Defining parameters
Level: | \( N \) | \(=\) | \( 650 = 2 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 650.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(210\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(650))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 19 | 97 |
Cusp forms | 93 | 19 | 74 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(11\) | \(3\) | \(8\) | \(9\) | \(3\) | \(6\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(17\) | \(3\) | \(14\) | \(14\) | \(3\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(16\) | \(3\) | \(13\) | \(13\) | \(3\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(13\) | \(1\) | \(12\) | \(10\) | \(1\) | \(9\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(16\) | \(3\) | \(13\) | \(13\) | \(3\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(13\) | \(0\) | \(13\) | \(10\) | \(0\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(15\) | \(1\) | \(14\) | \(12\) | \(1\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(15\) | \(5\) | \(10\) | \(12\) | \(5\) | \(7\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(52\) | \(5\) | \(47\) | \(41\) | \(5\) | \(36\) | \(11\) | \(0\) | \(11\) | |||||
Minus space | \(-\) | \(64\) | \(14\) | \(50\) | \(52\) | \(14\) | \(38\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(650))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(650))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(650)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 2}\)