Properties

Label 65.6.b
Level $65$
Weight $6$
Character orbit 65.b
Rep. character $\chi_{65}(14,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $1$
Sturm bound $42$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 65.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(42\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(65, [\chi])\).

Total New Old
Modular forms 38 30 8
Cusp forms 34 30 4
Eisenstein series 4 0 4

Trace form

\( 30 q - 500 q^{4} + 80 q^{5} - 404 q^{6} - 1926 q^{9} + O(q^{10}) \) \( 30 q - 500 q^{4} + 80 q^{5} - 404 q^{6} - 1926 q^{9} + 322 q^{10} - 652 q^{11} - 2668 q^{14} - 2064 q^{15} + 12092 q^{16} + 5248 q^{19} - 3460 q^{20} + 7060 q^{21} - 5480 q^{24} - 1178 q^{25} - 4056 q^{26} + 6084 q^{29} + 19638 q^{30} - 22292 q^{31} - 46060 q^{34} - 272 q^{35} + 50344 q^{36} + 12168 q^{39} + 26166 q^{40} - 15856 q^{41} - 45516 q^{44} - 64644 q^{45} + 45396 q^{46} - 141086 q^{49} - 60544 q^{50} + 96168 q^{51} - 4964 q^{54} + 48544 q^{55} + 67156 q^{56} + 124624 q^{59} + 87348 q^{60} - 59060 q^{61} - 30132 q^{64} + 338 q^{65} - 2480 q^{66} - 398680 q^{69} + 297080 q^{70} - 45736 q^{71} + 517132 q^{74} + 249816 q^{75} - 278480 q^{76} - 259168 q^{79} + 100648 q^{80} + 115462 q^{81} + 30364 q^{84} - 108572 q^{85} - 483560 q^{86} + 335276 q^{89} - 501660 q^{90} - 103428 q^{91} - 208500 q^{94} + 217136 q^{95} - 92740 q^{96} + 520976 q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(65, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
65.6.b.a 65.b 5.b $30$ $10.425$ None 65.6.b.a \(0\) \(0\) \(80\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{6}^{\mathrm{old}}(65, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(65, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)