000i − 2.14168i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000i 0.600668i
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 14.0000 0.465633
\(905\) 0 0
\(906\) 0 0
\(907\) − 8.00000i − 0.265636i −0.991140 0.132818i \(-0.957597\pi\)
0.991140 0.132818i \(-0.0424025\pi\)
\(908\) 20.0000i 0.663723i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 38.0000 1.25693
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 14.0000i − 0.461065i
\(923\) − 12.0000i − 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) −16.0000 −0.525793
\(927\) − 12.0000i − 0.394132i
\(928\) − 2.00000i − 0.0656532i
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 56.0000 1.83533
\(932\) 6.00000i 0.196537i
\(933\) 0 0
\(934\) 16.0000 0.523536
\(935\) 0 0
\(936\) −3.00000 −0.0980581
\(937\) − 26.0000i − 0.849383i −0.905338 0.424691i \(-0.860383\pi\)
0.905338 0.424691i \(-0.139617\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) − 40.0000i − 1.30258i
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 0 0
\(947\) 4.00000i 0.129983i 0.997886 + 0.0649913i \(0.0207020\pi\)
−0.997886 + 0.0649913i \(0.979298\pi\)
\(948\) 0 0
\(949\) −10.0000 −0.324614
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 26.0000i 0.842223i 0.907009 + 0.421111i \(0.138360\pi\)
−0.907009 + 0.421111i \(0.861640\pi\)
\(954\) 18.0000 0.582772
\(955\) 0 0
\(956\) 20.0000 0.646846
\(957\) 0 0
\(958\) − 4.00000i − 0.129234i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 6.00000i − 0.193448i
\(963\) 0 0
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) − 24.0000i − 0.771788i −0.922543 0.385894i \(-0.873893\pi\)
0.922543 0.385894i \(-0.126107\pi\)
\(968\) − 11.0000i − 0.353553i
\(969\) 0 0
\(970\) 0 0
\(971\) −4.00000 −0.128366 −0.0641831 0.997938i \(-0.520444\pi\)
−0.0641831 + 0.997938i \(0.520444\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) − 20.0000i − 0.638226i
\(983\) − 24.0000i − 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) − 8.00000i − 0.254514i
\(989\) 0 0
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 22.0000i − 0.696747i −0.937356 0.348373i \(-0.886734\pi\)
0.937356 0.348373i \(-0.113266\pi\)
\(998\) 8.00000i 0.253236i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.b.e.599.1 2
3.2 odd 2 5850.2.e.q.5149.2 2
5.2 odd 4 130.2.a.b.1.1 1
5.3 odd 4 650.2.a.d.1.1 1
5.4 even 2 inner 650.2.b.e.599.2 2
15.2 even 4 1170.2.a.b.1.1 1
15.8 even 4 5850.2.a.bq.1.1 1
15.14 odd 2 5850.2.e.q.5149.1 2
20.3 even 4 5200.2.a.r.1.1 1
20.7 even 4 1040.2.a.e.1.1 1
35.27 even 4 6370.2.a.r.1.1 1
40.27 even 4 4160.2.a.h.1.1 1
40.37 odd 4 4160.2.a.i.1.1 1
60.47 odd 4 9360.2.a.l.1.1 1
65.2 even 12 1690.2.l.f.1161.2 4
65.7 even 12 1690.2.l.f.361.2 4
65.12 odd 4 1690.2.a.b.1.1 1
65.17 odd 12 1690.2.e.i.991.1 2
65.22 odd 12 1690.2.e.c.991.1 2
65.32 even 12 1690.2.l.f.361.1 4
65.37 even 12 1690.2.l.f.1161.1 4
65.38 odd 4 8450.2.a.r.1.1 1
65.42 odd 12 1690.2.e.c.191.1 2
65.47 even 4 1690.2.d.d.1351.2 2
65.57 even 4 1690.2.d.d.1351.1 2
65.62 odd 12 1690.2.e.i.191.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.a.b.1.1 1 5.2 odd 4
650.2.a.d.1.1 1 5.3 odd 4
650.2.b.e.599.1 2 1.1 even 1 trivial
650.2.b.e.599.2 2 5.4 even 2 inner
1040.2.a.e.1.1 1 20.7 even 4
1170.2.a.b.1.1 1 15.2 even 4
1690.2.a.b.1.1 1 65.12 odd 4
1690.2.d.d.1351.1 2 65.57 even 4
1690.2.d.d.1351.2 2 65.47 even 4
1690.2.e.c.191.1 2 65.42 odd 12
1690.2.e.c.991.1 2 65.22 odd 12
1690.2.e.i.191.1 2 65.62 odd 12
1690.2.e.i.991.1 2 65.17 odd 12
1690.2.l.f.361.1 4 65.32 even 12
1690.2.l.f.361.2 4 65.7 even 12
1690.2.l.f.1161.1 4 65.37 even 12
1690.2.l.f.1161.2 4 65.2 even 12
4160.2.a.h.1.1 1 40.27 even 4
4160.2.a.i.1.1 1 40.37 odd 4
5200.2.a.r.1.1 1 20.3 even 4
5850.2.a.bq.1.1 1 15.8 even 4
5850.2.e.q.5149.1 2 15.14 odd 2
5850.2.e.q.5149.2 2 3.2 odd 2
6370.2.a.r.1.1 1 35.27 even 4
8450.2.a.r.1.1 1 65.38 odd 4
9360.2.a.l.1.1 1 60.47 odd 4